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Abstract

Objectives: Reference intervals for the general clinical
practice are expected to cover non-pathological values,
but also reflect the underlying biological variation present
in age- and gender-specific patient populations. Reference
intervals can be inferred from routine patient data measured
in high capacity using parametric approaches. Stratified
reference distributions are obtained which may be trans-
formed to normality via e.g. a Yeo-Johnson transformation.
The estimation of the optimal transformation parameter for
Yeo-Johnson through maximum likelihood can be highly
influenced by the presence of outlying observations, resulting
in biased reference interval estimates.
Methods: To reduce the influence of outlying observations
on parametric reference interval estimation, a reweighted
M-estimator approach for the Yeo-Johnson (YJ) trans-
formation was utilised to achieve central normality in
stratified reference populations for a variety of laboratory
test results. The reweighted M-estimator for the YJ trans-
formation offers a robust parametric approach to infer
relevant reference intervals.
Results: The proposed method showcases robustness up to
15 % of outliers present in routine patient data, highlighting
the applicability of the reweightedM-estimator in laboratory

medicine. Furthermore, reference intervals are personal-
ised based on the patients’ age and gender for a variety of
analytes from routine patient data collected in a tertiary
hospital, robustly reducing the dimensionality of the data for
more data-driven approaches.
Conclusions: The method shows the advantages for esti-
mating reference intervals directly and parametrically from
routine patient data in order to provide expected reference
ranges. This approach to locally inferred reference intervals
allows a more nuanced comparison of patients’ test results.

Keywords: clinical diagnostics; expectation ranges; machine
learning; medical statistics; robust parametric methods

Introduction

Reference intervals (RIs) are a fundamental tool in many
disciplines in medicine, including clinical chemistry and
haematology. They effectively allow the evaluation of labo-
ratory test results to help physicians in decision making [1].
Often, clinical laboratories lack the necessary resources to
determine RIs adapted to their local patient population and
therefore refer to the manufacturers of laboratory devices
and test kits. This poses challenges on the transferability
of RIs: The laboratory is required to validate RIs from
manufacturers or estimate appropriate RIs from the local
population instead [2]. Historically, RIs have been estimated
from laboratory test results of apparently healthy volunteers
by a non-parametric approach, through calculating the 2.5th
and 97.5th percentiles of sorted values [3]. While it has been
acknowledged that recruiting a healthy patient cohort is a
cumbersome effort with high associated costs, international
guidelines stated the necessary considerations for local RI
inference based on this “gold standard” [4]. More recently,
the use of “real-world” data from laboratory routine testing
together with a more complex approach to statistical
inference has resulted in “indirect methods” [5]. Due to the
complexity of the optimization in indirect methods, larger
reference populations are required [6]. Still, the issue of
selecting the most appropriate reference population for the
inference of clinically relevant RIs has been persistent [7].

*Corresponding author: Tobias Ueli Blatter, University Institute of
Clinical Chemistry, Inselspital University Hospital and University of Bern,
Freiburgstr, Bern, Switzerland, E-mail: tobias.blatter@extern.insel.ch.
https://orcid.org/0000-0002-0298-8177
Christos Theodoros Nakas, University Institute of Clinical Chemistry,
Inselspital University Hospital andUniversity of Bern, Bern, Switzerland; and
Laboratory of Biometry, University of Thessaly, Volos, Greece. https://
orcid.org/0000-0003-4155-722X
Alexander Benedikt Leichtle, University Institute of Clinical Chemistry,
Inselspital University Hospital andUniversity of Bern, Bern, Switzerland; and
Center for Artificial Intelligence inMedicine (CAIM), University of Bern, Bern,
Switzerland. https://orcid.org/0000-0002-6528-9904

J Lab Med 2024; aop

Open Access. © 2024 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.

https://doi.org/10.1515/labmed-2024-0076
mailto:tobias.blatter@extern.insel.ch
https://orcid.org/0000-0002-0298-8177
https://orcid.org/0000-0003-4155-722X
https://orcid.org/0000-0003-4155-722X
https://orcid.org/0000-0002-6528-9904


Direct parametric reference interval
estimation

The aforementioned guideline proposed the estimation of
RIs directly from the observed values or from a mathemat-
ical “normalisation” of said values, if either of them follow a
Gaussian distribution [4]. The Box-Cox (BC) transformation
family was proposed to find the most appropriate trans-
formation for the observed distribution to a Gaussian one
[8]. Under the mild assumption that the underlying data
are non-uniformly distributed, it has been an established
transformationmethod for handling data in direct RI studies
[9–13]. The BC transformation is used to transform the data
through:

yλ(x) =
⎧⎪⎪⎨⎪⎪⎩

xλ − 1
λ

if λ≠0,

ln(x) if λ= 0.
(1)

The transformation parameter λ (lambda) can be
estimated using maximum likelihood estimation (MLE),
however this estimation can be highly affected by outlying
observations from the main bulk of the distribution,
frequent in real-world routine data. Various methods have
been suggested to address the influence of outliers before
transformation, such as evaluating the Dixon’s Q statistic,
the Grubbs G statistic or the Tukey quantile range on
suspected values [14–16]. These methods have a variety of
limitations, such as limited power with large sample sizes,
where the location and prevalence of outliers is not known
a priori. Further, the distinction between a data point
from the tail and an outlier in skewed distributions is even
harder, biasing RI estimates [17, 18]. The re-evaluation of
suspected outliers can help reduce their influence on the
transformation to normality.

Aim

In this work, we propose using a robust transformation
algorithm to achieve central normality in univariate blood
analyte test distributions from routine laboratory data
from which RIs can be estimated parametrically. Using an
established reweighted M-estimator (rewME) approach for
the Box-Cox and Yeo-Johnson transformations, the accuracy
of the estimated transformation parameter lambda can
be improved. This renders the direct parametric estimation
of RIs from the resulting transformed distribution more
robust to outliers that may be present in routine patient
data. We can thus directly infer clinically relevant RIs as
“expectation ranges” from gender- and age-stratified refer-
ence populations.

Materials and methods

Reweighted reference interval estimation

The proposed algorithm for robustly estimating RIs assumes
that the reference population from routine patient data
contains a majority of non-pathological test result values.
The distribution can be closely approximatedwith a Box-Cox
(BC) or a Yeo-Johnson (YJ) transformed Gaussian normal
distribution. The YJ transformation is a generalisation of the
BC transformation and also employs a single transformation
parameter lambda as follows:

yλ′ x( ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x + 1( )λ − 1
λ

if x ≥ 0 and λ ≠ 0,

log x + 1( ) if x ≥ 0 and λ = 0,

− −x + 1( )2−λ − 1
2 − λ

if x < 0 and λ ≠ 2,

− log −x + 1( ) if x < 0 and λ = 2.

(2)

Patient data from the clinical routine contain an
unknown prevalence of outliers, i.e. outlying observations
that deviate from the majority of values in the distribution,
that can skew the optimal estimated transformation if the
transformation parameter lambda is estimated by MLE.
However, the implemented algorithm for direct RIs (rewRI)
uses a reweighted M-estimator (rewME) for the trans-
formation parameter lambda to achieve central normality,
as established by Raymaekers et al. [19]. The implemented
algorithm adaptively adjusts the transformation parameter
lambda with associated weights, incorporates machine
learning principles to minimise the impact of outliers and
achieve a more robust, data-driven normalisation of the
real-world data. With this, the influence of outliers on the
direct RI inference can be reduced compared to the tradi-
tional one-step Box-Cox transformation approaches. This is
achieved byminimising a robustM-estimate criterion for the
parameter λ for the BC or the YJ transformation. In robust
linear regression, M-estimators are usually computed by
iteratively applying classical weighted regression, i.e. using
the standard maximum likelihood estimator incorporating
the weights, where the weights are recalculated in each
iteration step. A similar scheme is adapted here to estimate
the parameters for the Box-Cox or Yeo-Johnson trans-
formation and the parameters of the normal distribution of
the transformed non-pathological values. In the scheme
proposed here, binary instead of the continuous weights in
robust regression are used. A detailed description of the
heuristic algorithm can be found in the Supplementary
material. The resulting optimal λ can be used to transform
the data to robustly achieve a close approximation of a

2 Blatter et al.: Modified Yeo-Johnson transformation for reference interval inference



Gaussian distribution, from which the appropriate (1 − α) RI
with the lower reference limit (LL) and the upper reference
limit (UL) can be estimated. Using bootstrap, confidence
intervals (CIs) are estimated to infer precision by drawing
n-sized samples with replacement from the reference
population, repeating this methodology for a reasonable
number of times (e.g. 400), and calculating CIs from the
quantiles of the bootstrap distribution. The full method
has been implemented in an R package called rewRI. The
package supports the fully automated estimation of direct
RIs from clinical cohort data, with an accompanying
graphical output to further help to assess the accuracy of the
inferred estimates.

Method evaluation on simulated data

A direct parametric RI approach from clinical data tries to
leverage the mean and standard deviation of the estimated
Gaussian distribution from the underlying data. Both
of these metrics can become inaccurate if the presence of
outliers and residual skewness is not addressed properly.
Generally, the presence of either erroneous or significantly
differing (potentially pathological) test results in routine
patient data can vary. To evaluate the performance of the
“rewRI”, a rewME of the best fitting BC/YJ transformation to
estimate RIs, different approaches have been performed
to evaluate the robust RI estimation.

Firstly while minimising the rewME for the trans-
formation parameter λ, local convergence can be obtained
with the resulting λ̂ estimate not necessarily being the global
minimum. Especially in lower sample sizes, where the
influence of individual data points on the overall variance is
much bigger, this can lead to substantially biased estimates.
To assess the accuracy of the rewME of the optimal lambda
for the reweighted YJ and BC transformation algorithms in
absence of significant outliers, simulated datasets were
created based on a normal distribution X∼N(µ=5, σ2=1),
which were transformed with the inverse of the corre-
sponding transformation using a grid of lambda values
λ ∈ {0, 0.001, 0.1, 0.2, 0.5, 1} at varying sample sizes n [18]. The
distributions were then used to estimate λ̂ by bootstrapping
the algorithm b=400 times with the reweighting CI τ=0.99
across the chosen grid of expected lambda values for both
the BC and YJ transformation.

Secondly to evaluate themethod’s robustness in presence
of outliers, different prevalences of outlying observations
have been simulated. Again, simulated datasets were created
based on the inversely transformed distribution based on
X∼N(µ=5, σ2=1) using the grid of lambda values λ ∈ {0, 0.001, 0.1,
0.2, 0.5, 1} of various sample sizes n. To introduce outliers in

both the lower and upper tail of the distribution (Xleft and
Xright), a number of outliers representing 1, 5 and 10% of the
overall sample sizes were randomly drawn. Higher preva-
lence of outliers (>15%) was not considered during the simu-
lations, as more than 15% of outlying observations would
significantly alter the overall skewness of the data, making it
impossible to robustly optimise the criterion [19]. Outliers
were added before the inverse transformation. The amount of
values added to each side was randomly assigned, totalling in
the percentage set, and the values were drawn from uniform
distributions, as:

{ Xlef t∼U(0, μ − 1.96σ)
Xright∼U(μ + 1.96σ, 3μ) (3)

These outliers therefore solely contribute to the tails of
the inverse transformed distribution, for which an estimate
on their effect on the inferred RIs was calculated. For the
application in robust RI estimation, this was quantified as
the change in the estimated LL and UL, as well as the width
of the accompanying CIs. With an increased presence of
outliers in the tails of the distributions, the reweighting
step of the rewME (τ) was carefully evaluated at various
sample sizes relevant for robust direct estimation.

Method evaluation on reference data

The rewRI algorithm with the YJ transformation was further
tested on an available reference data, the stratified HCV
dataset. The dataset contains test results of 238 female and 377
male participants, where in addition to test laboratory results
the person’s age (in years), gender (female and male) and the
patient’s eligibility for blood donation (categorical value) is
recorded. The non-qualification for blood donation is likely
due to the underlying medical condition, which resulted
in potentially pathological measurement for some analytes.
The HVC dataset is beneficial for evaluating the efficiency of
the rewRI approach as we can first estimate 95% RIs as
target ranges directly from the seemingly healthy blood
donors by nonparametric quantile bootstrapping of the data.
The obtained RIs can be further compared to RIs obtained
using an indirect RI estimation method based on truncated
QQ-plots [20, 21]. An effective implementation of the latter
method is done in the reflimR package, which allows the
indirect estimation of RIs from routine patient data [22, 23].

Direct gender- and age-stratified RIs

Finally, the performance of the rewRI algorithm was
reviewed on a retrospective dataset of routine patient data
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from a tertiary care hospital. The inferred RIs can be
compared against estimates obtained using a non-parametric
quantile bootstrapping approach and from the reflimR
algorithm. The data used were collected between January
2014 and December 2022 at the University Hospital of Bern,
CH, fromadult inpatients, whohave given general consent for
the re-use of their health data. In the extracted data, each
laboratory test result is accompanied with the demographic
patient factors (gender and age) as well as factors from the
(pre-)analytical phase (device/test kit information), resulting
in a highly standardised and interoperable clinical dataset
[24]. The dataset has been prepared for the inference of
RIs, with only the first measurement per administrative
case included during the extraction. The dataset has been
anonymized according to the ethical waiver granted by the
Bern cantonal ethics committee (Req-2020-00630).

Results

Reweighted lambda estimation

The M-estimate of the transformation parameter λ for the
reweighted YJ and BC transformation algorithms exhibited
high accuracy in the obtained λ due to the focus on obtaining
central normality. With a sample size of n=1,000 values,
the resulting lambda estimates from the bootstrap replicates
retained various degrees of variability for both the
reweighted BC and YJ transformation (Figure 1A and C
respectively). However, this variability did not significantly
hinder the inference of the respective RIs by the rewRI
algorithm, as the estimated LL/UL were contained in the
CIs of the expected “true” lower limits (LL) and “true” up-
per limits (UL), or the “true” CIs overlapped with the esti-
mated CIs (Figure 1B and D). In absence of distinct outlying
observations, the BC did resolve more accurate RIs from the
distributions with various skewness, as the estimated RIs
weremore closely to their true value (Figure 1B). In contrast,
the rewME for the YJ transformation appeared to be better
equipped to distinguish between significant positive skew-
ness (λ<0.5) and mild skewness (λ≥0.5) in the transformed
distributions compared to the rewME of the BC trans-
formation, as there was no overlap between the obtained
90 % CIs (Figure 1C and A respectively).

In larger sample sizes the overall precision of the
estimated lambda increases, allowing a continuous distinc-
tion between variously skewed distributions for both the YJ
and BC transformation. However, in sample sizes below
n=1,000, the distinction between mild and more severe
skewness in the transformed distribution for both the YJ and
BC became less pronounced, as seen in sample sizes of n=200

values, which is around the recommended minimal number
for RI inference (Figure 2A and C respectively). Due to the
low sample sizes, individual values present in the
transformed distributions disproportionately influence
the estimation of lambda during the rewME. However the
reweighting step during the rewME focuses on achieving
central normality, making the RI estimation with the rewRI
algorithm still possible at sample sizes of n=200 – although
with an increase in the observed CIs (Figure 2B and D).
Again, in absence of clear outlying observations the BC
did resolve more accurate RIs (i.e. closely to their true
values), yet all estimated CIs overlapped with the true CIs
(Figure 2B and D).

Presence of outliers

The reweighting step of the rewME (τ) was carefully evalu-
ated at various sample sizes to address the increased pres-
ence of outliers in the tails of the distributions. The
robustness of the rewRI algorithm with the YJ trans-
formation is demonstrated at simulated sample sizes of
1,000 and 200 (Figure 3). In the presence of >1 % of outliers,
the estimates of the LL and UL obtained by the reweighted
YJ transformation were more precise than the reweighted
BC transformation for the distributions with the various
skewnesses. It was generally observed that <10 % outliers,
the CI of the reweighting set to τ=0.99 resulted in accurate UL
and LL estimates. With 10 % of outliers, and especially in
bigger sample sizes (n≥1,000), the estimates obtained with
τ=0.95weremore precise. In lower sample sizes (n=200) with
1 % outliers, it was observed that the LL/UL estimates were
more accurate with a wider CI during reweighting (τ=0.995).

The rewRI algorithm did perform better in larger
sample sizes with the rewME for the YJ transformation
compared to the BC transformations (Supplementary
Figure 1). This could be seen in distributions with a higher
prevalence of outliers (>5 %), as lower estimates for both
the LL and UL with bigger CIs were obtained with the
reweighted BC transformation, resulting in right-shifted RIs.
Also a lower precision was observed for both the LL and UL.

Evaluation on reference data

The rewRI algorithmwith the YJ transformation was further
tested on the stratified HCV dataset (Table 1). In almost all
cases, the obtained LL and UL of the 95 % RI estimated with
the rewRI algorithm were consistent with the target values,
meaning that the CI of the target values included the inferred
values. Further, the estimates obtained were comparable
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with estimates obtained with the reflimRmethod. The rewRI
algorithm performed the best with τ=0.99 during the
reweighting step, which labelled and downweighted an
average of 2.9 % (IQR: 1.72–3.75 %) of the data as outliers in
the defined patient strata. In most considered populations,
there was seemingly a clear separation between in- and
out-lying observation possible. In rare cases, where a clear
separation was not possible during reweighting, this usually
affected only the UL. Such is the case in the UL of Alanine
Aminotransferase (AST) inmale patients, where 14.3 % of the

total values in this stratum exceeded the target UL. In
contrast, only 9.2 % of the total values in female patients
were above the target UL, which enabled the robust
estimation of the ULwith the rewRI algorithm. Furthermore,
the UL obtained for both male and female patients for
Gamma-Glutamyl Transferase (GGT) was highly biased, as
there was a significant overlap between values from
apparently healthy individuals and pathological values,
which the rewRI algorithm could not clearly separate during
the reweighting, resulting in much higher ULs.

Figure 1: Estimated lambdas of reweightedM-estimator and its influence on the 95 % reference interval inference. (A) Estimated lambdas for the grid of
expected lambda values (red: median value, black: 90 % confidence interval) for the reweighted M-estimator for the Box–Cox (BC) transformation.
(B) Estimated limits of the 95 % reference interval (LL: lower limit, UL: upper limit) for the various transformed distributions using the rewRI algorithm
using the reweighted BC transformation. The expected LL and UL limit (with 90 % CI) are shown as vertical blue lines. The median estimate is shown as a
dot point and the 90 % CI as vertical lines. (C) Estimated lambda values for the reweighted M-estimator for the Yeo-Johnson (YJ) transformation.
(D) Estimated limits of the 95 % reference interval (LL: lower limit, UL: upper limit) from the rewRI algorithm using the reweighted YJ transformation.
Sample size n=1,000, number of bootstrap replicates b=400, τ=0.99.
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Direct gender- and age-stratified RIs

The rewRI algorithm was finally applied to a set of
laboratory analytes from a real-world patient dataset, which
was collected during routine monitoring in a tertiary
hospital. The patient data for the following analytes
was used: Creatinine (LOINC: 14682-9), Leukocytes (LOINC:
6690-2), Sodium (LOINC: 2951-2), and Potassium (LOINC:
2823-3). With a preliminary outlier exclusion, extreme and
likely implausible values were excluded from the dataset.

This resulted in the various sizes for the gender-stratified
reference populations used for the analysis (Table 2).

For each analyte, test results from patients, ages 18–90
years, were stratified by the administrative gender and a
specific age (in years). Specifically, RIs were calculated using
a sliding window approach for each three-year age band, as
established by Zierk et al. [25]. This meant for example that
the inferred RI for 57-year-old male patients included data
frommales ages 56 to 58. Iteratively, the rewRI algorithm for
the YJ transformation (400 bootstrap replicas, τ ∈ {0.99, 0.95})

Figure 2: Estimated lambdas of reweightedM-estimator and its influence on the 95 % reference interval inference. (A) Estimated lambdas for the grid of
expected lambda values (red: median value, black: 90 % confidence interval) for the reweighted M-estimator for the Box–Cox (BC) transformation.
(B) Estimated limits of the 95 % reference interval (LL: lower limit, UL: upper limit) for the various transformed distributions using the rewRI algorithm
using the reweighted BC transformation. The expected LL and UL limit (with 90 % CI) are shown as vertical blue lines. The median estimate is shown as a
dot point and the 90 % CI as vertical lines. (C) Estimated lambda values for the reweighted M-estimator for the Yeo-Johnson (YJ) transformation.
(D) Estimated limits of the 95 % reference interval (LL: lower limit, UL: upper limit) from the rewRI algorithm using the reweighted YJ transformation.
Sample size n=200, number of bootstrap replicates b=400, τ=0.99.
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was run on each gender- and age-stratum, resulting in
quasi-continuous RIs. To compare the estimated results for
each obtained stratum, the analysis was repeated to estimate
RIs by a nonparametric quantile approachwith 400 bootstrap
replicates, as well as estimating RIs by the reflimR method.
Estimates obtained with the non-parametric quantile boot-
strapping shows where 95% of the clinical data fall without
considering outliers. This essentially provides a safeguard, as
estimated reference limits by the rewRI algorithm falling
outside would be considered not improved. All estimated
reference limits (UL/LL) were shown superimposed on
2D heatmaps (based on kernel density estimates of the
age-stratified data used for the analysis [26]) to visualise their
position relative to the distribution and concentration of
data points across different age groups. The gender- and
age-stratified RIs for creatinine as well as leukocytes from
the rewRI algorithm were similar yet more precise than
reflimR estimates, and they were consistently narrower than
the non-parametric ones (Figure 4).

For creatinine, the rewRI algorithm with τ=0.99
identified an average of 5.3 % of the data as outliers in each
stratum, and with τ=0.95 an average of 8.0 % as outliers per

stratum. The latter result was comparable to the reflimR
method, which labelled an average of 8.7 % of the data as
“pathological” values per stratum. Similarly for leukocytes,
the rewRI algorithm with τ=0.99 labelled an average of
5.7 % of the data as outliers and with τ=0.95 an average of
6.2 % were labelled per stratum. In this analyte, the
reflimR method labelled an average of 6.6 % of the data
as pathological values per stratum. In most cases, the
estimated results from the rewRI with τ=0.99 were only
marginal improvements over the non-parametric quantile
bootstrapping. If however rewRI is supplied with τ=0.95,
which optimises the central 95 % of the total values,
narrower age-and sex-stratified RIswere obtained. As these
RIs are optimised for the underlying central 95 % range,
they can be used as personalised expectation ranges,
highlighting where values from a comparable homoge-
neous reference population come from.

Age- and gender-adjusted estimates obtained for sodium
and potassium inferred by the rewRI algorithm (with τ=0.95)
were comparable to the reflimR estimates (Figure 5). For
sodium, the rewRI algorithm (τ=0.95) labelled an average of
11.1 % of the data as outliers per stratum. Results obtained by

Figure 3: Yeo-Johnson transformation: Influence of different amounts (1 , 5 and 10 %) of outliers on the estimation of the 95 % reference limits. The rewRI
algorithm with the YJ transformation was bootstrapped 400 times, which resulted in a median reference limit estimate (LL=lower limit, UL=upper limit)
(dot point) and a 90 % CI (vertical line). Confidence interval of the reweighting (τ) top: sample size of 1,000 values with 10 (1 %), 50 (5 %), and 100 (10 %)
values as outliers in the transformed distributions. Bottom: Sample size of 200 values with 2 (1 %), 10 (5 %), and 20 (10 %) values as outliers in the
transformed distributions.
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the reflimRmethod, estimated an average of 19 % of the data
as pathological values per stratum. For potassium, the rewRI
algorithm (τ=0.95), labelled an average of 11.7 % of the data as
outliers. Estimates obtained by the reflimR method labelled
an average of 15.8 % of the data as pathological values.

Discussion

Establishing RIs for use in general clinical contexts can be
a futile task, as these patients likely present pathological
states, which increases the false positive rate of detecting
truly pathological states by physicians during routine
testing. Using test results from a general population has
long been advocated for in providing a better foundation of
establishing clinically relevant RIs [27]. This is not without
limitations, as it is often not known a priori which exact
range of measurements to consider for RI estimation
from this real-world data, and which should be excluded.
Identifying and removing outliers is an essential step during
direct RI inference, arguably contributing more to the
obtained estimates than the statistical inference method
[28]. If a transformation is applied to the data, the robustness
of a direct approach requires amore sophisticated treatment
of outliers such as a reweighted transformation function
based on a generalised Box-Cox transformation [19]. This is
the approach proposed by the rewRI algorithm, where
suspected outliers are down-weighted during the minimi-
zation of the M-estimate criterion of the transformation
parameter lambda to infer RIs from closely normalised
routine data. This is in favour of achieving central normality
in the stratified reference populations, where expectation
ranges for various laboratory analytes can be inferred. In
the various simulations, the rewRI algorithm demonstrated
strong robustness in the presence of outlying observations
and adequate robustness in their absence. The latter is
arguably not highly relevant when using real-world
data, as the likelihood of having no outliers is very slim,
even in homogeneous populations [17]. Yet, with a set
choice of τ (being the CI during the reweighting scheme),
a sampled reference distribution containing solely non-
pathological values might be arbitrarily truncated to the
interval [μ − σΦ − 1(τ), μ + σΦ − 1(τ)], resulting in narrower
RIs. This effect could potentially be mitigated by introducing
a corresponding factor that depends on the choice of τ,
correcting the narrowing of the RIs. Further research is
necessary to assess this.

The rewME relying on the YJ transformation seemed
more capable in differentiating between significant positive
skewness and mild skewness in the transformed distribu-
tions. This is a clear strength of applying a reweighted
M-estimator criterion, that downweights values with high
deviation from the bulk of the data, while retaining the
specific characteristics of the underlying data during the
linear transformation [18]. In the presence of even 10 % of
outliers added to the tails of the distribution, the estimated
reference limits were precise yet showed marginal bias.
When applied on the HCV reference data, the rewRI

Table : Estimated % reference intervals for analytes from the
modified HCV dataset.

Gender Target rewRI reflimR

Female LL UL LL UL LL UL

ALB g/L . . . . . .
ALT U/L . . . . . .
ALP U/L . . . . . .
AST U/L . . . . . .
BIL µmol/L . . . . . .
CHE kU/L . . . . . .
CHOL mg/dL . . . . . .
CREA µmol/L . . . . . .
GGT U/L . . . . . .
PROT g/L . . . . . .

Male LL UL LL UL LL UL

ALB g/L . . . . . .
ALT U/L . . . . . .
ALP U/L . . . . . .
AST U/L . . . . . .
BIL µmol/L . . . . . .
CHE kU/L . . . . . .
CHOL mg/dL . . . . . .
CREA µmol/L . . . . . .
GGT U/L . . . . . .
PROT g/L . . . . . .

LL, lower reference limit; UL, upper reference limit; methods, target, target
reference intervals estimated using a non-parametric bootstrapped
quantile estimator (n bootstrapping=); rewRI, reweighted reference
intervals with the Yeo-Johnson transformation (quantile=., n
bootstrapping=); reflimR, reference limits from routine laboratory
results; analytes, ALB, albumin; ALT, alanine aminotransferase; ALP, alkaline
phosphatase; AST, aspartate transferase; BIL, bilirubin; CHE, cholinesterase;
CHOL, cholesterol; CREA, creatinine; GGT, gamma-glutamyl transferase;
PROT, total protein.

Table : The list of analytes used for estimation of direct RIs. For each
analyte, their associated LOINC code, measurement unit, and the number
of included test results (stratified by the administrative gender).

Analyte Loinc Unit Boundsa n Femaleb n Maleb

Creatinine - µmol/L [, ] , ,
Potassium - mmol/L [., ] , ,
Sodium - mmol/L [, ] , ,
Leukocytes - 

/L [, ] , ,

aBounds set during the preliminary outlier exclusion, bnumber of test
results included for the analysis. LOINC, logical observation identifiers
names and code.
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performed best with the YJ transformation, as the precision
of RI estimates with uneven distributions of outlying
observations, and the accuracy of RIs with right-censored
data were comparable to the target RIs and reflimR RIs
without any preliminary outlier removal. This is important,
as it allows the direct estimation of reference intervals
even at low sample sizes, compared to other indirect refer-
ence estimation efforts which require larger reference
populations. The real-world routine patient data, where the
sample sizes of the age- and gender-stratified reference
population were larger, and the suspected prevalence of
outliers was bigger, the estimates obtained showcased a

large variability across strata, yet they demonstrated ranges
deemed clinically significant, as they offer to interpret the
patients test result in a more personalised context. These
are essentially personalised “expectation ranges”. The
benefit of the rewRImethod is that it combines the simplicity
of parametric RI methods (which rely only on the three
parameters: weighted mean, variance, and transformation
parameter) with the complexity of real-world data. Further,
the rewRI algorithm makes robust normalisation of clinical
data possible by reducing the age- and gender-stratified
populations into their weighted mean and variance that
represent the underlying distribution closely. This simplifies

Figure 4: Gender- and age-stratified reference intervals for creatinine and leukocytes. Inferred estimates for the upper and lower limits of the RIs are
provided with a 90 % confidence band for the rewRI algorithm (with τ ∈ {0.99, 0.95}, 400 bootstrap replicas), the reflimRmethod, and the nonparametric
quantile bootstrapping (np-quantile, 400 bootstrap replicas). 2D kernel density estimates with the colour intensity representing the density of available
measurement for each age year (x-axis) and the respective measurement level (y-axis).
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the complexity of the data, clarifying how individual
data points contribute to or associate with the optimised
model. The normalisation is a critical step in many machine
learning applications, as in scaling the data to a common
input feature scale. This is inherently required for Support
Vector Machine (SVMs) or Principal Component Analysis
(PCA), which assume that features are centred around zero.
The Yeo-Johnson (YJ) transformation as implemented in
the rewRI method allows a robust normalisation and
standardisation of real-world data, addressing various
degrees of skewness, thus enabling algorithms to process
data more uniformly.

Conclusions

To our knowledge this is the first approach in laboratory
medicine that employs a reweighted M-estimator (rewME),
based on machine learning, for the estimation of the
transformation parameter of either the BC or the YJ
transformation in RI estimation efforts. Our work show-
cases that even with a residual variability in the estimation
of the optimal λ parameter with a reweighted MLE, it only
marginally influences the precision and accuracy of the
inferred RI in presence of outliers. With less than 15 % of
outliers, the influence of these outliers on the MLE can be

Figure 5: Gender- and age-stratified reference intervals for sodium and potassium. Inferred estimates for the upper and lower limits of the RIs are
provided with a 90 % confidence band for the rewRI algorithm (with τ=0.95, 400 bootstrap replicas), the reflimR, and the nonparametric quantile
bootstrapping (np-quantile, 400 bootstrap replicas). 2D kernel density estimates with the colour intensity representing the density of available mea-
surement for each age year (x-axis) and the respective measurement level (y-axis).
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substantially mitigated, which enables the direct RI estima-
tion approach. On one hand, this allows the reduction of
dimensionality in routine real-world data by robustly esti-
mating the populationmean and variance of the appropriate
Gaussian normalisation. In the era of personalised and data-
driven machine learning approaches in clinical diagnostics,
our method facilitates the reduction of clinical data into
their most distinct features. On the other hand, the use of a
robust methodology allows physicians to directly infer
clinically viable and personalised expectation ranges. This
can be helpful in older patients, where the rewRI method
included values in RI estimation from ranges that would be
considered pathological in younger and healthier patients,
resulting in wider RIs. However, with increasing age, there
seemingly is no clear definition of what is strictly “healthy”
and what can be used as “reference”. This is why pre-
senting expectation ranges allows us to fill the role of
clinically relevant RIs in more and more multimorbid
patients.
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