Accuracy of electrocardiography in diagnosis of left ventricular hypertrophy in arterial hypertension: systematic review

Daniel Pewsner, Peter Jüni, Matthias Egger, Markus Battaglia, Johan Sundström and Lucas M Bachmann

BMJ 2007;335;711-; originally published online 28 Aug 2007; doi:10.1136/bmj.39276.636354.AE

Updated information and services can be found at: http://bmj.com/cgi/content/full/335/7622/711

These include:

Data supplement
"Web references"
http://bmj.com/cgi/content/full/bmj.39276.636354.AE/DC1

References
This article cites 32 articles, 11 of which can be accessed free at:
http://bmj.com/cgi/content/full/335/7622/711#BIBL

3 online articles that cite this article can be accessed at:
http://bmj.com/cgi/content/full/335/7622/711#otherarticles

Rapid responses
6 rapid responses have been posted to this article, which you can access for free at:
http://bmj.com/cgi/content/full/335/7622/711#responses

You can respond to this article at:
http://bmj.com/cgi/eletter-submit/335/7622/711

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top left of the article

Topic collections
Articles on similar topics can be found in the following collections

Systematic reviews (incl meta-analyses): examples (363 articles)
Other Cardiovascular Medicine (2105 articles)
Hypertension (468 articles)

Notes

To order reprints follow the "Request Permissions" link in the navigation box
To subscribe to BMJ go to:
http://resources.bmj.com/bmj/subscribers
Accuracy of electrocardiography in diagnosis of left ventricular hypertrophy in arterial hypertension: systematic review

Daniel Pewsner,1 Peter Juni,2 Matthias Egger,3 Markus Battaglia,1 Johan Sundström,4 Lucas M Bachmann5

ABSTRACT

Objective To review the accuracy of electrocardiography in screening for left ventricular hypertrophy in patients with hypertension.

Design Systematic review of studies of test accuracy of six electrocardiographic indexes: the Sokolow-Lyon index, Cornell voltage index, Cornell product index, Gubner index, and Romhilt-Estes scores with thresholds for a positive test of 4 points or 25 points.

Data sources Electronic databases ((Pre-)Medline, Embase), reference lists of relevant studies and previous reviews, and experts.

Study selection Two reviewers scrutinised abstracts and examined potentially eligible studies. Studies comparing the electrocardiographic index with echocardiography in hypertensive patients and reporting sufficient data were included.

Data extraction Data on study populations, echocardiographic criteria, and methodological quality of studies were extracted.

Data synthesis Negative likelihood ratios, which indicate to what extent the posterior odds of left ventricular hypertrophy is reduced by a negative test, were calculated.

Results 21 studies and data on 5608 patients were analysed. The median prevalence of left ventricular hypertrophy was 33% (interquartile range 23-41%) in primary care settings (11 studies) and 65% (37-81%) in secondary care settings (11 studies). The median negative likelihood ratio was similar across electrocardiographic indexes, ranging from 0.85 (range 0.34-1.03) for the Romhilt-Estes score (with threshold ≥4 points) to 0.91 (0.70-1.01) for the Gubner index. Using the Romhilt-Estes score in primary care, a negative electrocardiogram result would reduce the typical pre-test probability from 33% to 31%. In secondary care the typical pre-test probability of 65% would be reduced to 63%.

Conclusion Electrocardiographic criteria should not be used to rule out left ventricular hypertrophy in patients with hypertension.

INTRODUCTION

Left ventricular hypertrophy is an important risk factor in patients with hypertension, leading to a fivefold to 10-fold increase in cardiovascular risk.1,3 Decisions about treatment should be based on assessments of hypertensive target organ damage and overall cardiovascular risk. The appropriate diagnostic work-up of suspected left ventricular hypertrophy in patients with hypertension is less clear, however. More than 30 electrocardiographic indexes for the diagnosis of left ventricular hypertrophy have been described. Many of the proposed indexes have remained anecdotal, but others are commonly used.6,10 Debate about their comparative diagnostic value continues.11,13 We did a systematic review to clarify the accuracy of different electrocardiographic indexes.
estimates of likelihood ratio; lines represent 95% confidence intervals

Electrocardiographic indexes in diagnosis of left ventricular hypertrophy. Points represent

![Graph showing forest plots of negative likelihood ratio from test accuracy studies of six electrocardiographic indexes in diagnosis of left ventricular hypertrophy. Points represent estimates of likelihood ratio; lines represent 95% confidence intervals.](image)

METHODS

Identification of studies—We searched Medline from 1966 to December 2005 and Embase from 1980 to December 2005 to identify observational studies that evaluated the accuracy of electrocardiographic indexes for the diagnosis of left ventricular hypertrophy and established the presence or absence of left ventricular hypertrophy with echocardiography. We checked reference lists of relevant studies and contacted experts to complement electronic searches.

Study selection—We included studies in asymptomatic patients with primary arterial hypertension in any healthcare setting. Studies included patients taking antihypertensive treatment, those being evaluated for treatment, and patients in whom treatment was withdrawn shortly before evaluation. Two reviewers independently abstracted the information of all retrieved studies. We included all studies that assessed the electrocardiographic criteria in hypertensive adults against echocardiography.

Data extraction—We extracted data in duplicate, including the number and characteristics of patients, the healthcare setting, the prevalence of echocardiographically confirmed left ventricular hypertrophy, the electrocardiographic indexes evaluated, and the definition of the echocardiography threshold.

Assessment of study quality—We assessed the methodological quality of papers. We examined the methods of patient selection and data collection, completeness of descriptions of index and reference tests, completeness of blinding, and the likelihood of verification bias. We ranked the quality of studies on the basis of the following criteria: description of setting; prospective data collection, with enrolment of consecutive patients and follow-up of all patients; and provision of details on echocardiography and blinding.

Statistical analysis—We calculated sensitivities, specificities, and likelihood ratios with their confidence intervals. As the electrocardiogram will mainly be used to rule out the diagnosis of left ventricular hypertrophy, we were particularly interested in the sensitivity and the likelihood ratio of a negative electrocardiogram result. The likelihood ratio of a negative test indicates how likely it is to find a negative result among people with left ventricular hypertrophy compared with those without. We summarised results by plotting sensitivities and specificities in the receiver operating curve space and by calculating medians, ranges, and interquartile ranges.

RESULTS

Our search identified 1761 citations. We considered 142 as potentially eligible, and after scrutinising the full text articles we included 21 studies.

Study characteristics

The 21 studies included a total of 5608 (range 30–947) patients. Ten studies were done in primary care and 11 in secondary care. The median prevalence of left ventricular hypertrophy was 33% (interquartile range 23–41%) in primary care settings and 65% (37–81%) in...
Electrocardiographic index	Study	Positive likelihood ratio (95% CI)
Sokolow-Lyon	Casiglia 1996	0.78 (0.43 to 1.43)
Chapman 2004	1.67 (1.12 to 2.50)	25.97 (1.57 to 426)
Clementy 1982	2.90 (1.38 to 6.10)	4.85 (0.33 to 71.7)
Fragola 1993	2.71 (1.46 to 5.03)	1.90 (0.58 to 6.20)
Domingos 1998	1.21 (0.50 to 2.90)	1.03 (0.52 to 2.05)
Fragola 1994	8.09 (2.08 to 31.5)	3.03 (1.18 to 7.79)
Kamide 1996	0.93 (0.22 to 3.92)	1.33 (0.77 to 2.28)
Lee 1999	1.82 (1.33 to 2.48)	2.16 (1.27 to 3.66)
McLenachan 1988	0.86 (0.44 to 1.68)	2.19 (1.49 to 3.23)
Otterstad 1991	9.18 (0.55 to 153)	0.16 (0.02 to 1.23)
Pijan 1991	3.24 (0.14 to 77.8)	4.13 (0.27 to 62.4)
Padial 1991	1.14 (0.24 to 5.51)	3.43 (1.15 to 10.2)
Fragola 1993	2.10 (0.29 to 15.3)	6.08 (2.32 to 15.9)
Chapman 2004	2.32 (1.41 to 3.81)	5.33 (3.16 to 8.99)
Schillaci 1994	2.24 (1.59 to 3.15)	2.95 (1.62 to 5.37)
Gubner 2000	6.69 (2.45 to 17.2)	1.44 (0.72 to 2.86)
Schillaci 1994	4.80 (0.24 to 94.9)	2.14 (1.16 to 3.93)
Verdecchia 2000	1.62 (0.10 to 27.3)	5.59 (1.37 to 22.7)
Vigan 1991	3.36 (1.78 to 6.35)	1.64 (0.98 to 2.76)
Wong 2003	4.80 (0.24 to 94.9)	2.16 (1.28 to 3.64)
Cornell voltage	Otterstad 1991	0.77 (0.07 to 8.02)
Tomiyama 1994	1.14 (0.32 to 4.09)	3.03 (1.16 to 7.93)
Fragola 1994	4.65 (2.64 to 8.21)	3.15 (1.94 to 5.10)
Lee 1999	1.40 (0.22 to 9.01)	2.19 (1.28 to 3.64)
McLenachan 1988	3.24 (0.14 to 77.8)	4.13 (0.27 to 62.4)
Padial 1991	1.14 (0.24 to 5.51)	3.43 (1.15 to 10.2)
Fragola 1993	2.10 (0.29 to 15.3)	6.08 (2.32 to 15.9)
Chapman 2004	2.32 (1.41 to 3.81)	5.33 (3.16 to 8.99)
Schillaci 1994	2.24 (1.59 to 3.15)	2.95 (1.62 to 5.37)
Cornell product	Crow 1999	6.69 (2.45 to 17.2)
Schillaci 1994	4.80 (0.24 to 94.9)	2.14 (1.16 to 3.93)
Wong 2003	1.62 (0.10 to 27.3)	5.59 (1.37 to 22.7)
Salles 2005	3.36 (1.78 to 6.35)	1.64 (0.98 to 2.76)
Calaco 1990	4.80 (0.24 to 94.9)	2.16 (1.28 to 3.64)
Gubner	Clementy 1982	0.77 (0.07 to 8.02)
Fragola 1993	1.14 (0.32 to 4.09)	3.03 (1.16 to 7.93)
Lee 1999	4.65 (2.64 to 8.21)	3.15 (1.94 to 5.10)
McLenachan 1988	1.40 (0.22 to 9.01)	2.19 (1.28 to 3.64)
Tomiyama 1994	11.6 (2.93 to 45.8)	0.71 (0.16 to 3.14)
Schillaci 1994	7.86 (2.02 to 32.6)	18.2 (7.93 to 41.8)
Vigan 1991	2.07 (0.20 to 21.3)	5.31 (0.72 to 39.2)
Crow 1999	6.69 (3.50 to 12.0)	3.05 (9.55 to 97.2)
Casiglia 1996	1.07 (0.61 to 1.87)	2.34 (1.32 to 4.12)
Romhilt-Estes (four points)	Clementy 1982	13.9 (1.89 to 102)
Fragola 1994	2.85 (0.18 to 43.9)	2.28 (0.67 to 7.83)
Fragola 1994	30.5 (9.55 to 97.2)	2.34 (1.32 to 4.12)
Lee 1999	0.55 (0.18 to 1.63)	1.62 (0.10 to 27.4)
Schillaci 1994	2.14 (1.16 to 3.93)	5.59 (1.37 to 22.7)
Romhilt-Estes (five points)	Clementy 1982	13.9 (1.89 to 102)
Fragola 1993	2.85 (0.18 to 43.9)	2.28 (0.67 to 7.83)
Fragola 1994	30.5 (9.55 to 97.2)	2.34 (1.32 to 4.12)
Lee 1999	0.55 (0.18 to 1.63)	1.62 (0.10 to 27.4)
Schillaci 1994	2.14 (1.16 to 3.93)	5.59 (1.37 to 22.7)
Kamide 1996	3.24 (0.14 to 77.8)	4.13 (0.27 to 62.4)
Domingos 1998	1.14 (0.32 to 4.09)	3.03 (1.16 to 7.93)

Fig 2 Forest plots of positive likelihood ratio from test accuracy studies of six electrocardiographic indexes in diagnosis of left ventricular hypertrophy. Points represent estimates of likelihood ratio; lines represent 95% confidence intervals.
WHAT IS ALREADY KNOWN ON THIS TOPIC

Left ventricular hypertrophy leads to a fivefold to 10-fold increase in cardiovascular risk in hypertensive patients.

Several indexes calculated from standard 12 lead electrocardiograms are used in the diagnostic work-up of patients with hypertension.

WHAT THIS STUDY ADDS

The accuracy of the more commonly used electrocardiographic criteria for ruling out left ventricular hypertrophy is unsatisfactory in both primary and secondary care.

Echocardiography is needed for a comprehensive assessment of cardiovascular risk in hypertensive patients.

branch block, because these patients usually need further examinations and referral irrespective of left ventricular hypertrophy. We summarised the evidence by calculating medians, rather than combining data in meta-analysis. We believe that a formal meta-analysis would have added little in this situation. We felt that further exploration of potential sources of heterogeneity was not warranted. The published data did not allow direct comparisons of test accuracy between the different indexes. More importantly, we did not identify any randomised comparisons of diagnostic and treatment strategies and assessed clinical end points.

Implications for clinical practice

Electrocardiograms should not be done specifically to exclude left ventricular hypertrophy in patients with hypertension. Referral for specialist examinations is often based on high cardiovascular risk scores, but echocardiography may be more informative in hypertensive patients who, on the basis of age, sex, smoking history, and blood lipids, are at low or intermediate risk. In patients known to be at high risk, echocardiographic findings will often not affect clinical management, because interventions to reduce risk are already in place.

The evidence on the capacity of various antihypertensive agents to decrease left ventricular hypertrophy is limited. Preventing cardiovascular disease through modifications of other risk factors such as smoking cessation, lifestyle change, or lipid lowering treatment is the most promising approach.18 19

Future research

Further research is needed to identify cost effective diagnostic strategies in primary care settings. Such research could inform the development of algorithms to identify patients who should be referred for echocardiography. In the absence of accurate and inexpensive screening tests for left ventricular hypertrophy, research into new diagnostic technologies is warranted. Further studies are needed to better define the pathophysiological mechanisms and outcomes in patients with echocardiographically confirmed left ventricular hypertrophy but negative electrocardiograms. Similarly, more data are needed on patients with positive electrocardiographic tests but negative echocardiography.

Conclusions

The power of some of the more commonly used electrocardiographic criteria to rule out the diagnosis of left ventricular hypertrophy in patients with hypertension is poor. Further research is needed to assess the cost effectiveness of different diagnostic and treatment strategies of left ventricular hypertrophy in primary care.

We thank Marc Gertzch, Richard S Crow, Benedict Martina, Fritz Grossenbacher, and Heiner C Bucher for valuable input and for commenting on an earlier draft.

Contributors: See bmj.com.

Funding: Krankenfàrsgesellschaft der Gesellschaft für das Gute und Gemeinnützige (GGG), Basel, Switzerland, Swiss National Science Foundation (grant 3238B0-103182 and 3200B0-103183).

Competing interests: None declared.

Ethical approval: Not needed.

Provenance and peer review: Non-commissioned; externally peer reviewed.

6 Sokolow M, Lyon TP. The ventricular complex in left ventricular hypertrophy as obtained by unipolar precordial and limb leads. Am Heart J 1949;37:161-86.

