
STROBE INITIATIVE

Strengthening the Reporting of Observational Studies in
Epidemiology (STROBE)
Explanation and Elaboration

Jan P. Vandenbroucke,* Erik von Elm,†‡ Douglas G. Altman,§ Peter C. Gøtzsche,¶
Cynthia D. Mulrow,� Stuart J. Pocock,** Charles Poole,†† James J. Schlesselman,‡‡

and Matthias Egger,†§§ for the STROBE Initiative

Abstract: Much medical research is observational. The reporting of
observational studies is often of insufficient quality. Poor reporting
hampers the assessment of the strengths and weaknesses of a study
and the generalizability of its results. Taking into account empirical
evidence and theoretical considerations, a group of methodologists,
researchers, and editors developed the Strengthening the Reporting
of Observational Studies in Epidemiology (STROBE) recommen-
dations to improve the quality of reporting of observational studies.

The STROBE Statement consists of a checklist of 22 items,
which relate to the title, abstract, introduction, methods, results and
discussion sections of articles. Eighteen items are common to cohort
studies, case-control studies and cross-sectional studies and four are
specific to each of the three study designs. The STROBE Statement

provides guidance to authors about how to improve the reporting of
observational studies and facilitates critical appraisal and interpre-
tation of studies by reviewers, journal editors and readers.

This explanatory and elaboration document is intended to en-
hance the use, understanding, and dissemination of the STROBE
Statement. The meaning and rationale for each checklist item are
presented. For each item, one or several published examples and,
where possible, references to relevant empirical studies and meth-
odological literature are provided. Examples of useful flow diagrams
are also included. The STROBE Statement, this document, and the
associated web site (http://www.strobe-statement.org) should be
helpful resources to improve reporting of observational research.

(Epidemiology 2007;18: 805–835)

Rational health care practices require knowledge about the
etiology and pathogenesis, diagnosis, prognosis and treat-

ment of diseases. Randomized trials provide valuable evidence
about treatments and other interventions. However, much of
clinical or public health knowledge comes from observational
research.1 About nine of ten research papers published in clinical
speciality journals describe observational research.2,3

The STROBE Statement
Reporting of observational research is often not de-

tailed and clear enough to assess the strengths and weak-
nesses of the investigation.4,5 To improve the reporting of
observational research, we developed a checklist of items that
should be addressed: the Strengthening the Reporting of
Observational Studies in Epidemiology (STROBE) Statement
(Table 1). Items relate to title, abstract, introduction, meth-
ods, results and discussion sections of articles. The STROBE
Statement has recently been published in several journals.6

Our aim is to ensure clear presentation of what was planned,
done, and found in an observational study. We stress that the
recommendations are not prescriptions for setting up or
conducting studies, nor do they dictate methodology or man-
date a uniform presentation.

STROBE provides general reporting recommendations
for descriptive observational studies and studies that investigate
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associations between exposures and health outcomes. STROBE
addresses the three main types of observational studies: cohort,
case-control and cross-sectional studies. Authors use diverse

terminology to describe these study designs. For instance, ‘fol-
low-up study’ and ‘longitudinal study’ are used as synonyms for
‘cohort study’, and ‘prevalence study’ as synonymous with

TABLE 1. The STROBE statement—Checklist of Items That Should be Addressed in Reports of Observational Studies

Item
Number Recommendation

TITLE and
ABSTRACT

1 (a) Indicate the study’s design with a commonly used term in the title or the abstract
(b) Provide in the abstract an informative and balanced summary of what was done and what was found

INTRODUCTION
Background/
rationale

2 Explain the scientific background and rationale for the investigation being reported

Objectives 3 State specific objectives, including any prespecified hypotheses
METHODS

Study design 4 Present key elements of study design early in the paper
Setting 5 Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection
Participants 6 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of

follow-up
Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give
the rationale for the choice of cases and controls
Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants

(b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed
Case-control study—For matched studies, give matching criteria and the number of controls per case

Variables 7 Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable
Data sources/
measurement

8* For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of
assessment methods if there is more than one group

Bias 9 Describe any efforts to address potential sources of bias
Study size 10 Explain how the study size was arrived at
Quantitative
variables

11 Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen, and why

Statistical
methods

12 (a) Describe all statistical methods, including those used to control for confounding
(b) Describe any methods used to examine subgroups and interactions
(c) Explain how missing data were addressed
(d) Cohort study—If applicable, explain how loss to follow-up was addressed

Case-control study—If applicable, explain how matching of cases and controls was addressed
Cross-sectional study—If applicable, describe analytical methods taking account of sampling strategy

(e) Describe any sensitivity analyses
RESULTS

Participants 13* (a) Report the numbers of individuals at each stage of the study—eg, numbers potentially eligible, examined for eligibility,
confirmed eligible, included in the study, completing follow-up, and analyzed

(b) Give reasons for non-participation at each stage
(c) Consider use of a flow diagram

Descriptive data 14* (a) Give characteristics of study participants (eg, demographic, clinical, social) and information on exposures and potential
confounders

(b) Indicate the number of participants with missing data for each variable of interest
(c) Cohort study—Summarize follow-up time (eg, average and total amount)

Outcome data 15* Cohort study—Report numbers of outcome events or summary measures over time
Case-control study—Report numbers in each exposure category, or summary measures of exposure
Cross-sectional study—Report numbers of outcome events or summary measures

Main results 16 (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg 95% confidence intervals).
Make clear which confounders were adjusted for and why they were included

(b) Report category boundaries when continuous variables were categorised
(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period

Other analyses 17 Report other analyses done—eg, analyses of subgroups and interactions, and sensitivity analyses
Key results 18 Summarise key results with reference to study objectives
Limitations 19 Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude

of any potential bias
Interpretation 20 Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar

studies, and other relevant evidence
Generalizability 21 Discuss the generalizability (external validity) of the study results

OTHER
INFORMATION
Funding 22 Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the

present article is based

*Give such information separately for cases and controls in case-control studies, and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.
Separate versions of the checklist for cohort, case-control and cross-sectional studies are available on the STROBE website at www.strobe-statement.org.
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‘cross-sectional study’. We chose the present terminology be-
cause it is in common use. Unfortunately, terminology is often
used incorrectly7 or imprecisely.8 In box 1 we describe the
hallmarks of the three study designs.

The Scope of Observational Research
Observational studies serve a wide range of purposes:

from reporting a first hint of a potential cause of a disease, to
verifying the magnitude of previously reported associations.
Ideas for studies may arise from clinical observations or from
biologic insight. Ideas may also arise from informal looks at
data that lead to further explorations. Like a clinician who has
seen thousands of patients, and notes one that strikes her
attention, the researcher may note something special in the
data. Adjusting for multiple looks at the data may not be
possible or desirable,9 but further studies to confirm or refute
initial observations are often needed.10 Existing data may be
used to examine new ideas about potential causal factors, and
may be sufficient for rejection or confirmation. In other
instances, studies follow that are specifically designed to
overcome potential problems with previous reports. The latter
studies will gather new data and will be planned for that

purpose, in contrast to analyses of existing data. This leads to
diverse viewpoints, eg, on the merits of looking at subgroups
or the importance of a predetermined sample size. STROBE
tries to accommodate these diverse uses of observational re-
search—from discovery to refutation or confirmation. Where
necessary we will indicate in what circumstances specific rec-
ommendations apply.

How to Use This Paper
This paper is linked to the shorter STROBE paper that

introduced the items of the checklist in several journals,6 and
forms an integral part of the STROBE Statement. Our inten-
tion is to explain how to report research well, not how
research should be done. We offer a detailed explanation for
each checklist item. Each explanation is preceded by an
example of what we consider transparent reporting. This does
not mean that the study from which the example was taken
was uniformly well reported or well done; nor does it mean
that its findings were reliable, in the sense that they were later
confirmed by others: it only means that this particular item
was well reported in that study. In addition to explanations
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and examples we included boxes with supplementary infor-
mation. These are intended for readers who want to refresh
their memories about some theoretical points, or be quickly
informed about technical background details. A full under-
standing of these points may require studying the textbooks
or methodological papers that are cited.

STROBE recommendations do not specifically address
topics such as genetic linkage studies, infectious disease
modeling or case reports and case series.11,12 As many of the
key elements in STROBE apply to these designs, authors who
report such studies may nevertheless find our recommenda-
tions useful. For authors of observational studies that specif-
ically address diagnostic tests, tumor markers and genetic
associations, STARD,13 REMARK,14 and STREGA15 rec-
ommendations may be particularly useful.

The Items in the STROBE Checklist
We now discuss and explain the 22 items in the

STROBE checklist (Table 1), and give published examples
for each item. Some examples have been edited by removing
citations or spelling out abbreviations. Eighteen items apply
to all three study designs whereas four are design-specific.
Starred items (for example item 8*) indicate that the infor-
mation should be given separately for cases and controls in
case-control studies, or exposed and unexposed groups in
cohort and cross-sectional studies. We advise authors to
address all items somewhere in their paper, but we do not
prescribe a precise location or order. For instance, we discuss
the reporting of results under a number of separate items,
while recognizing that authors might address several items
within a single section of text or in a table.

TITLE AND ABSTRACT

1(a) Indicate the Study’s Design with a
Commonly Used Term in the Title or the
Abstract
Example

“Leukemia incidence among workers in the shoe and
boot manufacturing industry: a case-control study.”18

Explanation
Readers should be able to easily identify the design that

was used from the title or abstract. An explicit, commonly
used term for the study design also helps ensure correct
indexing of articles in electronic databases.19,20

1(b) Provide in the Abstract an Informative
and Balanced Summary of What was Done and
What was Found
Example

“Background: The expected survival of HIV-infected
patients is of major public health interest.

Objective: To estimate survival time and age-specific
mortality rates of an HIV-infected population compared with
that of the general population.

Design: Population-based cohort study.
Setting: All HIV-infected persons receiving care in

Denmark from 1995 to 2005.
Patients: Each member of the nationwide Danish HIV

Cohort Study was matched with as many as 99 persons from
the general population according to sex, date of birth, and
municipality of residence.

Measurements: The authors computed Kaplan–Meier
life tables with age as the time scale to estimate survival from
age 25 years. Patients with HIV infection and corresponding
persons from the general population were observed from the
date of the patient’s HIV diagnosis until death, emigration, or
1 May 2005.

Results: 3990 HIV-infected patients and 379 872 per-
sons from the general population were included in the study,
yielding 22 744 (median, 5.8 y/person) and 2 689 287
(median, 8.4 years/person) person-years of observation.
Three percent of participants were lost to follow-up. From
age 25 years, the median survival was 19.9 years (95% CI,
18.5 to 21.3) among patients with HIV infection and 51.1
years (CI, 50.9 to 51.5) among the general population. For
HIV-infected patients, survival increased to 32.5 years (CI,
29.4 to 34.7) during the 2000 to 2005 period. In the subgroup
that excluded persons with known hepatitis C coinfection
(16%), median survival was 38.9 years (CI, 35.4 to 40.1)
during this same period. The relative mortality rates for
patients with HIV infection compared with those for the
general population decreased with increasing age, whereas
the excess mortality rate increased with increasing age.

Limitations: The observed mortality rates are as-
sumed to apply beyond the current maximum observation
time of 10 years.

Conclusions: The estimated median survival is more
than 35 years for a young person diagnosed with HIV
infection in the late highly active antiretroviral therapy era.
However, an ongoing effort is still needed to further reduce
mortality rates for these persons compared with the general
population.”21

Explanation
The abstract provides key information that enables

readers to understand a study and decide whether to read the
article. Typical components include a statement of the re-
search question, a short description of methods and results,
and a conclusion.22 Abstracts should summarize key details
of studies and should only present information that is pro-
vided in the article. We advise presenting key results in a
numerical form that includes numbers of participants, esti-
mates of associations and appropriate measures of variability
and uncertainty (eg, odds ratios with confidence intervals).
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We regard it insufficient to state only that an exposure is or
is not significantly associated with an outcome.

A series of headings pertaining to the background, design,
conduct, and analysis of a study may help readers acquire the
essential information rapidly.23 Many journals require such
structured abstracts, which tend to be of higher quality and more
readily informative than unstructured summaries.24,25

INTRODUCTION
The Introduction section should describe why the study

was done and what questions and hypotheses it addresses. It
should allow others to understand the study’s context and
judge its potential contribution to current knowledge.

2 Background/Rationale: Explain the Scientific
Background and Rationale for the
Investigation Being Reported
Example

“Concerns about the rising prevalence of obesity in
children and adolescents have focused on the well docu-
mented associations between childhood obesity and increased
cardiovascular risk and mortality in adulthood. Childhood
obesity has considerable social and psychological conse-
quences within childhood and adolescence, yet little is known
about social, socioeconomic, and psychological consequences in
adult life. A recent systematic review found no longitudinal
studies on the outcomes of childhood obesity other than physical
health outcomes and only 2 longitudinal studies of the socio-
economic effects of obesity in adolescence. Gortmaker et al
found that US women who had been obese in late adolescence
in 1981 were less likely to be married and had lower incomes
seven years later than women who had not been overweight,
while men who had been overweight were less likely to be
married. Sargent et al found that UK women, but not men, who
had been obese at 16 years in 1974 earned 7.4% less than their
nonobese peers at age 23. (. . .) We used longitudinal data from
the 1970 British birth cohort to examine the adult socioeco-
nomic, educational, social, and psychological outcomes of child-
hood obesity.”26

Explanation
The scientific background of the study provides impor-

tant context for readers. It sets the stage for the study and
describes its focus. It gives an overview of what is known on
a topic and what gaps in current knowledge are addressed by
the study. Background material should note recent pertinent
studies and any systematic reviews of pertinent studies.

3 Objectives: State Specific Objectives,
Including Any Prespecified Hypotheses
Example

“Our primary objectives were to 1) determine the prev-
alence of domestic violence among female patients present-
ing to four community-based, primary care, adult medicine

practices that serve patients of diverse socioeconomic back-
ground and 2) identify demographic and clinical differences
between currently abused patients and patients not currently
being abused.”27

Explanation
Objectives are the detailed aims of the study. Well

crafted objectives specify populations, exposures and out-
comes, and parameters that will be estimated. They may be
formulated as specific hypotheses or as questions that the
study was designed to address. In some situations objectives
may be less specific, for example, in early discovery phases.
Regardless, the report should clearly reflect the investigators’
intentions. For example, if important subgroups or additional
analyses were not the original aim of the study but arose
during data analysis, they should be described accordingly
(see also items 4, 17 and 20).

METHODS
The Methods section should describe what was planned

and what was done in sufficient detail to allow others to
understand the essential aspects of the study, to judge
whether the methods were adequate to provide reliable and
valid answers, and to assess whether any deviations from the
original plan were reasonable.

4 Study Design: Present Key Elements of Study
Design Early in the Paper
Example

“We used a case-crossover design, a variation of a
case-control design that is appropriate when a brief exposure
(driver’s phone use) causes a transient rise in the risk of a rare
outcome (a crash). We compared a driver’s use of a mobile
phone at the estimated time of a crash with the same driver’s
use during another suitable time period. Because drivers are
their own controls, the design controls for characteristics of
the driver that may affect the risk of a crash but do not change
over a short period of time. As it is important that risks during
control periods and crash trips are similar, we compared
phone activity during the hazard interval (time immediately
before the crash) with phone activity during control intervals
(equivalent times during which participants were driving but
did not crash) in the previous week.”28

Explanation
We advise presenting key elements of study design

early in the methods section (or at the end of the introduction)
so that readers can understand the basics of the study. For
example, authors should indicate that the study was a cohort
study, which followed people over a particular time period,
and describe the group of persons that comprised the cohort
and their exposure status. Similarly, if the investigation used
a case-control design, the cases and controls and their source
population should be described. If the study was a cross-
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sectional survey, the population and the point in time at
which the cross-section was taken should be mentioned.
When a study is a variant of the three main study types, there
is an additional need for clarity. For instance, for a case-
crossover study, one of the variants of the case-control design,
a succinct description of the principles was given in the example
above.28

We recommend that authors refrain from simply calling
a study ‘prospective’ or ‘retrospective’ because these terms
are ill defined.29 One usage sees cohort and prospective as
synonymous and reserves the word retrospective for case-
control studies.30 A second usage distinguishes prospective
and retrospective cohort studies according to the timing of
data collection relative to when the idea for the study was
developed.31 A third usage distinguishes prospective and
retrospective case-control studies depending on whether the
data about the exposure of interest existed when cases were
selected.32 Some advise against using these terms,33 or adopt-
ing the alternatives ‘concurrent’ and ‘historical’ for describ-
ing cohort studies.34 In STROBE, we do not use the words
prospective and retrospective, nor alternatives such as con-
current and historical. We recommend that, whenever authors
use these words, they define what they mean. Most impor-
tantly, we recommend that authors describe exactly how and
when data collection took place.

The first part of the methods section might also be the
place to mention whether the report is one of several from a
study. If a new report is in line with the original aims of the
study, this is usually indicated by referring to an earlier
publication and by briefly restating the salient features of the
study. However, the aims of a study may also evolve over
time. Researchers often use data for purposes for which they
were not originally intended, including, for example, official
vital statistics that were collected primarily for administrative
purposes, items in questionnaires that originally were only
included for completeness, or blood samples that were col-
lected for another purpose. For example, the Physicians’
Health Study, a randomized controlled trial of aspirin and
carotene, was later used to demonstrate that a point mutation
in the factor V gene was associated with an increased risk of
venous thrombosis but not of myocardial infarction or
stroke.35 The secondary use of existing data is a creative part
of observational research and does not necessarily make
results less credible or less important. However, briefly re-
stating the original aims might help readers understand the
context of the research and possible limitations in the data.

5 Setting: Describe the Setting, Locations, and
Relevant Dates, Including Periods of
Recruitment, Exposure, Follow-up, and Data
Collection
Example

“The Pasitos Cohort Study recruited pregnant women
from Women, Infant and Child clinics in Socorro and San

Elizario, El Paso County, Texas and maternal-child clinics of
the Mexican Social Security Institute in Ciudad Juarez, Mex-
ico from April 1998 to October 2000. At baseline, prior to the
birth of the enrolled cohort children, staff interviewed moth-
ers regarding the household environment. In this ongoing
cohort study, we target follow-up exams at 6-month intervals
beginning at age 6 months.”36

Explanation
Readers need information on setting and locations to

assess the context and generalizability of a study’s results.
Exposures such as environmental factors and therapies can
change over time. Also, study methods may evolve over time.
Knowing when a study took place and over what period
participants were recruited and followed up places the study
in historical context and is important for the interpretation of
results.

Information about setting includes recruitment sites or
sources (eg, electoral roll, outpatient clinic, cancer registry, or
tertiary care centre). Information about location may refer to
the countries, towns, hospitals or practices where the inves-
tigation took place. We advise stating dates rather than only
describing the length of time periods. There may be different
sets of dates for exposure, disease occurrence, recruitment,
beginning and end of follow-up, and data collection. Of note,
nearly 80% of 132 reports in oncology journals that used
survival analysis included the starting and ending dates for
accrual of patients, but only 24% also reported the date on
which follow-up ended.37

6 Participants:
6(a) Cohort Study: Give the Eligibility Criteria,
and the Sources and Methods of Selection of
Participants. Describe Methods of Follow-up
Example

“Participants in the Iowa Women’s Health Study were a
random sample of all women ages 55 to 69 years derived from
the state of Iowa automobile driver’s license list in 1985, which
represented approximately 94% of Iowa women in that age
group. (. . .) Follow-up questionnaires were mailed in October
1987 and August 1989 to assess vital status and address changes.
(. . .) Incident cancers, except for nonmelanoma skin cancers,
were ascertained by the State Health Registry of Iowa (. . .). The
Iowa Women’s Health Study cohort was matched to the registry
with combinations of first, last, and maiden names, zip code,
birthdate, and social security number.”38

6(a) Case-Control Study: Give the Eligibility
Criteria, and the Sources and Methods of Case
Ascertainment and Control Selection. Give The
Rationale for the Choice of Cases and Controls
Example

“Cutaneous melanoma cases diagnosed in 1999 and
2000 were ascertained through the Iowa Cancer Registry
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(. . .). Controls, also identified through the Iowa Cancer
Registry, were colorectal cancer patients diagnosed during
the same time. Colorectal cancer controls were selected
because they are common and have a relatively long survival,
and because arsenic exposure has not been conclusively
linked to the incidence of colorectal cancer.”39

6 (a) Cross-Sectional Study: Give the Eligibility
Criteria, and the Sources and Methods of
Selection of Participants
Example

“We retrospectively identified patients with a principal
diagnosis of myocardial infarction (code 410) according to
the International Classification of Diseases, 9th Revision,
Clinical Modification, from codes designating discharge di-
agnoses, excluding the codes with a fifth digit of 2, which
designates a subsequent episode of care (. . .). A random
sample of the entire Medicare cohort with myocardial infarc-
tion from February 1994 to July 1995 was selected (. . .). To
be eligible, patients had to present to the hospital after at least
30 minutes but less than 12 hours of chest pain and had to
have ST-segment elevation of at least 1 mm on two contig-
uous leads on the initial electrocardiogram.”40

Explanation
Detailed descriptions of the study participants help

readers understand the applicability of the results. Investiga-
tors usually restrict a study population by defining clinical,
demographic and other characteristics of eligible participants.
Typical eligibility criteria relate to age, gender, diagnosis and
comorbid conditions. Despite their importance, eligibility
criteria often are not reported adequately. In a survey of
observational stroke research, 17 of 49 reports (35%) did not
specify eligibility criteria.5

Eligibility criteria may be presented as inclusion and
exclusion criteria, although this distinction is not always
necessary or useful. Regardless, we advise authors to report
all eligibility criteria and also to describe the group from
which the study population was selected (eg, the general
population of a region or country), and the method of recruit-
ment (eg, referral or self-selection through advertisements).

Knowing details about follow-up procedures, including
whether procedures minimized nonresponse and loss to fol-
low-up and whether the procedures were similar for all
participants, informs judgments about the validity of results.
For example, in a study that used IgM antibodies to detect
acute infections, readers needed to know the interval between
blood tests for IgM antibodies so that they could judge
whether some infections likely were missed because the
interval between blood tests was too long.41 In other studies
where follow-up procedures differed between exposed and
unexposed groups, readers might recognize substantial bias
due to unequal ascertainment of events or differences in
nonresponse or loss to follow-up.42 Accordingly, we advise

that researchers describe the methods used for following
participants and whether those methods were the same for all
participants, and that they describe the completeness of as-
certainment of variables (see also item 14).

In case-control studies, the choice of cases and controls
is crucial to interpreting the results, and the method of their
selection has major implications for study validity. In general,
controls should reflect the population from which the cases
arose. Various methods are used to sample controls, all with
advantages and disadvantages: for cases that arise from a
general population, population roster sampling, random digit
dialling, neighborhood or friend controls are used. Neighbor-
hood or friend controls may present intrinsic matching on
exposure.17 Controls with other diseases may have advan-
tages over population-based controls, in particular for hospi-
tal-based cases, because they better reflect the catchment
population of a hospital, have greater comparability of recall
and ease of recruitment. However, they can present problems
if the exposure of interest affects the risk of developing or
being hospitalized for the control condition(s).43,44 To rem-
edy this problem often a mixture of the best defensible
control diseases is used.45

6(b) Cohort Study: For Matched Studies, Give
Matching Criteria and Number of Exposed and
Unexposed
Example

“For each patient who initially received a statin, we
used propensity-based matching to identify one control who
did not receive a statin according to the following protocol.
First, propensity scores were calculated for each patient in the
entire cohort on the basis of an extensive list of factors poten-
tially related to the use of statins or the risk of sepsis. Second,
each statin user was matched to a smaller pool of nonstatin-users
by sex, age (plus or minus 1 year), and index date (plus or minus
3 months). Third, we selected the control with the closest
propensity score (within 0.2 SD) to each statin user in a 1:1
fashion and discarded the remaining controls.”46

6(b) Case-Control Study: For Matched Studies,
Give Matching Criteria and the Number of
Controls Per Case
Example

“We aimed to select five controls for every case from
among individuals in the study population who had no diagnosis
of autism or other pervasive developmental disorders (PDD)
recorded in their general practice record and who were alive and
registered with a participating practice on the date of the PDD
diagnosis in the case. Controls were individually matched to
cases by year of birth (up to 1 year older or younger), sex, and
general practice. For each of 300 cases, five controls could be
identified who met all the matching criteria. For the remaining
994, one or more controls was excluded . . .”47
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Explanation
Matching is much more common in case-control studies,

but occasionally, investigators use matching in cohort studies to
make groups comparable at the start of follow-up. Matching in
cohort studies presents fewer intricacies than with case-control
studies. For example, it is not necessary to take the matching into
account for the estimation of the relative risk.48 Because match-
ing in cohort studies may increase statistical precision investi-
gators might allow for the matching in their analyses and thus
obtain narrower confidence intervals.

In case-control studies matching is done to increase a
study’s efficiency by ensuring similarity in the distribution of
variables between cases and controls, in particular the distribu-
tion of potential confounding variables.48,49 Because matching
can be done in various ways, with one or more controls per case,
the rationale for the choice of matching variables and the details
of the method used should be described. Commonly used forms
of matching are frequency matching (also called group matching)
and individual matching. In frequency matching, investigators
choose controls so that the distribution of matching variables be-
comes identical or similar to that of cases. Individual matching

involves matching one or several controls to each case. Although
intuitively appealing and sometimes useful, matching in case-con-
trol studies has a number of disadvantages, is not always appropri-
ate, and needs to be taken into account in the analysis (see box 2).

Even apparently simple matching procedures may be
poorly reported. For example, authors may state that controls
were matched to cases ‘within five years’, or using ‘five year age
bands’. Does this mean that, if a case was 54 years old, the
respective control needed to be in the five-year age band 50 to
54, or aged 49 to 59, which is within five years of age 54? If a
wide (eg, 10-year) age band is chosen, there is a danger of
residual confounding by age (see also box 4), for example
because controls may then be younger than cases on average.

7 Variables: Clearly Define All Outcomes,
Exposures, Predictors, Potential Confounders,
and Effect Modifiers. Give Diagnostic Criteria,
If Applicable
Example

“Only major congenital malformations were included in
the analyses. Minor anomalies were excluded according to
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the exclusion list of European Registration of Congenital
Anomalies (EUROCAT). If a child had more than one
major congenital malformation of one organ system, those
malformations were treated as one outcome in the analyses
by organ system (. . .). In the statistical analyses, factors
considered potential confounders were maternal age at
delivery and number of previous parities. Factors consid-
ered potential effect modifiers were maternal age at reim-
bursement for antiepileptic medication and maternal age at
delivery.”55

Explanation
Authors should define all variables considered for and

included in the analysis, including outcomes, exposures,
predictors, potential confounders and potential effect modi-
fiers. Disease outcomes require adequately detailed descrip-
tion of the diagnostic criteria. This applies to criteria for cases
in a case-control study, disease events during follow-up in a
cohort study and prevalent disease in a cross-sectional study.
Clear definitions and steps taken to adhere to them are
particularly important for any disease condition of primary
interest in the study.

For some studies, ‘determinant’ or ‘predictor’ may be
appropriate terms for exposure variables and outcomes may
be called ‘endpoints’. In multivariable models, authors some-
times use ‘dependent variable’ for an outcome and ‘indepen-
dent variable’ or ‘explanatory variable’ for exposure and
confounding variables. The latter is not precise as it does not
distinguish exposures from confounders.

If many variables have been measured and included in
exploratory analyses in an early discovery phase, consider
providing a list with details on each variable in an appendix,
additional table or separate publication. Of note, the Interna-
tional Journal of Epidemiology recently launched a new
section with ‘cohort profiles’, that includes detailed informa-
tion on what was measured at different points in time in
particular studies.56,57 Finally, we advise that authors declare
all ‘candidate variables’ considered for statistical analysis,
rather than selectively reporting only those included in the
final models (see also item 16a).58,59

8 Data Sources/Measurement: For Each Variable
of Interest Give Sources of Data and Details of
Methods of Assessment (Measurement).
Describe Comparability of Assessment Methods
If There is More Than One Group
Example 1

“Total caffeine intake was calculated primarily using US
Department of Agriculture food composition sources. In these
calculations, it was assumed that the content of caffeine was 137
mg per cup of coffee, 47 mg per cup of tea, 46 mg per can or
bottle of cola beverage, and 7 mg per serving of chocolate
candy. This method of measuring (caffeine) intake was shown to
be valid in both the NHS I cohort and a similar cohort study of

male health professionals (. . .). Self-reported diagnosis of hy-
pertension was found to be reliable in the NHS I cohort.”60

Example 2
“Cases and controls were always analyzed together in

the same batch and laboratory personnel were unable to
distinguish among cases and controls.”61

Explanation
The way in which exposures, confounders and out-

comes were measured affects the reliability and validity of a
study. Measurement error and misclassification of exposures
or outcomes can make it more difficult to detect cause-effect
relationships, or may produce spurious relationships. Error in
measurement of potential confounders can increase the risk of
residual confounding.62,63 It is helpful, therefore, if authors
report the findings of any studies of the validity or reliability
of assessments or measurements, including details of the
reference standard that was used. Rather than simply citing
validation studies (as in the first example), we advise that
authors give the estimated validity or reliability, which can
then be used for measurement error adjustment or sensitivity
analyses (see items 12e and 17).

In addition, it is important to know if groups being
compared differed with respect to the way in which the data
were collected. This may be important for laboratory exam-
inations (as in the second example) and other situations. For
instance, if an interviewer first questions all the cases and
then the controls, or vice versa, bias is possible because of the
learning curve; solutions such as randomizing the order of
interviewing may avoid this problem. Information bias may
also arise if the compared groups are not given the same
diagnostic tests or if one group receives more tests of the
same kind than another (see also item 9).

9 Bias: Describe Any Efforts to Address
Potential Sources of Bias
Example 1

“In most case-control studies of suicide, the control
group comprises living individuals but we decided to have a
control group of people who had died of other causes (. . .).
With a control group of deceased individuals, the sources of
information used to assess risk factors are informants who
have recently experienced the death of a family member or
close associate - and are therefore more comparable to the
sources of information in the suicide group than if living
controls were used.”64

Example 2
“Detection bias could influence the association be-

tween Type 2 diabetes mellitus (T2DM) and primary
open-angle glaucoma (POAG) if women with T2DM were
under closer ophthalmic surveillance than women without
this condition. We compared the mean number of eye
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examinations reported by women with and without diabe-
tes. We also recalculated the relative risk for POAG with
additional control for covariates associated with more
careful ocular surveillance (a self-report of cataract, mac-
ular degeneration, number of eye examinations, and num-
ber of physical examinations).”65

Explanation
Biased studies produce results that differ systematically

from the truth (see also box 3). It is important for a reader to
know what measures were taken during the conduct of a
study to reduce the potential of bias. Ideally, investigators
carefully consider potential sources of bias when they plan
their study. At the stage of reporting, we recommend that
authors always assess the likelihood of relevant biases. Spe-
cifically, the direction and magnitude of bias should be
discussed and, if possible, estimated. For instance, in case-
control studies information bias can occur, but may be
reduced by selecting an appropriate control group, as in the
first example.64 Differences in the medical surveillance of
participants were a problem in the second example.65

Consequently, the authors provide more detail about the addi-
tional data they collected to tackle this problem. When investi-
gators have set up quality control programs for data collection to
counter a possible “drift” in measurements of variables in lon-

gitudinal studies, or to keep variability at a minimum when
multiple observers are used, these should be described.

Unfortunately, authors often do not address important
biases when reporting their results. Among 43 case-control
and cohort studies published from 1990 to 1994 that inves-
tigated the risk of second cancers in patients with a history of
cancer, medical surveillance bias was mentioned in only 5
articles.66 A survey of reports of mental health research
published during 1998 in 3 psychiatric journals found that
only 13% of 392 articles mentioned response bias.67 A survey
of cohort studies in stroke research found that 14 of 49 (28%)
articles published from 1999 to 2003 addressed potential
selection bias in the recruitment of study participants and 35
(71%) mentioned the possibility that any type of bias may
have affected results.5

10 Study Size: Explain How the Study Size was
Arrived at
Example 1

“The number of cases in the area during the study
period determined the sample size.”73

Example 2
“A survey of postnatal depression in the region had

documented a prevalence of 19.8%. Assuming depression in
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mothers with normal weight children to be 20% and an odds
ratio of 3 for depression in mothers with a malnourished child
we needed 72 case-control sets (one case to one control) with
an 80% power and 5% significance.”74

Explanation
A study should be large enough to obtain a point

estimate with a sufficiently narrow confidence interval to
meaningfully answer a research question. Large samples
are needed to distinguish a small association from no
association. Small studies often provide valuable informa-
tion, but wide confidence intervals may indicate that they
contribute less to current knowledge in comparison with
studies providing estimates with narrower confidence in-
tervals. Also, small studies that show ‘interesting’ or
‘statistically significant’ associations are published more
frequently than small studies that do not have ‘significant’
findings. While these studies may provide an early signal
in the context of discovery, readers should be informed of
their potential weaknesses.

The importance of sample size determination in obser-
vational studies depends on the context. If an analysis is
performed on data that were already available for other
purposes, the main question is whether the analysis of the
data will produce results with sufficient statistical precision to
contribute substantially to the literature, and sample size
considerations will be informal. Formal, a priori calculation
of sample size may be useful when planning a new study.75,76

Such calculations are associated with more uncertainty than
implied by the single number that is generally produced. For
example, estimates of the rate of the event of interest or other
assumptions central to calculations are commonly imprecise,
if not guesswork.77 The precision obtained in the final anal-
ysis can often not be determined beforehand because it will
be reduced by inclusion of confounding variables in multi-
variable analyses,78 the degree of precision with which key
variables can be measured,79 and the exclusion of some
individuals.

Few epidemiological studies explain or report deliber-
ations about sample size.4,5 We encourage investigators to
report pertinent formal sample size calculations if they were
done. In other situations they should indicate the consider-
ations that determined the study size (eg, a fixed available
sample, as in the first example above). If the observational
study was stopped early when statistical significance was
achieved, readers should be told. Do not bother readers with
post hoc justifications for study size or retrospective power
calculations.77 From the point of view of the reader, confi-
dence intervals indicate the statistical precision that was
ultimately obtained. It should be realized that confidence
intervals reflect statistical uncertainty only, and not all uncer-
tainty that may be present in a study (see item 20).

11 Quantitative Variables: Explain How
Quantitative Variables were Handled in the
Analyses. If Applicable, Describe Which
Groupings Were Chosen, and Why
Example

“Patients with a Glasgow Coma Scale (GCS) less than
8 are considered to be seriously injured. A GCS of 9 or more
indicates less serious brain injury. We examined the associ-
ation of GCS in these two categories with the occurrence of
death within 12 months from injury.”80

Explanation
Investigators make choices regarding how to collect

and analyse quantitative data about exposures, effect modi-
fiers and confounders. For example, they may group a con-
tinuous exposure variable to create a new categorical variable
(see box 4). Grouping choices may have important conse-
quences for later analyses.81,82 We advise that authors explain
why and how they grouped quantitative data, including the
number of categories, the cut-points, and category mean or
median values. Whenever data are reported in tabular form,
the counts of cases, controls, persons at risk, person-time at
risk, etc. should be given for each category. Tables should not
consist solely of effect-measure estimates or results of model
fitting.

Investigators might model an exposure as continuous in
order to retain all the information. In making this choice, one
needs to consider the nature of the relationship of the expo-
sure to the outcome. As it may be wrong to assume a linear
relation automatically, possible departures from linearity
should be investigated. Authors could mention alternative
models they explored during analyses (eg, using log trans-
formation, quadratic terms or spline functions). Several meth-
ods exist for fitting a nonlinear relation between the exposure
and outcome.82–84 Also, it may be informative to present both
continuous and grouped analyses for a quantitative exposure
of prime interest.

In a recent survey, two thirds of epidemiological pub-
lications studied quantitative exposure variables.4 In 42 of 50
articles (84%) exposures were grouped into several ordered
categories, but often without any stated rationale for the
choices made. Fifteen articles used linear associations to
model continuous exposure but only 2 reported checking for
linearity. In another survey, of the psychological literature,
dichotomization was justified in only 22 of 110 articles
(20%).85

12 Statistical Methods:
12 (a) Describe all statistical methods, including those

used to control for confounding.

Example
“The adjusted relative risk was calculated using the

Mantel-Haenszel technique, when evaluating if confounding
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by age or gender was present in the groups compared. The
95% confidence interval (CI) was computed around the ad-
justed relative risk, using the variance according to Greenland
and Robins and Robins et al.”93

Explanation
In general, there is no one correct statistical analysis

but, rather, several possibilities that may address the same
question, but make different assumptions. Regardless, inves-
tigators should pre-determine analyses at least for the primary
study objectives in a study protocol. Often additional analy-
ses are needed, either instead of, or as well as, those origi-
nally envisaged, and these may sometimes be motivated by
the data. When a study is reported, authors should tell readers
whether particular analyses were suggested by data inspec-
tion. Even though the distinction between pre-specified and
exploratory analyses may sometimes be blurred, authors
should clarify reasons for particular analyses.

If groups being compared are not similar with regard to
some characteristics, adjustment should be made for possible
confounding variables by stratification or by multivariable
regression (see box 5).94 Often, the study design determines
which type of regression analysis is chosen. For instance, Cox
proportional hazard regression is commonly used in cohort
studies,95 whereas logistic regression is often the method of
choice in case-control studies.96,97 Analysts should fully
describe specific procedures for variable selection and not

only present results from the final model.98,99 If model
comparisons are made to narrow down a list of potential
confounders for inclusion in a final model, this process
should be described. It is helpful to tell readers if one or two
covariates are responsible for a great deal of the apparent
confounding in a data analysis. Other statistical analyses such
as imputation procedures, data transformation, and calcula-
tions of attributable risks should also be described. Nonstand-
ard or novel approaches should be referenced and the statis-
tical software used reported. As a guiding principle, we
advise statistical methods be described “with enough detail to
enable a knowledgeable reader with access to the original
data to verify the reported results.”100

In an empirical study, only 93 of 169 articles (55%)
reporting adjustment for confounding clearly stated how
continuous and multi-category variables were entered into
the statistical model.101 Another study found that among
67 articles in which statistical analyses were adjusted for
confounders, it was mostly unclear how confounders were
chosen.4

12 (b) Describe Any Methods Used to Examine
Subgroups and Interactions
Example

“Sex differences in susceptibility to the 3 lifestyle-related
risk factors studied were explored by testing for biological
interaction according to Rothman: a new composite variable
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with 4 categories �a � b � , a � b � , a � b � , and a � b � � was rede-
fined for sex and a dichotomous exposure of interest where
a � and b � denote absence of exposure. RR was calculated for
each category after adjustment for age. An interaction effect is
defined as departure from additivity of absolute effects, and
excess RR caused by interaction (RERI) was calculated:

RERI � RR�a � b � � � RR�a � b � � � RR�a � b � � � 1

where RR�a � b �� denotes RR among those exposed to
both factors where RR�a � b �� is used as reference cate-
gory (RR � 1.0). Ninety-five percent CIs were calculated
as proposed by Hosmer and Lemeshow. RERI of 0 means
no interaction.”103

Explanation
As discussed in detail under item 17, many debate the

use and value of analyses restricted to subgroups of the study
population.4,104 Subgroup analyses are nevertheless often
done.4 Readers need to know which subgroup analyses were
planned in advance, and which arose while analyzing the
data. Also, it is important to explain what methods were used
to examine whether effects or associations differed across
groups (see item 17).

Interaction relates to the situation when one factor
modifies the effect of another (therefore also called ‘effect
modification’). The joint action of two factors can be char-
acterized in two ways: on an additive scale, in terms of risk
differences; or on a multiplicative scale, in terms of relative
risk (see box 8). Many authors and readers may have their
own preference about the way interactions should be ana-
lyzed. Still, they may be interested to know to what extent the

joint effect of exposures differs from the separate effects.
There is consensus that the additive scale, which uses abso-
lute risks, is more appropriate for public health and clinical
decision making.105 Whatever view is taken, this should be
clearly presented to the reader, as is done in the example
above.103 A lay-out presenting separate effects of both expo-
sures as well as their joint effect, each relative to no exposure,
might be most informative. It is presented in the example for
interaction under item 17, and the calculations on the differ-
ent scales are explained in box 8.

12 (c) Explain How Missing Data were
Addressed
Example

“Our missing data analysis procedures used missing at
random (MAR) assumptions. We used the MICE (multivariate
imputation by chained equations) method of multiple multivar-
iate imputation in STATA. We independently analyzed 10
copies of the data, each with missing values suitably imputed, in
the multivariate logistic regression analyses. We averaged esti-
mates of the variables to give a single mean estimate and
adjusted standard errors according to Rubin’s rules.”106

Explanation
Missing data are common in observational research.

Questionnaires posted to study participants are not always
filled in completely, participants may not attend all follow-up
visits and routine data sources and clinical databases are often
incomplete. Despite its ubiquity and importance, few papers
report in detail on the problem of missing data.5,107 Investi-
gators may use any of several approaches to address missing
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data. We describe some strengths and limitations of various
approaches in box 6. We advise that authors report the
number of missing values for each variable of interest (ex-
posures, outcomes, confounders) and for each step in the
analysis. Authors should give reasons for missing values if
possible, and indicate how many individuals were excluded
because of missing data when describing the flow of partic-
ipants through the study (see also item 13). For analyses that
account for missing data, authors should describe the nature
of the analysis (eg, multiple imputation) and the assumptions
that were made (eg, missing at random, see box 6).

12 (d) Cohort Study: If Applicable, Describe
How Loss to Follow-up was Addressed
Example

“In treatment programs with active follow-up, those
lost to follow-up and those followed-up at 1 year had
similar baseline CD4 cell counts (median 115 cells per �L
and 123 cells per �L), whereas patients lost to follow-up in
programs with no active follow-up procedures had consid-
erably lower CD4 cell counts than those followed-up
(median 64 cells per �L and 123 cells per �L). (. . .)
Treatment programs with passive follow-up were excluded
from subsequent analyses.”116

Explanation
Cohort studies are analyzed using life table methods or

other approaches that are based on the person-time of fol-

low-up and time to developing the disease of interest. Among
individuals who remain free of the disease at the end of their
observation period, the amount of follow-up time is assumed
to be unrelated to the probability of developing the outcome.
This will be the case if follow-up ends on a fixed date or at a
particular age. Loss to follow-up occurs when participants
withdraw from a study before that date. This may hamper the
validity of a study if loss to follow-up occurs selectively in
exposed individuals, or in persons at high risk of developing
the disease (�informative censoring’). In the example above,
patients lost to follow-up in treatment programs with no
active follow-up had fewer CD4 helper cells than those
remaining under observation and were therefore at higher risk
of dying.116

It is important to distinguish persons who reach the
end of the study from those lost to follow-up. Unfortu-
nately, statistical software usually does not distinguish
between the two situations: in both cases follow-up time is
automatically truncated (‘censored’) at the end of the
observation period. Investigators therefore need to decide,
ideally at the stage of planning the study, how they will
deal with loss to follow-up. When few patients are lost,
investigators may either exclude individuals with incom-
plete follow-up, or treat them as if they withdrew alive at
either the date of loss to follow-up or the end of the study.
We advise authors to report how many patients were lost to
follow-up and what censoring strategies they used.
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12 (d) Case-control Study: If Applicable,
Explain How Matching of Cases and Controls
was Addressed
Example

“We used McNemar’s test, paired t test, and conditional
logistic regression analysis to compare dementia patients with
their matched controls for cardiovascular risk factors, the
occurrence of spontaneous cerebral emboli, carotid disease,
and venous to arterial circulation shunt.”117

Explanation
In individually matched case-control studies a crude

analysis of the odds ratio, ignoring the matching, usually
leads to an estimation that is biased towards unity (see box 2).
A matched analysis is therefore often necessary. This can
intuitively be understood as a stratified analysis: each case is
seen as one stratum with his or her set of matched controls.
The analysis rests on considering whether the case is more
often exposed than the controls, despite having made them
alike regarding the matching variables. Investigators can do
such a stratified analysis using the Mantel-Haenszel method
on a ‘matched’ 2 by 2 table. In its simplest form the odds ratio
becomes the ratio of pairs that are discordant for the exposure
variable. If matching was done for variables like age and sex
that are universal attributes, the analysis needs not retain the
individual, person-to-person matching: a simple analysis in
categories of age and sex is sufficient.50 For other matching
variables, such as neighborhood, sibship, or friendship, how-
ever, each matched set should be considered its own stratum.

In individually matched studies, the most widely used
method of analysis is conditional logistic regression, in which
each case and their controls are considered together. The con-
ditional method is necessary when the number of controls varies
among cases, and when, in addition to the matching variables,
other variables need to be adjusted for. To allow readers to judge
whether the matched design was appropriately taken into ac-
count in the analysis, we recommend that authors describe in
detail what statistical methods were used to analyse the data. If
taking the matching into account does have little effect on the
estimates, authors may choose to present an unmatched analysis.

12 (d) Cross-sectional Study: If Applicable,
Describe Analytical Methods Taking Account of
Sampling Strategy
Example

“The standard errors (SE) were calculated using the
Taylor expansion method to estimate the sampling errors of
estimators based on the complex sample design. (. . .) The
overall design effect for diastolic blood pressure was found to
be 1.9 for men and 1.8 for women and, for systolic blood
pressure, it was 1.9 for men and 2.0 for women.”118

Explanation
Most cross-sectional studies use a pre-specified sam-

pling strategy to select participants from a source population.

Sampling may be more complex than taking a simple random
sample, however. It may include several stages and clustering
of participants (eg, in districts or villages). Proportionate strati-
fication may ensure that subgroups with a specific characteristic
are correctly represented. Disproportionate stratification may be
useful to over-sample a subgroup of particular interest.

An estimate of association derived from a complex
sample may be more or less precise than that derived from a
simple random sample. Measures of precision such as stan-
dard error or confidence interval should be corrected using
the design effect, a ratio measure that describes how much
precision is gained or lost if a more complex sampling
strategy is used instead of simple random sampling.119 Most
complex sampling techniques lead to a decrease of precision,
resulting in a design effect greater than 1.

We advise that authors clearly state the method used to
adjust for complex sampling strategies so that readers may
understand how the chosen sampling method influenced the
precision of the obtained estimates. For instance, with clus-
tered sampling, the implicit trade-off between easier data
collection and loss of precision is transparent if the design
effect is reported. In the example, the calculated design
effects of 1.9 for men indicates that the actual sample size
would need to be 1.9 times greater than with simple random
sampling for the resulting estimates to have equal precision.

12 (e) Describe any Sensitivity Analyses
Example

“Because we had a relatively higher proportion of
‘missing’ dead patients with insufficient data (38/148 �
25.7%) as compared to live patients (15/437 � 3.4%) (. . .),
it is possible that this might have biased the results. We have,
therefore, carried out a sensitivity analysis. We have assumed
that the proportion of women using oral contraceptives in the
study group applies to the whole (19.1% for dead, and 11.4%
for live patients), and then applied two extreme scenarios:
either all the exposed missing patients used second generation
pills or they all used third-generation pills.”120

Explanation
Sensitivity analyses are useful to investigate whether or

not the main results are consistent with those obtained with
alternative analysis strategies or assumptions.121 Issues that
may be examined include the criteria for inclusion in analy-
ses, the definitions of exposures or outcomes,122 which con-
founding variables merit adjustment, the handling of missing
data,120,123 possible selection bias or bias from inaccurate or
inconsistent measurement of exposure, disease and other
variables, and specific analysis choices, such as the treatment
of quantitative variables (see item 11). Sophisticated methods
are increasingly used to simultaneously model the influence
of several biases or assumptions.124–126

In 1959 Cornfield et al famously showed that a relative
risk of 9 for cigarette smoking and lung cancer was extremely
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unlikely to be due to any conceivable confounder, since the
confounder would need to be at least nine times as prevalent
in smokers as in non-smokers.127 This analysis did not rule
out the possibility that such a factor was present, but it did
identify the prevalence such a factor would need to have. The
same approach was recently used to identify plausible con-
founding factors that could explain the association between
childhood leukemia and living near electric power lines.128

More generally, sensitivity analyses can be used to identify
the degree of confounding, selection bias, or information bias
required to distort an association. One important, perhaps
under recognized, use of sensitivity analysis is when a study
shows little or no association between an exposure and an
outcome and it is plausible that confounding or other biases
toward the null are present.

RESULTS
The Results section should give a factual account of

what was found, from the recruitment of study participants,
the description of the study population to the main results and
ancillary analyses. It should be free of interpretations and
discursive text reflecting the authors’ views and opinions.

13 Participants:
13(a) Report the Numbers of Individuals at
Each Stage of the Study—eg, Numbers
Potentially Eligible, Examined for Eligibility,
Confirmed Eligible, Included in the Study,
Completing Follow-up, and Analyzed
Example

“Of the 105 freestanding bars and taverns sampled, 13
establishments were no longer in business and 9 were located
in restaurants, leaving 83 eligible businesses. In 22 cases, the
owner could not be reached by telephone despite 6 or more
attempts. The owners of 36 bars declined study participation.
(. . .) The 25 participating bars and taverns employed 124
bartenders, with 67 bartenders working at least 1 weekly
daytime shift. Fifty-four of the daytime bartenders (81%)
completed baseline interviews and spirometry; 53 of these
subjects (98%) completed follow-up.”129

Explanation
Detailed information on the process of recruiting study

participants is important for several reasons. Those included
in a study often differ in relevant ways from the target
population to which results are applied. This may result in
estimates of prevalence or incidence that do not reflect the
experience of the target population. For example, people who
agreed to participate in a postal survey of sexual behaviour
attended church less often, had less conservative sexual
attitudes and earlier age at first sexual intercourse, and were
more likely to smoke cigarettes and drink alcohol than people
who refused.130 These differences suggest that postal surveys
may overestimate sexual liberalism and activity in the popu-
lation. Such response bias (see box 3) can distort exposure-

disease associations if associations differ between those eli-
gible for the study and those included in the study. As another
example, the association between young maternal age and
leukemia in offspring, which has been observed in some
case-control studies,131,132 was explained by differential par-
ticipation of young women in case and control groups. Young
women with healthy children were less likely to participate
than those with unhealthy children.133 Although low partici-
pation does not necessarily compromise the validity of a
study, transparent information on participation and reasons
for nonparticipation is essential. Also, as there are no univer-
sally agreed definitions for participation, response or fol-
low-up rates, readers need to understand how authors calcu-
lated such proportions.134

Ideally, investigators should give an account of the num-
bers of individuals considered at each stage of recruiting study
participants, from the choice of a target population to the
inclusion of participants’ data in the analysis. Depending on the
type of study, this may include the number of individuals
considered to be potentially eligible, the number assessed for
eligibility, the number found to be eligible, the number included
in the study, the number examined, the number followed up and
the number included in the analysis. Information on different
sampling units may be required, if sampling of study participants
is carried out in two or more stages as in the example above
(multistage sampling). In case-control studies, we advise that
authors describe the flow of participants separately for case and
control groups.135 Controls can sometimes be selected from
several sources, including, for example, hospitalized patients
and community dwellers. In this case, we recommend a separate
account of the numbers of participants for each type of control
group. Olson and colleagues proposed useful reporting guide-
lines for controls recruited through random-digit dialling and
other methods.136

A recent survey of epidemiological studies published in
10 general epidemiology, public health and medical journals
found that some information regarding participation was
provided in 47 of 107 case-control studies (59%), 49 of 154
cohort studies (32%), and 51 of 86 cross-sectional studies
(59%).137 Incomplete or absent reporting of participation and
nonparticipation in epidemiological studies was also docu-
mented in two other surveys of the literature.4,5 Finally, there
is evidence that participation in epidemiological studies may
have declined in recent decades,137,138 which underscores the
need for transparent reporting.139

13(b) Give Reasons for Non-participation at
Each Stage
Example

“The main reasons for nonparticipation were the par-
ticipant was too ill or had died before interview (cases 30%,
controls �1%), nonresponse (cases 2%, controls 21%), re-
fusal (cases 10%, controls 29%), and other reasons (refusal
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by consultant or general practitioner, non-English speaking,
mental impairment) (cases 7%, controls 5%).”140

Explanation
Explaining the reasons why people no longer partici-

pated in a study or why they were excluded from statistical
analyses helps readers judge whether the study population
was representative of the target population and whether bias
was possibly introduced. For example, in a cross-sectional
health survey, non-participation due to reasons unlikely to be
related to health status (for example, the letter of invitation was

not delivered because of an incorrect address) will affect
the precision of estimates but will probably not introduce
bias. Conversely, if many individuals opt out of the survey
because of illness, or perceived good health, results may
underestimate or overestimate the prevalence of ill health
in the population.

13(c) Consider Use of a Flow Diagram
Example

See Fig. 1.

FIGURE 1. Child recruitment and follow-up flow diagram. From Hay et al.141
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Explanation
An informative and well-structured flow diagram can

readily and transparently convey information that might oth-
erwise require a lengthy description,142 as in the example
above. The diagram may usefully include the main results,
such as the number of events for the primary outcome. While
we recommend the use of a flow diagram, particularly for
complex observational studies, we do not propose a specific
format for the diagram.

14 Descriptive data:
14(a) Give Characteristics of Study Participants
(eg, Demographic, Clinical, Social) and
Information on Exposures and Potential
Confounders
Example

Explanation
Readers need descriptions of study participants and

their exposures to judge the generalizability of the findings.
Information about potential confounders, including whether
and how they were measured, influences judgments about
study validity. We advise authors to summarize continuous
variables for each study group by giving the mean and
standard deviation, or when the data have an asymmetrical
distribution, as is often the case, the median and percentile
range (eg, 25th and 75th percentiles). Variables that make up
a small number of ordered categories (such as stages of
disease I to IV) should not be presented as continuous
variables; it is preferable to give numbers and proportions for
each category (see also box 4). In studies that compare
groups, the descriptive characteristics and numbers should be
given by group, as in the example above.

Inferential measures such as standard errors and
confidence intervals should not be used to describe the

variability of characteristics, and significance tests should
be avoided in descriptive tables. Also, P values are not an
appropriate criterion for selecting which confounders to
adjust for in analysis; even small differences in a con-
founder that has a strong effect on the outcome can be
important.144,145

In cohort studies, it may be useful to document how an
exposure relates to other characteristics and potential con-
founders. Authors could present this information in a table
with columns for participants in two or more exposure cate-
gories, which permits to judge the differences in confounders
between these categories.

In case-control studies potential confounders cannot be
judged by comparing cases and controls. Control persons
represent the source population and will usually be different
from the cases in many respects. For example, in a study of
oral contraceptives and myocardial infarction, a sample of
young women with infarction more often had risk factors for
that disease, such as high serum cholesterol, smoking and a
positive family history, than the control group.146 This does
not influence the assessment of the effect of oral contraceptives,
as long as the prescription of oral contraceptives was not guided
by the presence of these risk factors - eg, because the risk factors
were only established after the event (see also box 5). In
case-control studies the equivalent of comparing exposed and
non-exposed for the presence of potential confounders (as is
done in cohorts) can be achieved by exploring the source
population of the cases: if the control group is large enough and
represents the source population, exposed and unexposed con-
trols can be compared for potential confounders.121,147

14(b) Indicate the Number of Participants with
Missing Data for Each Variable of Interest
Example

Explanation
As missing data may bias or affect generalizability of

results, authors should tell readers amounts of missing data for
exposures, potential confounders, and other important charac-
teristics of patients (see also item 12c and box 6). In a cohort
study, authors should report the extent of loss to follow-up (with
reasons), since incomplete follow-up may bias findings (see also

TABLE 2. Characteristics of the Study Base at Enrollment.
Castellana G (Italy), 1985–1986

HCV-negative
n � 1458

HCV-positive
n � 511

Unknown
n � 513

Sex (%)

Male 936 (64%) 296 (58%) 197 (39%)

Female 522 (36%) 215 (42%) 306 (61%)

Mean age at enrolment (SD) 45.7 (10.5) 52.0 (9.7) 52.5 (9.8)

Daily alcohol intake (%)

None 250 (17%) 129 (25%) 119 (24%)

Moderate* 853 (59%) 272 (53%) 293 (58%)

Excessive† 355 (24%) 110 (22%) 91 (18%)

HCV, Hepatitis C virus.
*Males �60 g ethanol/day, females �30 g ethanol/day.
†Males �60 g ethanol/day, females �30 g ethanol/day.
Table adapted from Osella et al.143

TABLE 3. Symptom End Points Used in Survival Analysis

Cough Short of Breath Sleeplessness

Symptom resolved 201 (79%) 138 (54%) 171 (67%)

Censored 27 (10%) 21 (8%) 24 (9%)

Never symptomatic 0 46 (18%) 11 (4%)

Data missing 28 (11%) 51 (20%) 50 (20%)

Total 256 (100%) 256 (100%) 256 (100%)

Table adapted from Hay et al.141
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items 12d and 13).148 We advise authors to use their tables and
figures to enumerate amounts of missing data.

14(c) Cohort Study: Summarise Follow-up
Time—eg, Average and Total Amount
Example

“During the 4366 person-years of follow-up (median
5.4, maximum 8.3 years), 265 subjects were diagnosed as
having dementia, including 202 with Alzheimer’s dis-
ease.”149

Explanation
Readers need to know the duration and extent of fol-

low-up for the available outcome data. Authors can present a
summary of the average follow-up with either the mean or
median follow-up time or both. The mean allows a reader to
calculate the total number of person-years by multiplying it
with the number of study participants. Authors also may
present minimum and maximum times or percentiles of the
distribution to show readers the spread of follow-up times.
They may report total person-years of follow-up or some
indication of the proportion of potential data that was cap-
tured.148 All such information may be presented separately
for participants in two or more exposure categories. Almost
half of 132 articles in cancer journals (mostly cohort studies)
did not give any summary of length of follow-up.37

15 Outcome Data:
Cohort Study: Report Numbers of Outcome
Events or Summary Measures Over Time
Example

Case-control Study: Report Numbers in Each
Exposure Category, or Summary Measures of
Exposure
Example

Cross-sectional Study: Report Numbers of
Outcome Events or Summary Measures
Example

Explanation
Before addressing the possible association between

exposures (risk factors) and outcomes, authors should report
relevant descriptive data. It may be possible and meaningful
to present measures of association in the same table that
presents the descriptive data (see item 14a). In a cohort study

TABLE 4. Rates of HIV-1 Seroconversion by Selected
Socio-Demographic Variables: 1990-1993

Variable Person-years
No.

Seroconverted

Rate/1000
Person-years

(95% CI)

Calendar year

1990 2197.5 18 8.2 (4.4–12.0)

1991 3210.7 22 6.9 (4.0–9.7)

1992 3162.6 18 5.7 (3.1–8.3)

1993 2912.9 26 8.9 (5.5–12.4)

1994 1104.5 5 4.5 (0.6–8.5)

Tribe

Bagandan 8433.1 48 5.7 (4.1–7.3)

Other Ugandan 578.4 9 15.6 (5.4–25.7)

Rwandese 2318.6 16 6.9 (3.5–10.3)

Other tribe 866.0 12 13.9 (6.0–21.7)

Religion

Muslim 3313.5 9 2.7 (0.9–4.5)

Other 8882.7 76 8.6 (6.6–10.5)

CI, confidence interval.
Table adapted from Kengeya-Kayondo et al.150

TABLE 5. Exposure Among Liver Cirrhosis Cases and
Controls

Cases
(n � 40)

Controls
(n � 139)

Vinyl chloride monomer (cumulative
exposure: ppm � years)

�160 7 (18%) 38 (27%)

160–500 7 (18%) 40 (29%)

500–2500 9 (23%) 37 (27%)

�2500 17 (43%) 24 (17%)

Alcohol consumption (g/day)

�30 1 (3%) 82 (59%)

30–60 7 (18%) 46 (33%)

�60 32 (80%) 11 (8%)

HBsAG/HCV

Negative 33 (83%) 136 (98%)

Positive 7 (18%) 3 (2%)

HBsAG, hepatitis B surface antigen; HCV, hepatitis C virus Table adapted from
Mastrangelo et al.151

TABLE 6. Prevalence of Current Asthma and Diagnosed
Hay Fever by Average Alternaria Alternata Antigen Level in
the Household

Categorized
Alternaria level*

Current Asthma Diagnosed Hay Fever

N
Prevalence†

(95% CI) N
Prevalence†

(95% CI)

1st tertile 40 4.8 (3.3–6.9) 93 16.4 (13.0–20.5)

2nd tertile 61 7.5 (5.2–10.6) 122 17.1 (12.8–22.5)

3rd tertile 73 8.7 (6.7–11.3) 93 15.2 (12.1–18.9)

1st tertile �3.90 �g/g; 2nd tertile 3.90–6.27 �g/g; 3rd tertile �6.28 �g/g.
†Percentage (95% CI) weighted for the multistage sampling design of the National

Survey of Lead and Allergens in Housing.
Table adapted from Salo et al.152
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with events as outcomes, report the numbers of events for
each outcome of interest. Consider reporting the event rate
per person-year of follow-up. If the risk of an event changes
over follow-up time, present the numbers and rates of events
in appropriate intervals of follow-up or as a Kaplan-Meier life
table or plot. It might be preferable to show plots as cumu-
lative incidence that go up from 0% rather than down from
100%, especially if the event rate is lower than, say, 30%.153

Consider presenting such information separately for partici-
pants in different exposure categories of interest. If a cohort
study is investigating other time-related outcomes (eg, quan-
titative disease markers such as blood pressure), present
appropriate summary measures (eg, means and standard de-
viations) over time, perhaps in a table or figure.

For cross-sectional studies, we recommend presenting the
same type of information on prevalent outcome events or sum-
mary measures. For case-control studies, the focus will be on
reporting exposures separately for cases and controls as frequen-
cies or quantitative summaries.154 For all designs, it may be
helpful also to tabulate continuous outcomes or exposures in
categories, even if the data are not analyzed as such.

16 Main Results:
16 (a) Give Unadjusted Estimates and, if
Applicable, Confounder-Adjusted Estimates and
Their Precision (eg, 95% Confidence Intervals).
Make Clear Which Confounders were Adjusted
for and Why They were Included
Example 1

“We initially considered the following variables as
potential confounders by Mantel-Haenszel stratified analysis:
(. . .) The variables we included in the final logistic regression
models were those (. . .) that produced a 10% change in the
odds ratio after the Mantel-Haenszel adjustment.”155

Example 2
See Table 7.

Explanation
In many situations, authors may present the results of

unadjusted or minimally adjusted analyses and those from fully
adjusted analyses. We advise giving the unadjusted analyses
together with the main data, for example the number of cases
and controls that were exposed or not. This allows the reader to
understand the data behind the measures of association (see also
item 15). For adjusted analyses, report the number of persons in
the analysis, as this number may differ because of missing
values in covariates (see also item 12c). Estimates should be
given with confidence intervals.

Readers can compare unadjusted measures of asso-
ciation with those adjusted for potential confounders and
judge by how much, and in what direction, they changed.
Readers may think that ‘adjusted’ results equal the causal
part of the measure of association, but adjusted results are
not necessarily free of random sampling error, selection
bias, information bias, or residual confounding (see box 5).
Thus, great care should be exercised when interpreting
adjusted results, as the validity of results often depends
crucially on complete knowledge of important confound-
ers, their precise measurement, and appropriate specifica-
tion in the statistical model (see also item 20).157,158

Authors should explain all potential confounders consid-
ered, and the criteria for excluding or including variables in
statistical models. Decisions about excluding or including vari-
ables should be guided by knowledge, or explicit assumptions,
on causal relations. Inappropriate decisions may introduce bias,
for example by including variables that are in the causal pathway
between exposure and disease (unless the aim is to asses how
much of the effect is carried by the intermediary variable). If the

TABLE 7. Relative Rates of Rehospitalisation by Treatment in Patients in Community Care After First Hospitalisation Due to
Schizophrenia and Schizoaffective Disorder

Treatment
No. of

Relapses
Person-
years

Crude Relative
Rate (95% CI)

Adjusted Relative
Rate (95% CI)

Fully Adjusted Relative
Rate (95% CI)

Perphenazine 53 187 0.41 (0.29 to 0.59) 0.45 (0.32 to 0.65) 0.32 (0.22 to 0.49)

Olanzapine 329 822 0.59 (0.45 to 0.75) 0.55 (0.43 to 0.72) 0.54 (0.41 to 0.71)

Clozapine 336 804 0.61 (0.47 to 0.79) 0.53 (0.41 to 0.69) 0.64 (0.48 to 0.85)

Chlorprothixene 79 146 0.79 (0.58 to 1.09) 0.83 (0.61 to 1.15) 0.64 (0.45 to 0.91)

Thioridazine 115 201 0.84 (0.63 to 1.12) 0.82 (0.61 to 1.10) 0.70 (0.51 to 0.96)

Perphenazine 155 327 0.69 (0.58 to 0.82) 0.78 (0.59 to 1.03) 0.85 (0.63 to 1.13)

Risperidone 343 651 0.77 (0.60 to 0.99) 0.80 (0.62 to 1.03) 0.89 (0.69 to 1.16)

Haloperidol 73 107 1.00 1.00 1.00

Chlorpromazine 82 127 0.94 (0.69 to 1.29) 0.97 (0.71 to 1.33) 1.06 (0.76 to 1.47)

Levomepromazine 52 63 1.21 (0.84 to 1.73) 0.82 (0.58 to 1.18) 1.09 (0.76 to 1.57)

No antipsychotic drugs 2248 3362 0.98 (0.77 to 1.23) 1.01 (0.80 to 1.27) 1.16 (0.91 to 1.47)

Adjusted for sex, calendar year, age at onset of follow-up, number of previous relapses, duration of first hospitalisation, and length of follow-up (adjusted column) and additionally
for a score of the propensity to start a treatment other than haloperidol (fully adjusted column).

Table adapted from Tiihonen et al.156
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decision to include a variable in the model was based on the
change in the estimate, it is important to report what change was
considered sufficiently important to justify its inclusion. If a
‘backward deletion’ or ‘forward inclusion’ strategy was used to
select confounders, explain that process and give the signifi-
cance level for rejecting the null hypothesis of no confounding.
Of note, we and others do not advise selecting confounders
based solely on statistical significance testing.147,159,160

Recent studies of the quality of reporting of epide-
miological studies found that confidence intervals were
reported in most articles.4 However, few authors explained
their choice of confounding variables.4,5

16 (b) Report Category Boundaries When
Continuous Variables were Categorized

Example

Explanation
Categorizing continuous data has several important im-

plications for analysis (see box 4) and also affects the presenta-
tion of results. In tables, outcomes should be given for each
exposure category, for example as counts of persons at risk,
person-time at risk, if relevant separately for each group (eg,
cases and controls). Details of the categories used may aid
comparison of studies and meta-analysis. If data were grouped
using conventional cut-points, such as body mass index thresh-
olds,162 group boundaries (ie, range of values) can be derived
easily, except for the highest and lowest categories. If quantile-
derived categories are used, the category boundaries cannot be
inferred from the data. As a minimum, authors should report the
category boundaries; it is helpful also to report the range of the
data and the mean or median values within categories.

16(c) If Relevant, Consider Translating
Estimates of Relative Risk into Absolute Risk
for a Meaningful Time Period
Example

“10 years’ use of HRT �hormone replacement therapy	
is estimated to result in five (95% CI 3–7) additional breast
cancers per 1000 users of oestrogen-only preparations and

1915–23 additional cancers per 1000 users of oestrogen-pro-
gestagen combinations.”163

Explanation
The results from studies examining the association be-

tween an exposure and a disease are commonly reported in
relative terms, as ratios of risks, rates or odds (see box 8).
Relative measures capture the strength of the association be-
tween an exposure and disease. If the relative risk is a long way
from 1 it is less likely that the association is due to confound-
ing.164,165 Relative effects or associations tend to be more
consistent across studies and populations than absolute mea-
sures, but what often tends to be the case may be irrelevant in a
particular instance. For example, similar relative risks were
obtained for the classic cardiovascular risk factors for men living
in Northern Ireland, France, the USA and Germany, despite the
fact that the underlying risk of coronary heart disease varies
substantially between these countries.166,167 In contrast, in a
study of hypertension as a risk factor for cardiovascular disease
mortality, the data were more compatible with a constant rate
difference than with a constant rate ratio.168

Widely used statistical models, including logistic169

and proportional hazards (Cox) regression170 are based on
ratio measures. In these models, only departures from con-
stancy of ratio effect measures are easily discerned. Never-
theless, measures which assess departures from additivity of
risk differences, such as the Relative Excess Risk from
Interaction (RERI, see item 12b and box 8), can be estimated
in models based on ratio measures.

In many circumstances, the absolute risk associated with
an exposure is of greater interest than the relative risk. For
example, if the focus is on adverse effects of a drug, one will
want to know the number of additional cases per unit time of use
(eg, days, weeks, or years). The example gives the additional
number of breast cancer cases per 1000 women who used
hormone-replacement therapy for 10 years.163 Measures such as
the attributable risk or population attributable fraction may be
useful to gauge how much disease can be prevented if the
exposure is eliminated. They should preferably be presented
together with a measure of statistical uncertainty (eg, confidence
intervals, as in the example). Authors should be aware of the
strong assumptions made in this context, including a causal
relationship between a risk factor and disease (also see box 7).171

Because of the semantic ambiguity and complexities involved,
authors should report in detail what methods were used to
calculate attributable risks, ideally giving the formulae used.172

A recent survey of abstracts of 222 articles published
in leading medical journals found that in 62% of abstracts
of randomized trials including a ratio measure absolute
risks were given, but only in 21% of abstracts of cohort
studies.173 A free text search of Medline 1966 to 1997
showed that 619 items mentioned attributable risks in the
title or abstract, compared to 18,955 using relative risk or
odds ratio, for a ratio of 1 to 31.174

TABLE 8. Table - Polychlorinated Biphenyls in Cord Serum

Quartile Range (ng/g) Number

1 0.07 – 0.24 180

2 0.24 – 0.38 181

3 0.38 – 0.60 181

4 0.61 – 18.14 180

Table adapted from Sagiv et al.161
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17 Other analyses: Report Other Analyses
Done—eg, Analyses of Subgroups and
Interactions, and Sensitivity Analyses
Example 1

Example 2
See Table 10.

Explanation
In addition to the main analysis other analyses are often

done in observational studies. They may address specific
subgroups, the potential interaction between risk factors, the
calculation of attributable risks, or use alternative definitions
of study variables in sensitivity analyses.

There is debate about the dangers associated with
subgroup analyses, and multiplicity of analyses in gener-
al.4,104 In our opinion, there is too great a tendency to look for
evidence of subgroup-specific associations, or effect-measure
modification, when overall results appear to suggest little or
no effect. On the other hand, there is value in exploring
whether an overall association appears consistent across sev-
eral, preferably pre-specified subgroups especially when a
study is large enough to have sufficient data in each subgroup. A

TABLE 9. Analysis of Oral Contraceptive Use, Presence of
Factor V Leiden Allele, and Risk for Venous
Thromboembolism

Factor V
Leiden

Oral
Contraceptives

No. of
Patients

No. of
Controls Odds Ratio

Yes Yes 25 2 34.7

Yes No 10 4 6.9

No Yes 84 63 3.7

No No 36 100 1 (Reference)

*Modified from Vandenbroucke et al.182 by Botto et al.183
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second area of debate is about interesting subgroups that arose
during the data analysis. They might be important findings, but
might also arise by chance. Some argue that it is neither possible
nor necessary to inform the reader about all subgroup analyses
done as future analyses of other data will tell to what extent the
early exciting findings stand the test of time.9 We advise authors

to report which analyses were planned, and which were not (see
also items 4, 12b and 20). This will allow readers to judge the
implications of multiplicity, taking into account the study’s
position on the continuum from discovery to verification or
refutation.

A third area of debate is how joint effects and interac-
tions between risk factors should be evaluated: on additive or
multiplicative scales, or should the scale be determined by the
statistical model that fits best (see also item 12b and box 8)?
A sensible approach is to report the separate effect of each
exposure as well as the joint effect – if possible in a table, as
in the first example above,183 or in the study by Martinelli
et al.185 Such a table gives the reader sufficient information to
evaluate additive as well as multiplicative interaction (how
these calculations are done is shown in box 8). Confidence
intervals for separate and joint effects may help the reader to
judge the strength of the data. In addition, confidence inter-
vals around measures of interaction, such as the Relative
Excess Risk from Interaction (RERI) relate to tests of inter-
action or homogeneity tests. One recurrent problem is that
authors use comparisons of P values across subgroups, which
lead to erroneous claims about an effect modifier. For in-
stance, a statistically significant association in one category
(eg, men), but not in the other (eg, women) does not in itself
provide evidence of effect modification. Similarly, the con-
fidence intervals for each point estimate are sometimes inap-
propriately used to infer that there is no interaction when

TABLE 10. Sensitivity of the Rate Ratio for Cardiovascular
Outcome to an Unmeasured Confounder

Prevalence of
Unmeasured
Binary
Confounder in
the Exposed
Group, %

Prevalence of
Unmeasured

Binary
Confounder in

the Comparator
Group, %

Unmeasured
Binary

Confounder
Rate Ratio

High
Exposure

Rate Ratio
(95% CI)*

90 10 1.5 1.20 (1.01–1.42)

90 50 1.5 1.43 (1.22–1.67)

50 10 1.5 1.39 (1.18–1.63)

90 10 2 0.96 (0.81–1.13)

90 50 2 1.27 (1.11–1.45)

50 10 2 1.21 (1.03–1.42)

90 50 3 1.18 (1.01–1.38)

50 10 3 0.99 (0.85–1.16)

90 50 5 1.08 (0.85–1.26)

CI, confidence interval.
*Adjusted for age, sex, cardiovascular drug use, and unmeasured binary con-

founder.
Table adapted from Wei et al.184
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intervals overlap. A more valid inference is achieved by
directly evaluating whether the magnitude of an association
differs across subgroups.

Sensitivity analyses are helpful to investigate the influence
of choices made in the statistical analysis, or to investigate the
robustness of the findings to missing data or possible biases (see
also item 12b). Judgement is needed regarding the level of
reporting of such analyses. If many sensitivity analyses were
performed, it may be impractical to present detailed findings for
them all. It may sometimes be sufficient to report that sensitivity
analyses were carried out and that they were consistent with the
main results presented. Detailed presentation is more appropriate
if the issue investigated is of major concern, or if effect estimates
vary considerably.59,186

Pocock and colleagues found that 43 out of 73 articles
reporting observational studies contained subgroup analyses. The
majority claimed differences across groups but only eight arti-
cles reported a formal evaluation of interaction (see item 12b).4

DISCUSSION
The discussion section addresses the central issues of

validity and meaning of the study.191 Surveys have found that
discussion sections are often dominated by incomplete or
biased assessments of the study’s results and their implica-
tions, and rhetoric supporting the authors’ findings.192,193

Structuring the discussion may help authors avoid unwar-
ranted speculation and over-interpretation of results while
guiding readers through the text.194,195 For example, Annals
of Internal Medicine196 recommends that authors structure
the discussion section by presenting the following: 1) a brief
synopsis of the key findings; 2) consideration of possible
mechanisms and explanations; 3) comparison with relevant
findings from other published studies; 4) limitations of the
study; and 5) a brief section that summarizes the implications
of the work for practice and research. Others have made
similar suggestions.191,194 The section on research recom-
mendations and the section on limitations of the study should
be closely linked to each other. Investigators should suggest
ways in which subsequent research can improve on their
studies rather than blandly stating ‘more research is need-
ed’.197,198 We recommend that authors structure their discus-
sion sections, perhaps also using suitable subheadings.

18 Key Results: Summarise Key Results with
Reference to Study Objectives
Example

“We hypothesized that ethnic minority status would be
associated with higher levels of cardiovascular disease (CVD)
risk factors, but that the associations would be explained sub-
stantially by socioeconomic status (SES). Our hypothesis was
not confirmed. After adjustment for age and SES, highly signif-
icant differences in body mass index, blood pressure, diabetes,
and physical inactivity remained between white women and
both black and Mexican American women. In addition, we

found large differences in CVD risk factors by SES, a finding
that illustrates the high-risk status of both ethnic minority
women as well as white women with low SES.”199

Explanation
It is good practice to begin the discussion with a short

summary of the main findings of the study. The short sum-
mary reminds readers of the main findings and may help them
assess whether the subsequent interpretation and implications
offered by the authors are supported by the findings.

19 Limitations: Discuss Limitations of the
Study, Taking into Account Sources of
Potential Bias or Imprecision. Discuss Both
Direction and Magnitude of Any Potential Bias
Example

“Since the prevalence of counseling increases with
increasing levels of obesity, our estimates may overestimate
the true prevalence. Telephone surveys also may overesti-
mate the true prevalence of counseling. Although persons
without telephones have similar levels of overweight as
persons with telephones, persons without telephones tend to
be less educated, a factor associated with lower levels of
counseling in our study. Also, of concern is the potential bias
caused by those who refused to participate as well as those
who refused to respond to questions about weight. Further-
more, because data were collected cross-sectionally, we can-
not infer that counseling preceded a patient’s attempt to lose
weight.”200

Explanation
The identification and discussion of the limitations of a

study are an essential part of scientific reporting. It is impor-
tant not only to identify the sources of bias and confounding
that could have affected results, but also to discuss the
relative importance of different biases, including the likely
direction and magnitude of any potential bias (see also box 3,
item 9).

Authors should also discuss any imprecision of the
results. Imprecision may arise in connection with several
aspects of a study, including the study size (item 10) and the
measurement of exposures, confounders and outcomes (item
8). The inability to precisely measure true values of an
exposure tends to result in bias towards unity: the less
precisely a risk factor is measured, the greater the bias. This
effect has been described as ‘attenuation’,201,202 or more
recently as ‘regression dilution bias’.203 However, when
correlated risk factors are measured with different degrees of
imprecision, the adjusted relative risk associated with them
can be biased towards or away from unity.204–206

When discussing limitations, authors may compare the
study being presented with other studies in the literature in
terms of validity, generalizability and precision. In this ap-
proach, each study can be viewed as contribution to the
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literature, not as a stand-alone basis for inference and ac-
tion.207 Surprisingly, the discussion of important limitations
of a study is sometimes omitted from published reports. A
survey of authors who had published original research articles
in The Lancet found that important weaknesses of the study
were reported by the investigators in the survey question-
naires, but not in the published article.192

20 Interpretation: Give a Cautious Overall
Interpretation Considering Objectives,
Limitations, Multiplicity of Analyses, Results
from Similar Studies, and Other Relevant
Evidence
Example

“Any explanation for an association between death
from myocardial infarction and use of second generation oral
contraceptives must be conjectural. There is no published
evidence to suggest a direct biologic mechanism, and there
are no other epidemiologic studies with relevant results. (. . .)
The increase in absolute risk is very small and probably
applies predominantly to smokers. Due to the lack of corrob-
orative evidence, and because the analysis is based on rela-
tively small numbers, more evidence on the subject is needed.
We would not recommend any change in prescribing practice
on the strength of these results.”120

Explanation
The heart of the discussion section is the interpreta-

tion of a study’s results. Over-interpretation is common
and human: even when we try hard to give an objective
assessment, reviewers often rightly point out that we went
too far in some respects. When interpreting results, authors
should consider the nature of the study on the discovery to
verification continuum and potential sources of bias, in-
cluding loss to follow-up and non-participation (see also
items 9, 12 and 19). Due consideration should be given to
confounding (item 16a), the results of relevant sensitivity
analyses, and to the issue of multiplicity and subgroup
analyses (item 17). Authors should also consider residual
confounding due to unmeasured variables or imprecise
measurement of confounders. For example, socioeconomic
status (SES) is associated with many health outcomes and
often differs between groups being compared. Variables
used to measure SES (income, education, or occupation)
are surrogates for other undefined and unmeasured expo-
sures, and the true confounder will by definition be mea-
sured with error.208 Authors should address the real range
of uncertainty in estimates, which is larger than the statis-
tical uncertainty reflected in confidence intervals. The
latter do not take into account other uncertainties that arise
from a study’s design, implementation, and methods of
measurement.209

To guide thinking and conclusions about causality,
some may find criteria proposed by Bradford Hill in 1965
helpful.164 How strong is the association with the exposure?
Did it precede the onset of disease? Is the association con-
sistently observed in different studies and settings? Is there
supporting evidence from experimental studies, including
laboratory and animal studies? How specific is the exposure’s
putative effect, and is there a dose-response relationship? Is
the association biologically plausible? These criteria should
not, however, be applied mechanically. For example, some
have argued that relative risks below 2 or 3 should be
ignored.210,211 This is a reversal of the point by Cornfield et
al about the strength of large relative risks (see item 12b).127

Although a causal effect is more likely with a relative risk of
9, it does not follow that one below 3 is necessarily spurious.
For instance, the small increase in the risk of childhood
leukemia after intrauterine irradiation is credible because it
concerns an adverse effect of a medical procedure for which
no alternative explanations are obvious.212 Moreover, the
carcinogenic effects of radiation are well established. The
doubling in the risk of ovarian cancer associated with eating
2 to 4 eggs per week is not immediately credible, since
dietary habits are associated with a large number of lifestyle
factors as well as SES.213 In contrast, the credibility of much
debated epidemiologic findings of a difference in thrombosis
risk between different types of oral contraceptives was
greatly enhanced by the differences in coagulation found in a
randomized cross-over trial.214 A discussion of the existing
external evidence, from different types of studies, should
always be included, but may be particularly important for
studies reporting small increases in risk. Further, authors
should put their results in context with similar studies and
explain how the new study affects the existing body of
evidence, ideally by referring to a systematic review.

21 Generalizability: Discuss the
Generalizability (External Validity) of the
Study Results
Example

“How applicable are our estimates to other HIV-1-
infected patients? This is an important question because the
accuracy of prognostic models tends to be lower when ap-
plied to data other than those used to develop them. We
addressed this issue by penalising model complexity, and by
choosing models that generalized best to cohorts omitted
from the estimation procedure. Our database included pa-
tients from many countries from Europe and North America,
who were treated in different settings. The range of patients
was broad: men and women, from teenagers to elderly people
were included, and the major exposure categories were well
represented. The severity of immunodeficiency at baseline
ranged from not measureable to very severe, and viral load
from undetectable to extremely high.”215
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Explanation
Generalizability, also called external validity or ap-

plicability, is the extent to which the results of a study can
be applied to other circumstances.216 There is no external
validity per se; the term is meaningful only with regard to
clearly specified conditions.217 Can results be applied to an
individual, groups or populations that differ from those
enrolled in the study with regard to age, sex, ethnicity,
severity of disease, and co-morbid conditions? Are the
nature and level of exposures comparable, and the defini-
tions of outcomes relevant to another setting or popula-
tion? Are data that were collected in longitudinal studies
many years ago still relevant today? Are results from
health services research in one country applicable to health
systems in other countries?

The question of whether the results of a study have
external validity is often a matter of judgment that depends on
the study setting, the characteristics of the participants, the
exposures examined, and the outcomes assessed. Thus, it is
crucial that authors provide readers with adequate informa-
tion about the setting and locations, eligibility criteria, the
exposures and how they were measured, the definition of
outcomes, and the period of recruitment and follow-up. The
degree of nonparticipation and the proportion of unex-
posed participants in whom the outcome develops are also
relevant. Knowledge of the absolute risk and prevalence of
the exposure, which will often vary across populations, are
helpful when applying results to other settings and popu-
lations (see box 7).

OTHER INFORMATION

22 Funding: Give the Source of Funding and
the Role of the Funders for the Present Study
and, if Applicable, for the Original Study on
Which the Present Article is Based
Explanation

Some journals require authors to disclose the presence or
absence of financial and other conflicts of interest.100,218 Several
investigations show strong associations between the source of
funding and the conclusions of research articles.219–222 The
conclusions in randomized trials recommended the experimental
drug as the drug of choice much more often (odds ratio 5.3) if
the trial was funded by for-profit organisations, even after
adjustment for the effect size.223 Other studies document the
influence of the tobacco and telecommunication industries on
the research they funded.224–227 There are also examples of
undue influence when the sponsor is governmental or a non-
profit organization.

Authors or funders may have conflicts of interest that
influence any of the following: the design of the study228;
choice of exposures,228,229 outcomes,230 statistical meth-
ods,231 and selective publication of outcomes230 and stud-
ies.232 Consequently, the role of the funders should be de-

scribed in detail: in what part of the study they took direct
responsibility (eg, design, data collection, analysis, drafting
of the manuscript, decision to publish).100 Other sources of
undue influence include employers (eg, university adminis-
trators for academic researchers and government supervisors,
especially political appointees, for government researchers),
advisory committees, litigants, and special interest groups.

Concluding Remarks
The STROBE Statement aims to provide helpful rec-

ommendations for reporting observational studies in epide-
miology. Good reporting reveals the strengths and weak-
nesses of a study and facilitates sound interpretation and
application of study results. The STROBE Statement may
also aid in planning observational studies, and guide peer
reviewers and editors in their evaluation of manuscripts.

We wrote this explanatory article to discuss the impor-
tance of transparent and complete reporting of observational
studies, to explain the rationale behind the different items
included in the checklist, and to give examples from pub-
lished articles of what we consider good reporting. We hope
that the material presented here will assist authors and editors
in using STROBE.

We stress that STROBE and other recommendations on
the reporting of research13,233,234 should be seen as evolving
documents that require continual assessment, refinement,
and, if necessary, change.235,236 For example, the CONSORT
Statement for the reporting of parallel-group randomized
trials was first developed in the mid 1990s.237 Since then
members of the group have met regularly to review the need
to revise the recommendations; a revised version appeared in
2001233 and a further version is in development. Similarly,
the principles presented in this article and the STROBE
checklist are open to change as new evidence and critical
comments accumulate. The STROBE web site (http://www.
strobe-statement.org) provides a forum for discussion and
suggestions for improvements of the checklist, this explana-
tory document and information about the good reporting of
epidemiological studies.

Several journals ask authors to follow the STROBE
Statement in their instructions to authors (see web site for
current list). We invite other journals to adopt the STROBE
Statement and contact us through our web site to let us know.
The journals publishing the STROBE recommendations pro-
vide open access. The STROBE Statement is therefore
widely accessible to the biomedical community.
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