Central venous pulse pressure analysis using an R-synchronized pressure measurement system

Fujita, Yoshihisa; Hayashi, Daisuke; Wada, Shinya; Yoshioka, Naoki; Yasukawa, Takeshi; Pestel, Gunther (2006). Central venous pulse pressure analysis using an R-synchronized pressure measurement system. Journal of clinical monitoring and computing, 20(6), pp. 385-9. Dordrecht: Springer

Full text not available from this repository. (Request a copy)

Objective. The information derived from central venous catheters is underused. We developed an EKG-R synchronization and averaging system to obtained distinct CVP waveforms and analyzed components of these. Methods. Twenty-five paralyzed surgical patients undergoing CVP monitoring under mechanical ventilation were studied. CVP and EKG signals were analyzed employing our system, the mean CVP and CVP at end-diastole during expiration were compared, and CVP waveform components were measured using this system. Results. CVP waveforms were clearly visualized in all patients. They showed the a peak to be 1.8+/- 0.7 mmHg, which was the highest of three peaks, and the x trough to be lower than the y trough (-1.6+/- 0.7mmHgand-0.9+/- 0.5mmHg, respectively), withameanpulsepressureof3.4mmHg.ThedifferencebetweenthemeanCVPandCVPatend-diastoleduringexpirationwas0.58+/- 0.81 mmHg. Conclusions. The mean CVP can be used as an index of right ventricular preload in patients under mechanical ventilation with regular sinus rhythm. Our newly developed system is useful for clinical monitoring and for education in circulatory physiology.

Item Type:

Journal Article (Original Article)

Division/Institute:

04 Faculty of Medicine > Department of Intensive Care, Emergency Medicine and Anaesthesiology (DINA) > Clinic and Policlinic for Anaesthesiology and Pain Therapy

UniBE Contributor:

Pestel, Gunther Jürgen

ISSN:

1387-1307

ISBN:

17053869

Publisher:

Springer

Language:

English

Submitter:

Jeannie Wurz

Date Deposited:

04 Oct 2013 14:49

Last Modified:

23 Jan 2018 12:18

PubMed ID:

17053869

URI:

https://boris.unibe.ch/id/eprint/20435 (FactScience: 3732)

Actions (login required)

Edit item Edit item
Provide Feedback