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The critical dynamics of hippocampal
seizures

Gregory Lepeu 1, Ellen van Maren 1, Kristina Slabeva1,
Cecilia Friedrichs-Maeder1, Markus Fuchs1, Werner J. Z’Graggen 2,
Claudio Pollo2, Kaspar A. Schindler 1, Antoine Adamantidis 1,4,
Timothée Proix 3,4 & Maxime O. Baud 1,4

Epilepsy is defined by the abrupt emergence of harmful seizures, but the
nature of these regime shifts remains enigmatic. From the perspective of
dynamical systems theory, such critical transitions occur upon inconspicuous
perturbations in highly interconnected systems and can be modeled as
mathematical bifurcations between alternative regimes. The predictability of
critical transitions represents a major challenge, but the theory predicts the
appearance of subtle dynamical signatures on the verge of instability.Whether
such dynamical signatures can be measured before impending seizures
remains uncertain. Here, we verified that predictions on bifurcations applied
to the onset of hippocampal seizures, providing concordant results from in
silico modeling, optogenetics experiments in male mice and intracranial EEG
recordings in human patients with epilepsy. Leveraging pharmacological
control over neural excitability, we showed that the boundary between phy-
siological excitability and seizures can be inferred from dynamical signatures
passively recorded or actively probed in hippocampal circuits. Of importance
for the design of future neurotechnologies, active probing surpassed passive
recording to decode underlying levels of neural excitability, notably when
assessed from a network of propagating neural responses. Our findings pro-
vide a promising approach for predicting and preventing seizures, based on a
sound understanding of their dynamics.

Any brain can seize: from flies to fishes, and from mice to humans,
epileptic seizures can strike without warning. In addition to the
70 million people with epilepsy worldwide who suffer from
recurrent unprovoked seizures1, up to 10% of the human
population2 will experience the danger of an occasional seizure
(typically provoked) despite having a healthy brain. Thus, a fun-
damental question is how do seizures and physiological brain
oscillations alternatively emerge from the same neural
machinery?

From the standpoint of dynamical systems theory, seizures result
from critical transitions in a bistable system (the brain) composed of
alternating ‘non-ictal’ and ‘ictal’ (i.e., seizure) regimes3–7. In other
words, seizures represent one possible regime of the brain, putatively
a byproduct of its vital excitability. As the site ofmosthuman seizures8,
the hippocampus in particular may operate on the brink of
instability9,10. Therein, positive neuronal feedbacks can amplify weak
yet relevant inputs, but consequently increase the vulnerability to
seizures11. At such tipping or ‘critical’ points, although the observable
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state of the system appears stable, inconspicuous variations that are
difficult to foresee and oppose can precipitate critical transitions6,12,13.
Developing practical methods to estimate neural resilience (i.e., the
amount of perturbation sustainable without causing a seizure14,15)
could help mitigate the risk of seizures.

Mathematically, critical transitions can only follow a limited
number of defined bifurcation types, which capture the generic
dynamical signatures of a system’s possible trajectories under differ-
ent conditions7,12,16,17. For example, in excitable circuits with resonator
bifurcation properties, imposing stimulations at resonance fre-
quencies may lead to dangerous neural amplification of weak
inputs16,18. In contrast, for circuits with integrator bifurcation proper-
ties, no such risk exists, as long as the stimulation remains below a
certain intensity threshold16. Which of these dynamics apply to specific
neural circuits is being investigated17,18, but a previously published
model, known as the ‘Epileptor’, posited that integration of perturba-
tions may represent a common scenario to provoke an ictal transition
(i.e., seizure onset)7. Thismodel depicts a foldbifurcation (visualized as
an S-shaped diagram in Fig. 1C, D), where the brain is incrementally
driven to a critical point as neural excitability rises. Consequently,
resilience decreases7,12, increasing the likelihood of an ictal transition,
and recovery from subthreshold perturbations becomes slower13,19. Of
practical importance, the resulting dynamical signature known as cri-
tical slowing12,13,20,21 may be reflected in the changing statistics of
longitudinal recordings, or in the growing impact of probing pertur-
bations imposed on the system.

The decades-long search for such warning signs heralding ictal
transitions in EEG of patients with epilepsy has challenged the best
machine-learning algorithms22,23 and frustratingly led to contradictory
results in regards to the validity of the critical slowing hypothesis15,24–27.
However, these studies were correlational by design and did not
directly control, nor probe neural excitability, for example, with
repeated small perturbations28–31. To date, experimental validation of
these theoretical predictions was mostly obtained in vitro, from
seizure-like events in brain slices kept in an artificial milieu7,15,32, and
rarely from the intact brain in vivo32.

To fill this gap, we systematically tested the predictions of the
Epileptor model in vivo. We characterized the critical neural dynamics
in hippocampal circuits using targeted optogenetic stimulations in
freely moving non-epileptic mice and electrical stimulations in hospi-
talized patients with epilepsy. Our findings highlight the superiority of
actively probing brain networks as opposed to relying on passive
dynamic signatures to assess underlying levels of neural excitability.

Results
Phenomenologically, unprovoked and provoked seizures in the hip-
pocampus can similarly produce a patient’s stereotypical symptoms
(Fig. 1A, B). On intracranial EEG (iEEG), these seizures share invariant
features beyond their abrupt focal onset such as propagation and
slowing discharges before an abrupt offset7,33 (Fig. 1B). To generate
testable hypotheses, we implemented the previously published Epi-
leptor model7 (Fig. 1C, D) that reproduces these invariant features of
seizures in silico (Fig. 1E1) and provided detailed predictions on the
dynamics of seizure onsets beyond those previously tested. First, we
verified the nature of the bifurcation in vivo, probing hippocampal
circuits with neurostimulation in non-epileptic freely-moving wildtype
mice (N = 17, Fig. 1E–G2) and in patients with epilepsy undergoing a
pre-surgical evaluation with iEEG for clinical reasons (N = 10,
Fig. 1E–G3, Supplementary Table 1). This allowedus to establish robust,
interpretable and translational means of measuring resilience to sei-
zure (Fig. 1E) and neural excitability (Fig. 1F, G) and to verify their
dynamical meaning in the model. Second, we assessed the correlation
between resilience (Fig. 2), recovery rate from perturbations (Fig. 3)
and passive dynamical signatures (Fig. 4) obtained from network
recordings (Figs. 5 and 6) under pharmacologically controlled

conditions of excitability. Last, we compared the predictive value of
active versus passive dynamical signatures to decode underlying
neural excitability (Fig. 6) and herald ictal transitions in mice (Fig. 7).

Dynamical model
The Epileptormodel is formulated as a set of five differential equations
that capture the dynamics of the interictal and ictal sequences in epi-
lepsy into three interconnected subsystems ({x1, y1}, {x2, y2}, {z}, see
methods)7. In thismodel, slow changes in excitability determine faster
neuralfiring and its possible degeneration into a seizure upon crossing
a critical point in a fold bifurcation. The resulting dynamics are sum-
marized in a S-shaped bifurcation diagram (Fig. 1C, D and Supple-
mentary Fig. 1). Therein, two basins of attraction (the two regimes) are
separated by a divergent flow acting as a barrier7,12. The height of this
seizure threshold determines a given level of resilience, here the dis-
tance from the trough to the crest (Fig. 1C, D). At the critical point
(resilience→0, empty red dot in Fig. 1D), the threshold disappears and
self-excitation due to positive feedback suffices to shift the system into
the ictal regime consituting an unprovoked seizure. Alternatively, an
external stimulation can push the system above the threshold into the
ictal regime, constituting a provoked seizure (blue arrows in Fig. 1D).
By design, the Epileptor bifurcation for seizure onset behaves as an
integrator: it has no resonance frequency and seizures cannot occur
upon inhibitory inputs16.

Metrics and their dynamical meaning
Like others34,35, we probed resilience to ictal transitions using the time-
to-seizure, that is the number of pulses or total duration of stimulation
necessary to force an ictal transition (Fig. 1E). In the model, we found
that the time-to-seizure tightly corresponds to the path-length tra-
veled to reach the threshold in Epileptor’s state-space for given sti-
mulation parameters (double arrow in Fig. 1C), a distance also reflected
in the deflections of the iEEG signal (Supplementary Fig. 2C–G). Fur-
thermore, we inferred recovery rates from response magnitudes to
single-pulse perturbations (measured as the line length of evoked iEEG
potentials, Fig. 1F, G). In the model, we found that the measured line
length reflects the length of the path traveled on an excursion within
the ‘non-seizure’ basin of attraction (curved arrows in Fig. 1D, Sup-
plementary Fig. 2A, B).

Provoking seizures in mice
Confirming the existence of a latent seizure threshold in the healthy
mouse brain (N = 17), wewere able, like others34,36,37, to induce seizures
on the first trial of stimulation of hippocampal circuits (no need for
kindling). We specifically targeted pyramidal neurons forming a posi-
tive feedback loop in the entorhinal–CA1 hippocampal circuit (tem-
poro-ammonic branch)38–40, using simple or intersectional
transfections with adeno-associated viruses (AAV) carrying Channelr-
hodopsin 2 (ChR2, methods, Supplementary Fig. 3). Twomonths after
the transfection, we triggered hippocampal seizures ‘on demand’with
trains of opto-pulses (pulse-width 3ms, wavelength 473 nm, 20Hz)
over a median [range] duration of 5.0 s [1.5–25] (tested from 0.25 to
30 sec, Fig. 1E2, Supplementary Movie 1). This result confirms that
synchronously driving pyramidal neurons in different nodes of hip-
pocampal circuits (here tested in CA1 and layer III entorhinal cortex)
can entrain a healthy brain into a seizure34,36 (Supplementary Fig. 4).

Provoking seizures in human participants
In a pre-surgical context, electrical stimulations are routinely applied
directly to different cortical areas of patients with epilepsy undergoing
iEEG to provoke seizures and study them41. Similar to results in healthy
mice, we found that seizures were inducible in the human hippo-
campus with train stimulations (bipolar, biphasic pulse-width 1ms,
1–5mA, 60Hz) over amedian [range] duration of 3.0 s [1.0–4.0] (N = 7,
Fig. 1A, B, Supplementary Table 1). In a subset of participants tested
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Fig. 1 | Probing seizure resilience and neural excitability. A Intracranial EEG
(iEEG) electrodes implanted in a patient with epilepsy undergoing pre-surgical
evaluation. The hippocampus is highlighted in red, the amygdala in orange.
B Corresponding examples of iEEG signals from one unprovoked (spontaneous)
and one provoked seizure (electrical stimulation in the entorhinal cortex, 2 s at
60Hz), recorded for clinical localization of the seizure onset zone. The provoked
seizure recapitulates most of the electrographical and semiological characteristics
of the unprovoked seizure. C The ‘Epileptor’ models the brain as a bistable dyna-
mical system. Therein, the brain can be represented as stability landscapes (top,
green to red), where the ictal (light red shading in the lower pannel) and non-ictal
regimes (white background) form basins of attraction, separated by a threshold
(dashed line). Bidirectional changes in neural excitability (the system’s control
parameter) modulate the stability landscape with lower (yellow) or heightened
resilience (green double arrow).When excitability reaches the critical point (empty
red dot), the non-ictal regime disappears and the system is forced to transition into
the ictal regime. D For a given level of neural excitability (black ball), resilience to
seizure can be measured as the amount of external perturbation (here, stimula-
tions, blue arrows) necessary to cross the threshold and transition to the seizure
regime (provoked seizure).When the system is close to the criticalpoint (empty red
dot, resilience tends to zero), ictal transitions can occur in the absence of

external excitation (unprovoked seizure). E1–3 Experimentally, trains of stimulation
of increasing duration were used to measure seizure resilience. Example in silico
using the Epileptor model (E1, 20Hz, 3ms pulse-width), in mice Using optogenetic
stimulation on the entorhinal cortex in mice (E2, 20Hz, 3ms pulse-width on
Channelrhodopsin-transfected pyramidal neurons) and in humans using electrical
stimulation on the entorhinal cortex (E3, 60Hz, 1ms pulse-width). The time of train
stimulation necessary to provoke a seizure is indicative of the distance to the seizure
threshold. F1–3 Smaller perturbations (here, single pulses) can be used to probe
neural excitability without inducing a seizure. Dynamically, they correspond to an
excursion contained within the non-ictal regime (circle arrows in D, see Supple-
mentary Fig. 2). Experimentally, to probe the dynamic range of physiological neural
excitability, we used a range of single-pulse stimulations of varying intensity (dark to
bright red) leading to increasing responses in silico (F1, 3ms pulse), as well as in vivo
in mice (F2, iEEG response to single 3ms laser pulses between ~0−50 mW) and
human patients (F3, iEEG response to single 1ms electrical pulses between 0.2−10
mA). G1–3 For a given perturbation, the induced response can be quantified as the
line length of the iEEG signal over a 250ms window, which intuitively reflects the
excursion length in state-space (Supplementary Fig. 2). E1–3 created with BioR-
ender.com released under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International license https://creativecommons.org/licenses/by-nc-nd/4.
0/deed.en.
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more than once in the same hippocampus, the time-to-seizure
remained identical, suggesting the presence of a fixed seizure
threshold (participants 11 and 15 in Supplementary Table 1).

Integrative dynamics in the hippocampus
By varying stimulation parameters, we were able to confirm the inte-
grative dynamics of the bifurcation in hippocampal circuits. Experi-
mentally in mice, the time-to-seizure decreased as a function of
increasing stimulation frequency onto excitatory pyramidal neurons,
from a median of 27 sec at 4Hz to a median of 8 sec at 40Hz (N = 8,
Supplementary Fig. 5C2). Also, arhythmic opto-stimulations at an
average rate of 20 per secondwere as efficient as rhythmic stimulation
at exactly 20Hz in inducing hippocampal seizures (N = 9, Supple-
mentary Fig. 5C4, F). Further, in vitro studies have indicated that
inhibitory interneurons may play a role in seizure initiation42–45. In a
supplementary experiment, we transfected transgenic mice (PV_Cre),
with an AAV virus to specifically express a fast Channelrhodopsin
(ChETA)46 in PV-interneurons of the CA1 dorsal hippocampus (N = 4,
Supplementary Fig. 3G, H). In contrast to our manipulations on pyr-
amidal neurons, stimulation of local PV-interneurons in the same cir-
cuit entrainedbrain oscillations at the sameandhigher frequencies but
did not result in seizures (Supplementary Fig. 5C3, D3). Taken together
these results suggest the lack of critical sensitivity to a resonance
frequency in the hippocampus. Rather, hippocampal circuits integrate
successive excitatory perturbations until a threshold is met (i.e., resi-
lience is overcome), consistent with the physiological presence of a
fold bifurcation16 consistutive of the healthybrain.

Probing variable neural resilience
In a fold bifurcation, resilience is directly proportional to the distance
to the critical point and can be measured as the minimal perturbation
sufficient to provoke an ictal transition (Fig. 1C, D, Fig. 2A). For
experimental measurement of varying resilience in mice and humans,
we used pharmacological manipulations of GABA-A receptor-medi-
ated synaptic inhibition which are known to modulate neural

excitability47,48. These included agonists such as benzodiazepines
(BZD) given intraperitoneally in mice (diazepam 5mg/kg) or intrave-
nously in humans (clonazepam 0.5–1mg) or the antagonist Pentyle-
netetrazole (PTZ) given at subconvulsive doses intraperitoneally in
mice (10–20mg/kg). Similarly to simulations (Fig. 2B, Supplementary
Fig. 2G), the time-to-seizure significantly increased when excitability
decreased (BZD, percent change compared to control injection with
NaCl i.p. [bootstrapped 95% CI]: +97% [+72, +140], 40 sessions among
N = 17 mice, Fig. 2C) and decreased when excitability increased (PTZ,
−17% [−8, −28], 23 sessions among N = 9 mice, Fig. 2C). These effects
were dose-dependent (Fig. 2C3) but independent of the stimulation
frequency (Supplementary Fig. 6D). In the human cohort, PTZ was not
administered (no clinical value), but one participant had a seizure
provoked before and immediately after the administration of BZD,
allowing for a direct comparison of resilience. In line with the results
obtained in mice, the time to seizure increased from 2 s at baseline to
4 swith BZD (+100%,N = 1, Fig. 2D). Confirming themodel’s prediction,
this set of results emphasizes the rapidity (seconds) and spatio-
temporal precision with which varying seizure thresholds can be
measured using neurostimulation in vivo.

Probing variable neural excitability
Theoretically, resilience and recovery covary with the topology of the
basin of attraction. A deeper and steeper basin increases both resilience
(c.f. height of the hill in Fig. 3A2) and recovery rates (c.f. steepness of the
slope in Fig. 3A2)12. Conversely, in a flat basin with vanishing borders,
slower recovery (i.e. critical slowing) is expected12. Bymeasuring the line
length15,49 of the iEEG response evokeduponperturbation,we found that
recovery rates were indeed inversely related to pharmacologically con-
trolled higher or lower levels of neural excitability (Fig. 3B1–D1 and
Fig. 3C3). To capture the dynamic range of responses (line length), an
input-output curve (IOC) was generated for single-pulse stimulations of
increasing intensity (Fig. 3B2–D2). The area under this curve (thereafter
simply IOC) captures in one value (from zero: no response at any
intensity, to one: maximal response at minimal intensity) a given
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lag value at half-maximum. B3–D3 Corresponding histogram of the signal’s values
across conditions. B4–B7 For each passive signature, quantification of the changes
when excitability is varied, expressed in difference to baseline condition and cal-
culated on 790 simulated iEEG samples. Half-violin plot on the right shows mean
differenceswith bootstrapped95%CI.C4–C7Mean (±bootstrapped95%CI) change
in passive signatures in presence of BZD (N = 17) or PTZ (N = 9) across 103 sessions
in mice, normalized to the control session (NaCl). D4–D7 Mean (±bootstrapped
95% CI) change in passive makers in presence of BZD across 36 hippocampal elec-
trodes in 6 participants.
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excitability level, irrespective of changes in slope (e.g., Fig. 3D2) or
height (e.g. Fig. 3C2). Similarly to simulations (Fig. 3B), evoked iEEG
responses decreased with decreased excitability in mice (BZD, IOC −17%
95% CI [−14, −20], 40 sessions among N= 17 mice, Fig. 3C4) as well as in
participants (BZD, −7%, Fig. 3D2, N= 1, group analysis below), and
increased with increased excitability in mice (PTZ, +15% [+8, +23],
23 sessions among N=9 mice, Fig. 3C4). For BZD, these effects were
dose-dependent and already present at low doses (Supplementary
Fig. 7). In contrast to other studies probing excitability28,31,32, we obtained
these results in controlled pharmacological conditions, confirming that
variable degrees of underlying neural excitability can be assessed with-
out provoking a seizure. As opposed to themethod developed by Klorig
et al.34, we did not rely on the response probability to estimate excit-
ability, which drastically reduced the number of probing pulses needed.

Passive signatures of neural excitability
We further found that changes in the system’s recovery rates were also
reflected in simple passive statistics of longitudinal iEEG recordings,
including variance, skewness, line length, and autocorrelation of the
signal, in line with prior publications15,26,27. Theoretically, a complex
system is never completely steady but rather orbits with varying

excursion lengths within a basin of attraction, being constantly sub-
jected to internally generated stochastic perturbations (i.e., ‘noise’,
Fig. 4A). Thus, when resilience decreases, dynamical signatures may
reflect slower recovery from these endogenous perturbations12,13.
When adding stochastic noise to the Epileptor at high and low excit-
ability levels, we found in silico the predicted changes in statistics with
variable effect size (Fig. 4B). Decreased excitability resulted in
decreased line length (−0.3% [−0.4, −0.1]), variance (−21% [−23, −19),
skewness (−14% [−20, −8]) and autocorrelation (−2% [−5, +1]). Con-
versely, increased excitability resulted in increased line length (+0.8%
[+0.7, +0.9]), variance (+34% [+31, +37]), skewness (+20% [+14, +27]),
and autocorrelation (+5% [+2, +8]), which are known indirect signs of
critical slowing15,26,27. In themouse hippocampus, iEEG line length (−9%
[−12, −6]) and autocorrelation (−10% [−14, −5]) significantly decreased
with BZD (40 sessions among N = 17 mice), whereas variance (+26%
[+16, +39]), autocorrelation (+14% [+5, +27]) and skewness (+34% [+17,
+64]) significantly increased with PTZ (23 sessions among N = 9 mice,
Fig. 4C). In participants, i.v. BZD administration decreased variance
(−16% [−8,−25]) and autocorrelation (−6% [−12, −1]) in the hippocampal
iEEG but other signatures did not show any significant changes (N = 6
participants, Fig. 4D). Thus, passive dynamical signatures observed
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in vivo under controlled pharmacological conditions were always in
the expected direction but not always significant, highlighting their
equivocal value.

Network dynamics in humans
Theoretically, changes in resilience and recovery rate can also become
apparent from reverberations across connected nodes of a network,
another multivariate (versus univariate, Figs. 2–4) dynamical

signature12,13. Yet, we found no significant change in the average spatial
correlation in passive recordings from hippocampal electrodes across
connections and participants receiving a BZD injection (N = 7,
Fig. 5A, B,mean difference with baseline and bootstrapped 95% CI −4%
[−11, +1]). We thus asked whether active probing could uncover dyna-
mical changes in hippocampal circuits. We used the unsupervised
clustering algorithm non-negative matrix factorization50,51 (NMF,
Fig. 5C, D, Supplementary Fig. 8) to capture iEEG responses shared in a
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sub-network connected to an electrode undergoing single-pulse
probing over a range of intensities (input-output curves as in Fig. 3).
Across seven participants and 16 stimulation sites (15 intensities per
site, up to 80 recording channels per participant), probed sub-network
responses showed a significant decrease after BZD (IOC −23% [−15,
−30], N = 7, Fig. 5D). This result suggests that active probing
can uncover changes in brain network dynamics not visible in passive
recordings.

Network dynamics in mice
In mice, spatial correlation measured in iEEG passively sampled from
nodes of the hippocampal circuits (total of 12 electrodes bilaterally in
thehippocampus, subiculumand entorhinal cortex) slightly decreased
with BZD (−8% [−3,−13] compared to NaCl, 40 sessions among N = 17
mice) and slightly increased with PTZ (+12% [+7, +15], 23 sessions
among N = 9 mice, Fig. 6A, B). As above, we used active probing and
NMF to capture more sensitively shared dynamics across the network
at different stimulation intensities (Fig. 6C–E, Supplementary Fig. 8).
We found a decrease in the network IOCwith BZD (7mg/kg: −31% [−39,
−25], BZD 5mg/kg: −18% [−22,−14], BZD 3mg/kg: −13% [−21,−4], BZD
1mg/kg: −9% [−13,−3]) and an increase with PTZ (+11% [+5, + 18],
Fig. 6E). Importantly, bidirectional and dose-dependent differences in
seizure resilience were negatively correlated with network responses
probed in the same session (Pearson correlation: R2 = 0.20, p < 10−6,
87 sessions among N = 17 mice, Fig. 6F, Supplementary Fig. 9A). This
result links recovery rates to resilience at the network-level and over a
broad range of underlying excitabilities, confirming their dynamical
relationship in a fold bifurcation and supporting the idea of probing
the brain to assess its resilience.

Decoding network dynamics in mice
Next, we formally assessed the superiority of a probing strategy in
decoding momentary states of excitability over the poorer predictive
value of partially correlated passive dynamical signatures (R2 ranging
from 0.09 to 0.29, Supplementary Fig. 9B). To do so, we adopted a
machine-learning approach to formally assess and compare the single-
trial predictive value of short segments of probed (0.25 s) and pas-
sively recorded iEEG (4 s).We trained amultilabel logistic regression to
classify states of low, normal, and high excitability corresponding to
the three balanced pharmacological conditions (one-third each: BZD
vs. NaCl vs. PTZ). To evaluate and compare the performance of each
classifier, we calculated the accuracy of this three-label classification
(see methods), which can be directly interpreted as the percentage of
single trials that were correctly classified (chance-level accuracy ~0.33,
obtained for each mouse by training on shuffled labels). An active
probing classifier trained on the multichannel iEEG response to single
pulses over 0.25 s without feature extraction performed well above

chance level (median accuracy = 0.83, p < 0.01, N = 8, Fig. 6G, H), sug-
gesting that important information could be extracted from the vol-
tage waveform recorded across 12 channels (Fig. 6C). Multiple
classifiers trained post-hoc on single timepoints confirmed the
absence of predictability from the raw baseline iEEG (Fig. 6G, recor-
ded voltage from −100 to0ms), peakpredictability between20–50ms
and sustained above-chance-level for at least 250ms after stimulation.
In the absence of stimulation, single-feature classifiers performed
poorly, when trained on individual passive signatures drawn from 4 s
baseline segments for each iEEG channel (Accuracy ~0.5, Fig. 6I).
However, a multi-feature passive signatures classifier combining these
individual features had good performance (Accuracy = 0.76, p <0.01,
N = 8, Fig. 6H), suggesting that no single passive signature fully reflects
neural excitability. It was nevertheless inferior to active probing and a
combined classifier taking all inputs (p = 0.04, two-sided paired Wil-
coxon rank-test, N = 8, Fig. 6H) that had similar performance among
them. These machine-learning results highlight the decoding value of
active probing over that of partially correlated passive dynamical
signatures.

Warning signs of ictal transitions
In a final mouse experiment, we showed how active probing could
anticipate a PTZ-induced ictal transition, as done by Graham et al. for
4-aminopyridine-induced seizures32. All previous experiments char-
acterized the dynamics of the hippocampus at some distance from the
critical point, where anexternal provoking perturbation is necessary to
cross the seizure threshold (green, grey, and yellow landscape in
Fig. 1C). However, for even higher levels of excitability, the system
approaches and crosses the critical point beyond which a seizure is
inevitable even in the absenceof provokingperturbations7,12,15 (Fig. 7A).
Such an ictal transition can bemodeledwith Epileptor, as in its original
use, by imposing higher values on the epileptogenicity parameter x07.
With rising excitability, serial probing leads to ever-larger responses,
the expected dynamical signature of approaching a critical point, now
representing a true ‘warning sign’13,20 (Fig. 7B, C and Supplementary
Fig. 10A1). Such gradual loss of resilience has been thoroughly char-
acterized by imposing artificial ionic concentrations onto brain slices,
which results in repeating ‘ictogenic ramps’ that invariably lead to
seizure-like events15,32. To verify these dynamical predictions in vivo,
we injected 8 mice with convulsive doses of PTZ (25–35mg/kg) and
probed excitability with repeated single pulses every 8–12 s until a
seizure occurred (Fig. 7D). For a fixed probing pulse, we found that
iEEG responses slightly increased up to 10min before the ictal transi-
tion (18 sessions among N = 8 mice, Fig. 7E–G and Supplementary
Fig. 10B1), similarly to our experiments with subconvulsive PTZ
(Fig. 6). In the last four minutes before the ictal transition though,
single pulses now triggered large epileptiform responses across the

Fig. 6 | Decoding network dynamics in mice. Probing network responses to
single-pulse stimulations highlights changes in network dynamics and enables
better decoding of the underlying level of neural excitability. A Mean (±boot-
strapped 95% CI) difference in Pearson correlation between all pairs of electrodes
compared to the control condition (NaCl) across 103 sessions among 17 mice.
B Representative example in one mouse of the GABAergic modulation of the
average normalized spatial correlation between all recording electrodes (no
probing).C Representative example in onemouse of the GABAergicmodulation of
the average iEEG response to optogenetic single-pulse stimulation (active probing,
down-pointing arrow in the right entorhinal cortex) and ensuing propagation
across hippocampal circuits.DMean GABAergic modulation of response to single-
pulse stimulation atmaximal intensity in each recording channel (dots) acrossmice
(N = 17), compared to the NaCl condition after bootstrapping (values within 95%
confidence intervals were left blank). E Changes in IOC (±bootstrapped 95% CI)
compared to the control condition (NaCl) for conjoint network responses to sti-
mulation computed across electrodes, stimulation intensities, and pharmacologi-
cal conditions using NMF (see Supplementary Fig. 8). Half-violin plot shows mean

differences with bootstrapped 95%CI, N are reported in the figure. FDifferences in
resilience inversely correlates with differences in single-pulse network responses in
the same session. The thick line shows the linear regression and shading the 95%CI.
R2 is Pearson’s correlation coefficient and p the two-sided p value. G–I Average
(±SD, N = 8) accuracy (unseen test data) and comparison of different single-trial
multilabel classifiers (three balanced excitability levels: low, normal, high) based on
the raw iEEG response to single pulses (active probing, 0–0.25 s, G, H) or multisite
iEEG passive recordings (multiple (H) or single (I) passive signatures, 4 s as in Fig. 4)
or the combination of these features (combined,H).Mean ± SD chance-level shown
in gray (100 label one-sided permutations test, see methods) with significant
timepoints ashorizontal blackbars. Eachdot (N = 8) corresponds toonemouse that
received both BZD and PTZ in different sessions, filled if significant (p <0.05, one-
sided permutations test, see methods). * shows significant differences between
classifiers (p <0.05, two-sided paired Wilcoxon rank-test). D created with BioR-
ender.com, released under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International license https://creativecommons.org/licenses/by-nc-nd/
4.0/deed.en.
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network (+54% [+36, +70], Fig. 7H3), mimicking spontaneous epileptic
spikes that also appeared in the recording (Fig. 7H4, Supplementary
Fig. 10B6) and reminiscent of results in Graham et al.32. At this point,
seizures could be provoked by a single-pulse (6 out of 18 seizures,
Fig. 7H4) or start spontaneously between stimulations (12 out of
18 seizures), confirming that resilience had vanished.

Discussion
In this study, we verified how fundamental mathematical predictions
on fold bifurcations apply to hippocampal seizures in mice and
humans in vivo, powerfully expanding prior experimental evidence.
Beyond previous work on passive dynamical signatures15,24–27, our
study also provides a robust experimental and clinical framework to
actively gauge excitability and seizure thresholds in brain networks
adding mathematical formalism16,21 to terms that are sometimes
ambiguous in epileptology. The importance of such measurements is

to be found in their ability to reflect the risk of upcoming seizures. By
actively probing hippocampal circuits, we uncovered dynamical sig-
natures of critical slowing that can serve as warnings about imminent
ictal transitions. The key contributions of this study are further
specified below.

First, in contrast to previous experiments mostly in vitro7, we
characterized a circuit-specific bifurcation in vivo, using precise
probing tools, namely optogenetics34,36 in freely-moving mice and
targeted electrical stimulation in hospitalized participants18,41. These
direct brain stimulations applied over a range of pharmacologically
controlled excitability levels, invariably led to self-sustained and self-
terminating seizures, revealing the presenceof a latent ictal regime5,7,11.
More specifically, the presence of integrative dynamics, where lower
or higher frequency inputs cumulate at different rates up to a
threshold, suggests that hippocampal circuits are intrinsically orga-
nized around an integrator type of bifurcation16 (here a fold
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(N = 8) single-pulse stimulations during increasing excitability up to the critical
point over the 5–20min following the injection of a single convulsive dose of PTZ

(25–35mg/kg). E Example of single-pulse stimulation (cyan ticks, every 8–12 s) and
recording in the right CA1 hippocampus at baseline and after injection of PTZ.
F Individual (thin lines) and average (thick line) NMF coefficients (see methods) of
the network response to single pulses with increasing excitability (PTZ, red) and in
control conditions (NaCl, gray). G Mean differences in single-pulse responses (line
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each electrode 10 and 2min before seizure, across 18 sessions among N = 8 mice.
H Zoom in on the network response to single-pulse at baseline (H1) and increasing
levels of excitability (H2 toH4). In this example, the last pulse induces a seizure but
seizures could also start between simulations.D andG created with BioRender.com
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bifurcation), possibly explaining how hippocampal circuits can easily
generate seizures. Beyond passive observations, our experimentation
with resilience and recovery in vivo yielded unambiguous evidence in
support of the pre-existing Epileptor model and highlighted how
provoking seizures can help characterize a latent bifurcation. Impor-
tantly, knowing the bifurcation type helps define safe versus poten-
tially seizure-provoking stimulation parameters16,18.

Second, we found and measured varying resilience (i.e., the dis-
tance to the seizure threshold) when controlling excitability through
bidirectional GABA-A receptor pharmacology, well established to
either prevent or promote seizures47,48. Agonists (BZD) showed dose-
dependent increases in resilience, whereas antagonists (subconvulsive
PTZ) decreased resilience at the approach of the critical point. The
rapidity and spatio-temporal precision with which neurostimulation
can measure seizure thresholds within individuals offers a refined
approach to drug screening in epilepsy that contrasts with commonly
used but often criticized rudimentary approaches such as maximal
electroshocks or PTZ seizure tests52,53.

Third, we found that the speed of recovery from subthreshold
perturbations reflected varying degrees of underlying excitability and
correlated with resilience. For example, at the lowest excitability level
(BZD in non-epileptic mice), recovery was fastest (probed iEEG
responses were shorter) and resilience highest. Intuitively, as the dis-
tance to the threshold increases, so too does the slope of the basin of
attraction, linking high resilience with fast recovery and narrower
variations in signals through the geometry of the fold bifurcation12,13

(Fig. 1C). Conversely, at the highest levels of excitability, on the verge
of seizing (convulsive PTZ), recovery fromperturbations sharply slows
down. Such pre-ictal ‘step-change’ in recovery rates was also recorded
by others in brain slices exposed to penicillin54, high potassium15, low
magnesium32 or 4-aminopyridine32 as well as in vivo, upon cortical
injection of 4-aminopyridine32. In the minutes preceding the onset of
seizures in slices and in vivo, Grahamet al. observed the appearance of
prolonged potentials in dendrites, reflecting increased calcium entry
upon optogenetic probing32. These dendritic ‘plateau potentials’ were
associated with increased neuronal firing rates and prolonged recov-
ery in the evoked cortical response. Thus, different modes of inducing
seizures in vitro and in vivo share the same pre-ictal dynamical sig-
natures - critical slowing - a possibly universal phenomenon12,13,19–21 that
may relate to specific neuronal (or dendritic) mechanisms in epilepsy.
The interest and relevance of dynamical signatures lie in their phe-
nomenological nature, reflecting governing rules of a system’s
dynamics that do not depend upon a detailed understanding of bio-
physical mechanisms and can likely be measured at a range of spatial
scales from dendrites to circuits27,33.

Fourth, our machine-learning results showed that snap-shots of
actively probed signals (250ms) more reliably uncovered underlying
levels of excitability with ~80% accuracy, over passive signatures of
critical slowing (increased line length, variance, skewness, auto-
correlation and spatial correlation) which had here ambiguous pre-
dictive value, and have yielded conflicting results in the literature15,24–27.
Unlike others using signal averaging over longer 10-min recordings in
sleep and wake55, we found weak correlations between passive and
active dynamical signatures at a shorter timescale in the awake brain, a
practical result in line with theoretical predictions29,30,56. Despite the
growing use of head-implanted devices, actively probing the brain to
assess recovery dynamics has so far not reached practice26,53. Yet,
coupled with ever more sophisticated machine-learning, active prob-
ing could help assess momentary neural resilience, enabling real-time
forecasts of seizure risk or timely therapeutic adjustments in patients
with epilepsy28,31. More broadly, such a principled dynamical approach
may be core to the development of next-generation implantable
neurostimulators to treat psychiatric and neurological brain
disorders57–59. Indeed, current empirical stimulation protocols are

ignorant of the specific dynamics of targeted neural circuits, blind to
potential risks, and likely do not fully leverage potential therapeutic
opportunities58–62. Thus, an AI-assisted device that could probe and
control the excitability of specific brain circuits may find broad
applicability.

While thorough, our study is nevertheless limited. First, our
manipulation of neural excitability relied solely on the pharmacology
of the GABA-A receptor. In our opinion, however, neural excitability is
best conceptualized as a latent parameter that integrates the effects of
a large number of variables, including, for example, endogenous
cyclical fluctuations5,63, brain states64, pathological changes35, genetic
mutations65, ion concentrations66, the excitation-inhibition balance67,
and pharmacologicalmodulation68. As such, our results provide one of
potentially many crucial links with a tangible biological mechanism,
while establishing a quantitative framework to assess others. Second,
our ability to study seizure thresholds in humans was limited as sei-
zures were always induced for clinical reasons (whereas single-pulse
probing was done for research). In the future, more substantial clinical
datasets will allow for a more systematic probing of different seizure
dynamotypes17. Third, our optogenetic model of seizures on-demand
enabled circuit and cell-type specificity but likely does not represent
the sole neuronal mechanism of ictal transition.

Taken together, our translational study provides a foundation for
an approach in which ever-varying neural dynamics are gauged using
minute perturbations, reducing to practice the general idea that resi-
lience and risk in complex systems can be probed12,13,19–21. In future
neuro-engineering efforts, incorporation of real-time brain probing28,31

will likely be necessary for dynamically targeted neurostimulation58–62.
Overall, a dynamical systems approach to neurostimulation will help
physicians, mathematicians, physicists, and engineers align on core
concepts and formalize shared vocabulary for impactful advances in
the field.

Methods
Epileptor model
The Epileptor is a previously published five-dimensional neural mass
model of seizure activity7. Conceptually, this model is divided into
three interconnected subsystems: a fast subsystem (variables x1 and y1)
models fast ictal discharges, a slower subsystem (variables x2 and y2)
models slower spike-wave events, and a very slow permittivity variable
z governs the switching between ictal and interictal states.

_x1 = y1 � f 1 x1,x2
� �� z + I1 ð1Þ

_y1 = y0 � 5x2
1 � y1 ð2Þ

_z =
1
τ0

4 x1 � x0

� �� z
� �

ð3Þ

_x2 = � y2 + x2 � x3
2 + I2 +0:002g x1

� �� 0:3 z � 3:5ð Þ ð4Þ

_y2 =
1
τ2

�y2 + f 2 x2
� �� �

ð5Þ

Where:

g x1
� �

=
Z 1

τ0

e�γ t�τð Þx1 τð Þdτ ð6Þ

f 1 x1, x2

� �
=

x3
1 � 3x2

1 , if x1<0

ðx2 � 0:6 z � 4ð Þ2Þx1, if x1 ≥0

(
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f 2 x2

� �
=

0, if x2<� 0:25

6ðx2 +0:25Þ, if x2 ≥ � 0:25

�
ð8Þ

with τ0 = 20000, τ2 = 10, I1 = 3.1+Istim1, I2 = 0.45 + Istim2, and γ =0.01.
Note that compared to the original Epileptor parameters, τ0 was cho-
sen with a larger value, to obtain longer seizure and interictal period
durations. To approximate the conditions of our experiments in vivo,
we chose the excitability (or epileptogenicity) parameter x0 such that
no seizure occurs spontaneously, i.e., x0 = −2.25 for theNaCl condition,
x0 = −2.20 for the PTZ condition, and x0 = −2.30 for the BZD condition.
When the Epileptor was set in an epileptogenic state (Fig. 7), we used
x0 = −2.0. We modeled electrical stimulations as additional inputs
Istim1 and Istim2 included in I1 and I2, respectively. The stimulation
amplitude Istim1 and Istim2 were set to 2 and 5, respectively, unless
stated otherwise. Initial conditions were chosen for each excitability
condition such that the system was lying on the fixed point at the
beginning of the simulation.

The time correspondence between simulations and experiments
was chosen such that one-time step in the simulation corresponds to
10msof real-time. Temporal stimulation parameterswere then chosen
in the experimental setting (frequency: 20Hz, stimulation duration:
3ms). The system was simulated using a fourth-order Runge–Kutta
method. For stochastic simulations we used additive white Gaussian
noise on both the fast and slow subsystem, more specifically on vari-
ables x1, x2, and y2, with mean 0 and variance 0.005, 0.0001, and
0.0001, respectively. The stochastic system was integrated using a
modified Runge–Kutta scheme for stochastic differential equations69.

Human experiments and data
Human participants. Human data were collected from 10 patients
(Supplementary Table 1) with intractable epilepsy undergoing invasive
pre-surgical evaluation with stereo-EEG at Inselspital, Bern, Switzer-
land. Electrodes were implanted as clinically necessary for seizure
localization and without relationship to the present research study.
These intracranial EEG electrodes enable direct brain stimulationswith
pulses of electrical current to probe neural excitability in the form of
cortico-cortical evoked potentials (CCEPs), hereafter termed iEEG
responses for simplicity. Seizures were triggered for clinical reasons,
but participants provided informed consent for receiving additional
single-pulse stimulation and analysis of the iEEG data. This study was
approved by the ethics committee of the CantonBern (ID 2018-01387).

Data acquisition. Each iEEG electrode (DIXI medical, Microdeep®,
France) consists of 8–18 platinum channels with a diameter of
0.8mm and a length of 2mm with varying spacing. The MRI and
postsurgical CT were co-registered using the Lead-DBS software
(www.lead-dbs.org) to determine the exact location of each elec-
trode contact. A neurologist (MOB) labeled the channels based on
their anatomical locations. The iEEG recording was amplified using a
128-channel Neuralynx ATLAS system (Neuralynx Inc., USA), with a
sampling frequency of 2KHz, a voltage range of ± 2000 µV along with
a digital trigger signal to identify stimulation onsets.

Cortical electrical stimulations. A neurostimulator (ISIS Stimulator,
Inomed Medizintechnik GmbH, Germany) was used to deliver a single
or a train of bipolar (neighboring contacts) stimulations at varying
intensity and with a square-biphasic pulse of a total width of 1ms. The
same stimulation protocol was repeated before and after the intrave-
nous administration of clonazepam 0.5–1mg, a GABA-A receptor
agonist of the benzodiazepine class (BZD), given for medical reasons
(end of clinical work-up). The single-pulse protocol (SP) consisted of
varying intensities ranging from0.2 – 10mA, eachpulse repeated three
times and randomly deliveredwith an inter-stimulation-interval (ISI) of

at least 4 sec. Seizures were provoked in the human participants using
60Hz bipolar stimulations at 1–3mA over a few seconds (1–6 s).

Data pre-processing. The human iEEG signals were preprocessed in
Matlab (The MathWorks, Inc., Natick, Massachusetts, United States) in
the following steps: (1) calculating bipolar derivations by subtracting
monopolar recordings from two neighboring channels on the same
electrode lead. (2) removing remaining stimulation artifacts by inter-
polation of a 12ms window ([−2, 10]ms from trigger onset). A kriging
technique is applied where a linear fit with random noise (gaussian
distribution of standard deviation of 50ms preceding data) connects
the beginning and the end of the interpolation window. (3) bandpass
0.5–200Hz and 50Hz (and harmonics) notch filtering followed by
resampling to a frequency of 500Hz. Human andmouse iEEG features
were extracted in a common processing pipeline (see below).

Lead-DBS (www.lead-dbs.org) and the Freesurfer image analysis
suite (http://surfer.nmr.mgh.harvard.edu/) were used to produce 3d
brain visualizations.

Mouse experiments and data
Mice. All experiments on mice were conducted in accordance with
protocols approved by the veterinary office of the Canton of Bern,
Switzerland (license no. BE 19/18 and BE 51/2022). A total of 34 C57BL/
6JRj and 4 PV_ires_Cre male mice aged between 2 and 4 months old
were used. Mice were housed in ventilated cages, with food and water
ad libitum under controlled conditions (12:12 h light-dark cycle, con-
stant temperature 22 °C, and humidity 30–50%).

Virus transfection. Mice were anesthetized with Isoflurane (5% in
ambient air for induction and 1.5–2% for maintenance, Abbvie, Swit-
zerland). They were then placed in a digital stereotaxic frame (David
Kopf Instrument, USA), and body temperature was kept at 37 °C using
a rectal probe and closed-loop heating system (Harvard Apparatus,
USA). Eyes were protected with ointment (Bepanthen, Bayer, Ger-
many), and analgesia was given as subcutaneous injection of Melox-
icam 2mg/kg (Boehringer Ingelheim, Switzerland). Scalp fur was
removedusing a depilatory cream(Weleda, Switzerland), and the scalp
was disinfected with Betadine (Mundipharma, Switzerland). After skin
opening, theperiosteumwas roughened, andburrholeswere drilled at
the targeted coordinates.

In the main preparation (N = 28), we used an intersectional strat-
egy to expressChannelrhodopsin (Ch2R) specifically in pyramidal cells
projecting from the medial entorhinal cortex (MEC) to the CA1 region
of the hippocampus (PNMEC->CA1). Two recombinant AAVwere injected
in two different target brain regions known to be connected, such that
only neurons transfected with both viruses would express ChR2
(Supplementary Fig. 3D–F): (1) 450 nl of a retrograde virus containing
theopsin on inverted cassette (AAVretro_EIFa_DIO_Ch2R(H134R)_eYFP,
UNC Vector Core, USA) were injected into the right CA1 dorsal hip-
pocampus (coordinates: antero-posterior (AP) −2.0mm from Bregma,
medio-lateral +1.3mm from Bregma and dorso-ventral −1.6mm from
the skull level). (2) 450nl of an anterograde virus containing the Cre
recombinase under CamKII promoter to target pyramidal cells
(AAV1_CamKII_Cre_SV40, Addgene, USA) were injected into the right
MEC (+3.2mm laterally from Lambda along the lambdoid suture and
DV−2.5mmfromskull level). Viruseswere loadedon a500nlHamilton
syringe (Model 7000.5, Hamilton Company, USA) and injected using a
micro-infusion pump (Pump 11 Elite Nanomite, Harvard Apparatus,
USA) at the rate of 50nl/min, with a 10min pause before syringe
retraction. The skin incision was then sutured, and mice were placed
back in their home-cage for recovery. They were monitored and
received analgesia (Meloxicam 2mg/kg) for 3 days.

Three other virus constructs were used for different control
experiments (Supplementary Fig. 3 and 5): 1) To verify the circuit-
specificity of our intersectional viral strategy and control that
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Channelrhodopsin was necessary to induce seizure, two mice
received the same two viruses at the same coordinates, but without
the Channelrhodopsin (AAV1_CamKII_Cre_SV40 and AAVre-
tro_EIFa_DIO_eYFP, Supplementary Fig. D1). 2) To control that seizure
could also be induced by direct stimulation of CA1 pyramidal cells,
four mice received an anterograde virus in CA1 (450 nl of AAV2_-
CamKII_Ch2R(H134R)_eYFP, Supplementary Fig. 3A, B and Supple-
mentary Fig. D2). 3) To assess whether seizures could also be induced
by stimulation of inhibitory cells, four PV_ires_Cre mice received a
cre-dependent anterograde virus in the CA1 dorsal hippocampus
(AAVdj_EIFa_DIO_ChETA-eYFP, Supplementary Fig. 3G, H and Sup-
plementary Fig. 5D3). The ChETA ospin was chosen to allow stimu-
lation at higher frequencies (>40Hz) in fast-spiking
interneurons38(Supplementary 5C3).

Electrodes implantation. Three weeks after viral injection, mice were
implanted with intracranial electrodes for multisite iEEG recordings.
Implantation surgerywas carried out in the stereotactic frame through
the same incision. For longer surgeries of 3–4h, a reversiblemix (10μl/
g) was used for anesthesia, with the following composition: 10% Mid-
azolam 5mg/ml (Sintetica, Switzerland), 2% Medetomidine 1mg/ml
(Graeub AG, Switzerland), 10% Fentanyl 0.05mg/ml (Sintetica, Swit-
zerland) and 78% NaCl 0.9%. Bilateral frontal skull EEG screws
(∅1.9mm, Paul KorthGmbH, Switzerland)were soldered to a stainless-
steel cable (W3wire, USA) and inserted at coordinates−1.0AP, ±2.0ML.
Reference and ground EEG screwswere inserted above the cerebellum
and the olfactory bulb, respectively. Twelve intracerebral depth elec-
trodes, made of tungsten wires (∅76.2μm, model 796000, A-M Sys-
tem, USA), were pinned in an 18-EIB board (Neuralynx, USA) and
inserted one by one and glued in place at the following coordinates:
MEC on the lambdoid suture, ±3.2ML, − 2.5DV; CA1 −2.0AP, ±1.3ML,
−1.6DV; DG −2.0AP, ±1.3ML, −2.3DV; CA3 −2.0AP, ±2.2ML, −2.2DV and
Subiculum −3.2AP, ±1.6ML and −1.8DV (All DV coordinates are calcu-
late from skull level). The right entorhinal electrode was glued to a
homemade optical fiber implant (∅200μm, 0.39 NA Core Multimode
Optical Fiber, FT200EMT inserted and glued into CFLC128 ceramic
ferrules, Thorlabs, USA, Supplementary Fig. 3C). Each electrode was
cemented to the skull and to neighboring electrodes to provide better
stability.

Upon completion of the implantation, anesthesia was reversed
with a mix for reversing anesthesia (10μl/g), composed of 5% Atipa-
mezole 5mg/ml (Graeub AG, Switzerland), 2% Naloxone 4mg/ml
(OrPha SwissGmbH, Switzerland), 50%Flumazenil 0.1mg/ml (Anexate,
Roche, Switzerland) and 43% NaCl. After the surgery, mice were
monitored in their home-cage for a week and received analgesia
(Meloxicam 2mg/kg) for three days. During a brief isoflurane anes-
thesia, mice were connected to the iEEG recording system, and habi-
tuated for another week to move freely with the recording cable.

iEEG data acquisition. The implanted EIB board was connected to
either aHS-16-CNR-MDR50Neuralynx or a RHD 16-channel Intan (Intan
Technologies, USA) headstage, and the optic fiber to a homemade
optical patch-cord (optic fiber FT200EMT glue in a FC/PC connector,
30230G3, Thorlabs, USA). iEEG signals were amplified and digitized at
2000 Hz using either the Digital Lynx SX data acquisition system
(Neuralynx, USA) or the Intan RHD USB interface board (Intan, USA).
The mice iEEG signals were preprocessed in Python (Python Software
Foundation, https://www.python.org/) with a 0.5–800Hz bandpass
and a 50Hz (and harmonics) notch filter.

Optogenetic stimulation. For opto-stimulation, a patch-cord was
connected to a 473 nm blue laser (Cobolt 06-MLD, HÜBNER Photonics
GmbH, Germany) controlled by a Matlab (Mathworks, USA) script
through a pulse train generator (PulsePal 2, Sanworks, USA). The
digital trigger signal was recorded along with the electrophysiology

data. The analog modulation mode of the lasers was used to stimulate
different light intensities by employing varying input voltages. Max-
imum intensity was calculated to be around 30mW at the tip of the
optic fiber. The reliability of the laser outputs and modulation was
ensured previously by recording laser power for each of the stimula-
tion protocols with a photodiode (PM100A, Thorlabs) connected to
the Digital Lynx with a Universal Signal Mouse board (Neuralynx
Inc., USA).

Behavioral assessment. Video of the seizures were recorded using
zenithal webcams (HD Pro C920, Logitech, Switzerland) and the OBS
Studio software (https://obsproject.com/). Video recordings of the
induced seizures were scored offline and blinded to pharmacological
condition, using amodifiedRacine scale as follow: 0: no visible change,
1: behavioral arrest, 2: clonus without rearing, 3: clonus with rearing, 4:
clonus and falling on side, 5: wild jumping, 6: death. Three mice
(18 sessions) were not filmed and couldn’t be included in the analysis.

GABA-A receptor agonists andantagonists. A benzodiazepine (BZD,
Diazepam 10mg/2ml, Roche, Switzerland) and Pentylenetetrazole
(PTZ, P6500, Sigma-Aldrich, USA) were diluted in NaCl 0.9% such as
to inject a constant volume intraperitoneally across concentrations
(2μl/g i.p.). Diazepam dose was set at 5mg/kg if not specified
otherwise. subconvulsive and convulsive doses of PTZ were initially
given at 20mg/kg and 30–40mg/kg, respectively, but occasionally
had to be adjusted on a per-animal basis. For example, if a sub-
convulsive dose nevertheless led to a seizure, data from this session
were discarded and the next dose for this mouse was reduced to 75%
of the previous dose.

Optogenetically-induced seizures. In the main experiments
(Figs. 2–4, and 6), each mouse (N = 17) underwent one to six experi-
mental blocks. An experimental block included three 1.5-h sessions on
different afternoons (second half of the light phase), each with one of
three different pharmacological conditions: BZD, subconvulsive PTZ
or control NaCl i.p. Sessions within an experimental block were orga-
nized in random order at intervals of 48–72 h to allow for drug elim-
ination and minimize kindling (i.e., the tendency for seizures to
become more severe over time). Each session started with a 10-min
baseline recording, followed by three different optogenetic stimula-
tion protocols preceded by an i.p. injection of the same drug (BZD,
PTZ, or NaCl) 3min before (repeated at 50% for PTZ, fast
elimination34,47 and 10% for BZD, slower elimination43,44). To avoid
changes in neural excitability related to vigilance stages, mice were
kept awake by gentle handling. The optogenetic protocols were, in a
fixed order: (1) 270 paired pulses (PP) at varying inter-pulse intervals
(6–2000ms) every 8–12 s over 45min, with three different intensities
(3ms at 1/3 max intensity, 2/3 max intensity or max intensity) for the
first pulse and a fixed intensity (3ms at 2/3 max) for the second pulse.
(2) 60 single pulses (SP, 3ms) at 12 different intensities, linearly dis-
tributed in the range of the laser analog modulation (0.45 V to 1 V),
over 45min. Ten additional low intensities (analog modulation 0.45V-
0.55 V) were used to determine the minimal intensity necessary to
obtain a detectable response (rheobase) in the iEEG. (3) Train stimu-
lations (20Hz) of increasing duration (0.25 to 30 sec, presented at one-
minute intervals) for seizure induction until a seizure occurred
(Fig. 1C1). Seizures were visually detected by a trained experimenter as
sustained (>10 s) ictal activity continuing after the end of the stimu-
lation. In a supplementary experiment involving 8 mice, seizures were
also provoked at different stimulation frequencies (4, 7, 10, 20, 40Hz,
Supplementary Fig. 2). Each frequency was tested within one of five
experimental blocks that each included three sessions with different
pharmacological conditions, as above. In another supplementary
experiment, a subset of mice (N = 8, Fig. 6) underwent one additional
experimental block that included five sessions, each randomized to
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one of four different doses of Diazepam (1, 3, 5, and 7mg/kg) or the
control condition (NaCl).

PTZ-induced seizures. For this experiment (Fig. 7), 8 mice underwent
1–3 recording sessions including 10min baseline recording, followed
by a first protocol of stimulation with only single-pulse (20 pulses at
maximum intensities, every 8–12 s) to probe excitability at baseline.
After convulsive PTZ injection single pulseswere repeated every 8–12 s
until the recording was stopped after the occurrence of a seizure (as
above). Two control experiments were included: (1) The same stimu-
lation protocol was carried out in the same mice before and after
injection of NaCl i.p.; (2) To verify that single-pulse stimulations were
not necessary to induce seizures, another five control mice received
supra-threshold PTZ in absence of optogenetic stimulation and also
developed seizures (5 out of 5).

Mice histology. Mice were euthanized after the end of the recording
blocks. They were anesthetized with 250mg/kg Pentobarbital (Esco-
narkon 1:20, Streuli Pharma AG, Switzerland) and transcardially per-
fused first with cold NaCl 0.9% and then with 4% formaldehyde for
5min each. Extracted brains were post-fixed in 4% formaldehyde
(Grogg Chemie, Switzerland) for 24 h, then transferred in sucrose for
48 h before being flash-frozen with −80° methylbutane. Brains were
then sliced along the either sagittal, coronal or axial axes (40 µmslices)
on a cryostat (Hyrax C 25, Zeiss, Germany), and collected in PBS. For
immunostaining against the GFP, slices were first incubated for 1 h in a
blocking solution composed of PBST and 4% bovine serum albumin.
Free-floating slices were then incubated for 48 h at 4° with anti-GFP
primary antibody (1:5000, Ref. A10262, Invitrogen, USA). They were
then rinsed 3 × 10min with PBS containing 0.1% Triton and incubated
1 h at room temperature with a secondary antibody AlexaFluor 488
(1:500 Abacam, ab96947). Finally, slices were washed again for
3 × 10min andmounted on glass slides. Imageswere obtained using an
epifluorescence microscope (Olympus BX 51, Olympus Corporation,
JP) at different magnifications (4–10×).

Common data processing pipeline
After pre-processing, all the remaining signal analysis was carried out
using custom Python scripts and following identical steps for mouse
and human data.

Single channel-level iEEG response analysis. The evoked response
to a stimulation pulse was measured as the line length (LL)15,49 per
millisecond (ms) of the iEEG signal as follows:

LL =

PN
i= 1 xi � xi�1

� ��� ��
N

*sf =1000 ð9Þ

WhereN is the number of datapoints over which the LL is calculated, sf
is the sampling frequency and x the iEEG voltage measured at each
datapoint. For single andpaired-pulse responses, the LLwas calculated
over the first 250ms (Supplementary Fig. 3H, I). This window includes
both negative peaks of a typical CCEP described in human66. For LL
calculated during 20Hz train stimulation (Supplementary Fig. 2J) the
50ms inter-pulse window was taken. For each session and each
intensity, the pulses with the higher LLwere visually checked to ensure
that there was no artifact and removed otherwise. This process was
done blind to the session condition.

Network-level iEEG response analysis. To measure differences in
single-pulse iEEG responses acrossmultiple electrodes and stimulation
intensities and summarize them in a single value,weusednon-negative
matrix factorization (NMF)50,51. For each individual (mice or human
participants), responses to each single stimulation across sessions and
conditions were measured in each electrode using the LL as described

above and stacked into an input matrix V of dimension N_electrodes x
N_stimulations. The NMF algorithm (sklearn implementation) then
decomposes (factorizes) in a non-supervised manner the input matrix
V into two smaller matrices W (size N_electrodes x Rank) and H
(N_stimulations x Rank) (see Supplementary Fig. 8):

V ∼R =W ×H ð10Þ

where the algorithm seeks to minimize the difference between the
reconstructed matrix R and the original matrix V using the multi-
plicative updates algorithm50. The resulting W matrix represents the
weights assigned by the algorithm to each recording electrode and H
the activation coefficient of these weights for each stimulation. Thus,
one stimulation site may give rise to a sub-network of channels that
tend to respond together and are grouped in a common basis function
(Wi). The rank corresponds to the number of sub-networks in which V
can be decomposed. In the mice optogenetic experiment, only one
stimulation site was used (MEC) and all iEEG electrodes, implanted in
limbic areas, showed robust evoked responses. Therefore, a rank of 1
was always selected (see Supplementary Fig. 8). In humans, for each
participant two different stimulation sites were used and only part of
the recording electrodes showed evoked responses. Consequently, we
performed a stability NMF analysis70 resulting in an optimal rank
between 2 and 8. For each stimulation site, sub-networks that show
increased response to increasing stimulation intensity were then
selected as the responsive sub-networks and kept for analysis,
effectively discarding background noise from non-responsive electro-
des (Fig. 5C). Finally, for each sub-network and each pharmacological
condition, we compute an input-output response curve by computing
the averageH coefficient in response to each stimulation intensity. The
area under this curve (IOC) was used to measure the overall network
responses across intensities and electrodes.

Passive signatures of critical transition. In addition to active probing,
several passive dynamical signatures have also been used in the past to
evaluate critical transitions. To measure them, we used iEEG signal at
distance (4 s) from pulse stimulations. Five classical dynamical sig-
natures of critical slowing in the time- and frequency-domain were
computed: variance, skewness, line length, autocorrelation, and spatial
correlation.

They were respectively calculated for each channel on 4 s iEEG
epochs, bandpass between 0.5–100Hz, respectively with the Numpy,
Scipy, Statsmodels and Numpy functions as follows:

Variance=

PN
i= 1 xi � �x

� �
xi � �x
� �

N
ð11Þ

Skewness =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N N � 1ð Þ

p
N � 2

PN
i= 1 xi � �x

� �3
=N

SD3
ð12Þ

Autocorr =

PN
i= k + 1 xi � �x

� �
xi�k � �x
� �

PN
i = 1 xi � �x

� �
xi � �x
� � ð13Þ

Spatial corr:=

PN
i = 1 xi � �x

� �
yi � �y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i = 1 xi � �x

� �2q
*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i = 1 yi � �y

� �2q ð14Þ

Where N is the number of datapoints, x the measured iEEG voltage at
each datapoint, x̄ the mean iEEG voltage, and SD the standard devia-
tion, i.e., the square root of the variance. For the autocorrelation, the
measure taken was the width of the autocorrelation function at half-
maximum value. For the spatial correlation, the Pearson correlation
coefficients were calculated between each electrode pair (x and y) and
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then averaged to obtain a mean spatial correlation. The line-length
calculation defined above to measure iEEG responses to probing
pulses was applied on passive recordings with an integration
window of 4 s.

Classifiers. To investigate the consistency of our effects at the single-
trial level, we trained logistic regression classifiers to decode the
excitability level (i.e., the pharmacological condition) based on the
iEEG signal. We built three different classifiers: (1) an active probing
classifier that takes as input the iEEG signals from all the channels over
a 250ms window following a single-pulse stimulation; (2) a passive
signatures classifier that takes as input the five passive signatures of
critical transition described above, calculated on a 4 s iEEG epochs
between two pulses for each channel; (3) a combined classifier that
takes as inputs all themulti-channel passive signatures and response to
the single-pulse. The classifiers were built using the sklearn multiclass
implementation of the logistic regression with L2 regularization to
avoid overfitting. The classifier was then trained to attribute to a given
vector Xi a probability pk to belong to a given class k as follows:

pk Xi

� �
=

eXiWk +Wo,kPK�1
l =0e

XiWl +Wo,l
ð15Þ

Where K is the total number of classes andW the coefficient matrix. As
a classification problem, the objective for the optimization is then:

minWCi = 1
n
PK�1

k =0
yi = k½ � log pk Xið Þð Þ + l2 ð16Þ

With yi being the label of the observation Xi, n the total number of
observations and l2 the penalty term. For each mouse, one classifier
was trained todiscriminate between three classes (NaCl, subconvulsive
PTZ and BZD) using a fivefolds cross-validation strategy. Performance
was assessed with the accuracy as follows:

Accuracy =
TP +TN

TP +TN + FP + FN
ð17Þ

Where TP, TN, FP and FN are respectively the numbers of true
positives, true negatives, false positives and false negatives. To
determine the chance-level, classification scores were compared with
the ones obtained from surrogate data in which the class labels were
permuted 100×. P values were then obtained using this formula:

p� value=
C + 1

nperm + 1
ð18Þ

Where C is the number of permutations whose score is higher than the
true score, and nperm the total number of permutations.

Statistics. If not specified otherwise, statistical testing was performed
using bootstrapped estimation of the group average and graphical
representations68. Differences between conditionswerecalculated and
reported as the mean difference (i.e., the effect size) and its 95% con-
fidence interval (95% CI), obtained by performing bootstrap resam-
pling 5000 times. For comparison across conditions, data were always
either paired or normalized by block to control condition (NaCl in
mice, baseline in participants).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Sample and process data necessary for running the code and repro-
ducing the analysis and results presented in the paper are available at:
https://doi.org/10.6084/m9.figshare.25305238. Please note that this

repository is not meant to be a comprehensive data repository. If you
require access to the full, unprocessed dataset used in the research,
please contact the authors directly. Source data are provided with
this paper.

Code availability
The code used to generate the analysis and figures presented in the
paper is available at: https://doi.org/10.6084/m9.figshare.25305238.
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