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H I V / A I D SM A J O R A R T I C L E

Factors Associated with the Incidence of Type 2
Diabetes Mellitus in HIV-Infected Participants
in the Swiss HIV Cohort Study

Bruno Ledergerber,1 Hansjakob Furrer,3 Martin Rickenbach,5 Roger Lehmann,2 Luigia Elzi,7 Bernard Hirschel,8

Matthias Cavassini,6 Enos Bernasconi,9 Patrick Schmid,10 Matthias Egger,4 and Rainer Weber,1 and the Swiss HIV
Cohort Studya

Divisions of 1Infectious Diseases and Hospital Epidemiology and 2Endocrinology and Diabetes, University Hospital, Zurich, 3Division of Infectious
Diseases, University Hospital Berne, and 4Department of Social and Preventive Medicine, University of Berne, Berne, 5Data Centre, Swiss HIV
Cohort Study, and 6Division of Infectious Diseases, University Hospital Lausanne, Lausanne, 7Division of Infectious Diseases, University Hospital
Basel, Basel, 8Division of Infectious Diseases, University Hospital Geneva, Geneva, 9Ospedale Regionale, Lugano, and 10Division of Infectious
Diseases, Cantonal Hospital, St. Gall, Switzerland

Background. Human immunodeficiency virus (HIV)–infected persons may be at increased risk for developing
type 2 diabetes mellitus because of viral coinfection and adverse effects of treatment.

Methods. We studied associations of new-onset diabetes mellitus with hepatitis B virus and hepatitis C virus
coinfections and antiretroviral therapy in participants in the Swiss HIV Cohort Study, using Poisson regression.

Results. A total of 123 of 6513 persons experienced diabetes mellitus during 27,798 person-years of follow-
up (PYFU), resulting in an incidence of 4.4 cases per 1000 PYFU (95% confidence interval [CI], 3.7–5.3 cases
per 1000 PYFU). An increased incidence rate ratio (IRR) was found for male subjects (IRR, 2.5; 95% CI, 1.5–
4.2), older age (IRR for subjects 160 years old, 4.3; 95% CI, 2.3–8.2), black (IRR, 2.1; 95% CI, 1.1–4.0) and Asian
(IRR, 4.9; 95% CI, 2.2–10.9) ethnicity, Centers for Disease Control and Prevention disease stage C (IRR, 1.6; 95%
CI, 1.04–2.4), and obesity (IRR, 4.7; 95% CI, 3.1–7.0), but results for hepatitis C virus infection or active hepatitis
B virus infection were inconclusive. Strong associations were found for current treatment with nucleoside reverse-
transcriptase inhibitors (IRR, 2.22; 95% CI, 1.11–4.45), nucleoside reverse-transcriptase inhibitors plus protease
inhibitors (IRR, 2.48; 95% CI, 1.42–4.31), and nucleoside reverse-transcriptase inhibitors plus protease inhibitors
and nonnucleoside reverse-transcriptase inhibitors (IRR, 3.25; 95% CI, 1.59–6.67) but were not found for treatment
with nucleoside reverse-transcriptase inhibitors plus nonnucleoside reverse-transcriptase inhibitors (IRR, 1.47; 95%
CI, 0.77–2.82).

Conclusions. In addition to traditional risk factors, current treatment with protease inhibitor– and nucleoside
reverse-transcriptase inhibitor–containing regimens was associated with the risk of developing type 2 diabetes
mellitus. Our study did not find a significant association between viral hepatitis infection and risk of incident
diabetes.

In 1997, the US Food and Drug Administration reported

the association of hyperglycemia and new-onset type 2

diabetes mellitus (DM) with protease inhibitors (PIs; sa-

quinavir, ritonavir, indinavir, and nelfinavir) [1]. Sub-

sequent studies have confirmed the association of hy-
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perglycemia or DM with PI use [2–7]. More recently,

nucleoside and nucleotide reverse-transcriptase inhibi-

tors (NRTIs), but not nonnucleoside reverse-transcrip-

tase inhibitors (NNRTIs), were found to contribute to

the disturbance of glucose metabolism [8–11]. Further-

more, associations of hyperglycemia and DM with hep-

atitis C virus (HCV) infection have been reported both

in HIV-negative [12–14] and HIV-positive [15–17] pop-

ulations. Potential mechanisms may include HCV-in-

duced insulin resistance mediated by proinflammatory

cytokines [18], immune reactions against pancreatic b-

cells, or direct infection of b-cells by HCV [19].

Patterns of use of antiretroviral regimens have
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changed over the years in response to perceived toxicity and

to the availability of new drugs. Because of improved life ex-

pectancy, increased cumulative exposure to antiretroviral drugs

in HIV-infected persons may have resulted in cumulative tox-

icity in some patients. This study was designed to assess the

impact of hepatitis coinfection on the development of new-

onset DM in the Swiss HIV Cohort Study (SHCS), taking into

account changes in anthropometric risk factors and antiret-

roviral therapy (ART) during follow-up.

METHODS

Study population. The SHCS is an ongoing, prospective,

clinic-based study that was established in 1988 and that con-

tinuously enrolls and observes HIV-1–infected individuals aged

�16 years at 5 university outpatient clinics, 2 large district

hospitals, affiliated regional hospitals, and private practices

[20]. The study was approved by local ethical review boards,

and written informed consent was obtained from all

participants.

For this analysis, we included SHCS participants if they had

at least 2 study visits with at least 1 year of follow-up after 1

March 2000. Patients with prevalent cases of DM were excluded.

Ascertainment of DM. As part of the Data Collection on

Adverse Events of Anti-HIV Drugs (DAD) protocol [21], car-

diovascular risk factors and events, including plasma glucose

levels and diagnosis of DM, have been routinely collected and

verified at biannual follow-up visits since 1 March 2000. DM

is diagnosed according to the criteria of the Expert Committee

on the Diagnosis and Classification of DM [22], with confirmed

plasma glucose level cut-off values of 17.0 mmol/L (fasting)

and 111.1 mmol/L (nonfasting). Treating physicians were con-

tacted to ascertain the status of patients with glucose levels that

exceeded the cut-off value or who were receiving antidiabetic

medication without an explicit diagnosis of DM.

Definitions. Body mass index (BMI), calculated as weight

in kilograms divided by the square of the height in meters, was

stratified into !18.5 (underweight), 18.5–24.9 (normal), 25–

29.9 (overweight), and �30 (obese) [23], without modification

for Asians [24]. For central obesity, we used the new worldwide

definition [25], with sex- and ethnicity-specific waist circum-

ference cut-off values as follows: Europeans and sub-Saharan

Africans, �94 cm for males and �80 cm for females; south

Asians, Chinese, and south and central Americans, �90 cm for

males and �80 cm for females; and Japanese, �85 cm for males

and �90 cm for females. Elevated blood pressure was defined

as present in patients with diastolic blood pressure �85 mmHg

or systolic blood pressure �130 mmHg or who were receiving

antihypertensive treatment. HCV infection was defined as pre-

sent in patients who were seropositive for HCV and who had

test results positive for HCV RNA. Active hepatitis B virus

(HBV) infection was defined as present in patients who were

seropositive for HBV and hepatitis B surface antigen or hepatitis

B e antigen or who had test results positive for HBV DNA.

Statistical analysis. We defined the rate of new-onset DM

as the number of cases of DM divided by the total number of

person-years of follow-up (PYFU). Follow-up was counted

from the first visit after 1 March 2000 (baseline) to the date

of the first diagnosis of DM, death, or the patient’s last cohort

visit, whichever occurred first.

Associations between incident DM were analyzed in univar-

iable and multivariable Poisson regression models. Fixed cov-

ariables were sex, ethnicity, injection drug use as the presumed

mode of HIV acquisition, and HBV and/or HCV infection

status. The following characteristics were analyzed in 2 separate

models as fixed (baseline) and time-updated covariables, re-

spectively: Age (prespecified strata of 16–39 years old, 40–49

years old, 50–59 years old, and �60 years old), smoking status

(never smoked, former smoker, or current smoker), central

obesity, elevated blood pressure, and CD4+ cell count, stratified

according to Centers for Disease Control and Prevention cat-

egories (!200 cells/mL, 200–499 cells/mL, and �500 cells/mL)

[26].

Dates of starting and stopping treatment with antiretroviral

drugs were documented prospectively by the treating physician

and checked for plausibility and completeness by trained data

managers prior to entry into the SHCS database. We defined

combination ART (cART), as distinct from any ART, as an ART

regiment in which at least 3 antiretroviral drugs were given

simultaneously. Time-updated antiretroviral treatment infor-

mation included (1) years of exposure to ART, cART, the dif-

ferent drug classes (NRTI, PI, and NNRTI), or individual drugs

and (2) current receipt of a specific drug class or individual

drugs. The time-updated cumulative exposure variables are in-

creasing with continuous intake and are kept constant after

discontinuation of the specific treatment (drug class or drug),

whereas current treatment variables can have alternating values

of 0 and 1 over time, depending on whether the specific treat-

ment is currently received (1) or not (0). Because of obvious

collinearities, we present separate multivariable models for cu-

mulative exposure and current exposure variables.

Characteristics of different patient groups were compared

using Wilcoxon rank-sum tests for continuous variables and

x2 tests or Fisher’s exact test for categorical variables. We used

Stata software, version 9.2 (StataCorp), for analysis.

Sensitivity analysis. We performed different sensitivity

analyses by adjusting for calendar period (2000–2001, 2002–

2003, and 2004 and after), looking for trends over time, and

using separate models for male and female subjects, individuals

aged !50 years and those aged �50 years, participants with

African ethnicity, patients receiving ritonavir-boosted PI regi-

mens, and patients who were not receiving ART versus patients

receiving their first regimen versus patients receiving later reg-
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imens. We considered continuous values for years of cumulative

exposure, but we also tested the linear relationship by stratifying

exposure into 0 years, 10 to x years, and 1x years, with x taking

the values 1 year, 2 years, and 3 years.

Because current antiretroviral drug use could be subject to

reversed causality problems (e.g., patients who switched to an-

other drug because of increasing glucose levels and whose di-

agnosis of DM was then attributed to the newly initiated drug

regimen), we performed several sensitivity analyses in which

we lagged the starting and stopping dates of drugs by 1 month,

2 months, and 3 months, yielding estimates for regimens that

the patients had received 1 month, 2 months, or 3 months

prior to the diagnosis of DM. Finally, we checked whether

findings were influenced by the inclusion of other time-updated

anthropometric measures, such as BMI, waist-to-hip ratio, and

perceived lipohypertrophy and lipoatrophy, or by the exclusion

of hypertension, because this may be on the causal pathway to

DM.

RESULTS

Of 8253 SHCS participants seen after 1 March 2000, 6681

(81%) had at least 2 follow-up visits over a period of at least

1 year. Of these, we excluded 130 patients (1.9%) with a pre-

existing diagnosis of DM and 38 individuals for whom waist

circumference or BMI were unknown. The present study is

thus based on 6513 individuals with follow-up visits between

1 March 2000 and 17 July 2006. Baseline characteristics are

listed in table 1. Participants (31% of whom were female) had

a median age of 38 years and were well distributed between

the major HIV transmission categories. Almost one-quarter of

the patients had illness that was classified as Centers for Disease

Control and Prevention disease stage C, and 73% were receiving

or had received ART for a median duration of 1.9 years. Baseline

and nadir CD4+ cell counts were 403 cells/mL and 230 cells/

mL, respectively. HCV infection was diagnosed in 27.4% of

subjects, and HBV infection was active in 5.3%. The mean

duration of follow-up was 4.3 years, and the cumulative follow-

up for all subjects was 27,798 PYFU. During the follow-up

period, 123 patients developed new-onset DM, resulting in an

incidence of 4.42 cases per 1000 PYFU (95% CI, 3.71–5.28

cases per 1000 PYFU). In the course of the study, 341 patients

(5.2%) died, and 656 patients (10.1%) were lost to follow-up.

Injection drug users and persons with nonwhite ethnicity were

more likely to become lost to follow-up (injection drug users

vs. non–injection drug users, 15.0% vs. 8.6%; nonwhite eth-

nicity vs. white ethnicity, 13.5% vs. 7.3%; , by the x2P ! .001

test). In addition, persons lost to follow-up had less advanced

HIV infection than did persons who were not lost to follow-

up, with a higher median nadir CD4+ cell count (270 cells/mL

vs. 226 cells/mL; ) and fewer individuals with CentersP ! .001

for Disease Control and Prevention disease stage C at baseline

(18% vs. 23%; ).P p .004

Multivariable models. Baseline demographic, clinical, and

anthropometric covariables known to be potentially associated

with an increased risk of developing DM were used to build a

baseline multivariable Poisson model (table 2.). Male sex, older

age, African or Asian ethnicity, clinical AIDS, and central obe-

sity were strong predictors of DM. Simultaneous estimates for

BMI and central obesity are potentially inaccurate because of

collinearity. Therefore, we removed BMI from the multivariable

model.

We then built a time-updated model by replacing the baseline

variables for age, CD4+ cell count, nadir CD4+ cell count, Cen-

ters for Disease Control and Prevention disease stage, smoking

status, hypertension, and central obesity with their time-up-

dated counterparts (i.e., the latest data available at each moment

in time). Results of this time-updated model were virtually

identical (data not shown), except that time-update hyperten-

sion also became statistically significant, with an incidence rate

ratio (IRR) of 1.65 (95% CI, 1.10–2.48). Both the baseline

model and the time-updated model will be used for adjustment

in the following analyses.

Association of hepatitis and DM. Next, we analyzed the

contribution of HBV and HCV infection to the development

of DM in univariable models and together with the baseline

and time-updated models (table 3). None of the HBV and HCV

infection categories were associated with the incidence of DM

(all P values were 1.2). These findings remained unchanged in

sensitivity analyses involving persons not receiving cART, per-

sons receiving their first cART regimen, and persons receiving

subsequent cART regimens (all interaction terms had P values

1.6). To unmask potential confounding by ART-induced DM,

we then included treatment-associated cofactors.

Association of antiretrovial treatment and DM. There was

no clear effect of cumulative exposure to the different drug

classes on the incidence of DM; univariable IRR per year of

exposure to NRTI, PI, and NNRTI therapy were 1.04 (95% CI,

0.99–1.10), 1.05 (95% CI, 0.98–1.12) and 1.02 (95% CI, 0.90–

1.14), respectively. Also, in the baseline and the time-updated

multivariable models, as well as in 3 models with cumulative

exposure (stratified into none, 0–1 year, and 11 year; none, 0–

2 years, and 12 years; and none, 0–3 years, and 13 years), there

was no statistically significant association (all P values were

1.5).

However, current exposure to NRTI therapy, NRTI and PI

combination therapy, or NRTI, PI, and NNRTI combination

therapy increased the risk of developing DM in the univariable

model, with IRRs of 2.22 (1.11–4.45), 2.48 (1.42–4.31), and

3.25 (1.59–6.67), respectively; there was no such association

with current exposure to NRTI and NNRTI combination ther-

apy, which was associated with an IRR of 1.47 (0.77–2.82).
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Table 1. Baseline characteristics of 6513 subjects with and without new-onset type 2 diabetes mellitus (DM) during follow-up.

Variable
All subjects
(n p 6513)

Subjects with
new DM during

follow-up
(n p 123)

Subjects without
DM during
follow-up

(n p 6390) P

Sex

Female 2032 (31.2) 25 (20.3) 2007 (31.4) .009

Male 4481 (68.8) 98 (79.7) 4383 (68.6)

Age

Median years (IQR) 38 (34–44) 45 (38–53) 38 (34–44) !.001

16–39 years old 3633 (55.8) 35 (28.5) 3598 (56.3)

40–49 years old 1923 (29.5) 45 (36.6) 1878 (29.4)

50–59 years old 688 (10.6) 24 (19.5) 664 (10.4)

�60 years old 269 (4.1) 19 (15.5) 250 (3.9)

Mode of HIV infection

Heterosexual sex 2434 (37.4) 54 (43.9) 2380 (37.3) .17

MSM 2314 (35.5) 40 (35.5) 2274 (35.6)

Injection drug use 1531 (23.5) 22 (17.9) 1509 (23.6)

Other 234 (3.6) 7 (5.7) 227 (3.5)

Ethnicity

White 5441 (83.5) 98 (79.7) 5343 (83.6) .43

Black 688 (10.6) 15 (12.2) 673 (10.5)

Hispanic 124 (1.9) 2 (1.6) 122 (1.9)

Asian 192 (3.0) 7 (5.7) 185 (2.9)

Unknown 68 (1.0) 1 (0.8) 67 (1.1)

CD4+ cell count, median cells/mL (IQR) 403 (241–593) 386 (196–600) 403 (242–592) .24

CD4+ cell count nadir, median cells/mL (IQR) 230 (102–393) 167 (50–333) 230 (102–394) !.001

CDC disease stage C 1462 (22.5) 43 (35.0) 1419 (22.2) .001

HIV RNA load, median log10 copies/mL (IQR) 2.37 (1.0–4.20) 1.83 (1.0–3.53) 2.39 (1.04–4.20) .12

Smoking status

Never smoked 2147 (33.0) 51 (41.5) 2096 (32.8) .11

Former smoker 736 (11.3) 14 (11.4) 722 (11.3)

Current smoker 3630 (55.7) 58 (47.1) 3572 (55.9)

Hypertension 2933 (45) 82 (66.7) 2851 (44.6) !.001

Weight, median kg (IQR) 68 (60–76) 76 (66–85) 68 (60–76) !.001

BMI

Median value (IQR) 22.5 (20.6–24.7) 25.2 (23.0–27.3) 22.5 (20.6–24.7) !.001

!18.5 433 (6.6) 4 (3.2) 429 (6.7)

18.5–24.9 4597 (70.6) 53 (43.1) 4544 (71.1)

25–29.9 1275 (19.6) 53 (43.1) 1222 (19.1)

�30 208 (3.2) 13 (10.6) 195 (3.1)

Waist circumference, median cm (IQR) 82 (76–90) 95 (84–101) 82 (76–89) !.001

Central obesitya 1627 (25) 78 (63.4) 1549 (24.2) !.001

HBV infection statusa

Negative 2414 (37.1) 38 (30.9) 2376 (37.2) .28b

Vaccinated 440 (6.8) 7 (5.7) 433 (6.8)

Inactive 3133 (48.1) 64 (52.0) 3069 (48.0)

Active 344 (5.3) 10 (8.1) 334 (5.2)

Not available 182 (2.8) 4 (3.3) 178 (2.8)

HCV infection statusa

Absent 4662 (71.6) 88 (71.5) 4574 (71.6) .68b

Present 1788 (27.4) 31 (25.2) 1757 (27.5)

Not available 63 (1) 4 (3.3) 59 (0.9)

ART naive 1771 (27.2) 22 (17.9) 1749 (27.4) .019

Duration of ART, median years (IQR) 1.92 (0–3.83) 2.60 (0.40–4.62) 1.90 (0–3.83) .005

NOTE. Data are no. (%) of subjects, unless otherwise indicated. ART, antiretroviral therapy; BMI, body mass index (calculated as weight in kilograms divided
by the square of height in meters); CDC, Centers for Disease Control and Prevention; HBV, hepatitis B virus; HCV, hepatitis C virus; IQR, interquartile range;
MSM, men who have sex with men.

a For definitions of central obesity and HBV and HCV infection status, see Methods.
b P value from x2 test including only categories with available information.
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Table 2. Univariable and multivariable Poisson regression of baseline demographic, clin-
ical, and anthropometric covariables potentially affecting the risk of developing type 2
diabetes mellitus, based on 6513 individuals with 123 events.

Variable
IR per

1000 PYFU (95% CI)
IRR univariable

models (95% CI)

IRR baseline
multivariable

model (95% CI)

Sex
Female 2.89 (1.95–4.28) 1 1
Male 5.12 (4.20–6.24) 1.77 (1.14–2.75) 2.54 (1.53–4.21)

Age, years
16–39 2.31 (1.67–3.21) 1 1
40–49 5.40 (4.01–7.25) 2.33 (1.50–3.62) 1.93 (1.22–3.05)
50–59 8.10 (5.43–12.1) 3.50 (2.09–5.87) 2.29 (1.30–4.09)
�60 17.1 (10.9–26.8) 7.40 (4.25–12.9) 4.32 (2.28–8.16)

Mode of HIV infection
Heterosexual sex 5.36 (4.10–7.00) 1 1
MSM 3.92 (2.88–5.35) 0.73 (0.49–1.10) 1.12 (0.63–1.98)
Injection drug use 3.37 (2.22–5.11) 0.63 (0.38–1.03) 0.74 (0.47–1.18)
Other 6.99 (3.33–14.7) 1.30 (0.59–2.86) 1.09 (0.49–2.40)

Ethnicity
White 4.13 (3.39–5.04) 1 1
Black 5.74 (3.46–9.52) 1.39 (0.81–2.39) 2.10 (1.11–4.00)
Hispanic 4.07 (1.02–16.3) 0.98 (0.24–3.99) 1.64 (0.39–6.78)
Asian 8.91 (4.25–18.7) 2.15 (1.00–4.64) 4.88 (2.17–10.9)
Unknown 5.10 (0.72–36.2) 1.23 (0.17–8.84) 2.80 (0.38–20.5)

CD4+ cell count, cells/mL
!200 6.83 (4.86–9.61) 1.72 (1.09–2.71) 1.48 (0.82–2.66)
200–499 3.87 (2.92–5.13) 0.97 (0.64–1.47) 0.90 (0.56–1.44)
�500 3.98 (2.94–5.38) 1 1

CD4+ cell count nadir, cells/mL
!200 5.39 (4.26–6.82) 1.56 (0.86–2.82) 0.96 (0.46–2.02)
200–499 3.65 (2.69–4.96) 1.06 (0.57–1.97) 0.98 (0.49–1.93)
�500 3.45 (2.00–5.95) 1 1

CDC disease stage
A or B 3.74 (3.00–4.66) 1 1
C 6.71 (4.98–9.05) 1.80 (1.24–2.60) 1.56 (1.04–2.35)

Smoking status
Never smoked 5.64 (4.29–7.42) 1 1
Former smoker 4.55 (2.70–7.69) 0.81 (0.45–1.46) 0.95 (0.62–1.45)
Current smoker 3.70 (2.86–4.78) 0.66 (0.45–0.96) 0.66 (0.36–1.21)

Hypertension
No 2.70 (1.99–3.67) 1 1
Yes 6.49 (5.23–8.06) 2.40 (1.65–3.50) 1.47 (0.98–2.19)

BMI
!18.5 1.07 (0.27–4.29) 0.38 (0.09–1.54) NAa

18.5–24.9 2.85 (2.18–3.72) 1 …
25–29.9 8.34 (6.30–11.0) 2.93 (1.99–4.31) …
�30 16.4 (10.3–26.1) 5.76 (3.38–9.83) …

Central obesity
No 2.15 (1.60–2.88) 1 1
Yes 11.4 (9.10–14.2) 5.29 (3.66–7.63) 4.69 (3.14–7.00)

NOTE. BMI, body mass index (calculated as weight in kilograms divided by the square of height in meters);
CDC, Centers for Disease Control and Prevention; IR, incidence rate; IRR, incidence rate ratio; MSM, men
who have sex with men; NA, not applicable; PYFU, person-years of follow-up.

a Dropped because of collinearity with central obesity. Likelihood-ratio tests for BMI and central obesity
resulted in P values of .18 and !.001, respectively, indicating that BMI could be neglected.
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Adjusting with the variables from the baseline model (table 2)

and the time-updated model confirmed the findings from the

univariable models (figure 1). It should be noted that receiving

a PI and receiving an NRTI are highly collinear, because, until

recently, PIs were usually combined with pairs of NRTIs. There-

fore, we analyzed individual drugs from the PI class and the

most frequent combinations of NRTIs in 2 separate models

and combined in a single model. Again, these 3 models were

repeated multivariably with adjustment for the baseline and

time-updated variables. Results were similar (figure 1). In this

multivariable analysis, DM was independently associated with

current exposure to indinavir (IRR, 2.03 [95% CI, 1.05–3.93]),

lamivudine-stavudine (IRR, 2.62 [95% CI, 1.22–5.61]), dida-

nosine-stavudine (IRR, 3.09 [95% CI, 1.29–7.39]), and dida-

nosine-tenofovir (IRR, 3.94 [95% CI, 1.57–9.87]), but other PI

and NRTI combinations also showed trends.

There were no apparent interactions between PI and NRTI

combinations, and results from sensitivity analyses with ART

variables lagged by 1 month, 2 months, and 3 months yielded

consistent results (data not shown). Findings also did not

change when the model was adjusted for calendar period

(2000–2001, 2002–2003, or 2004 and after), and we did not

find a statistically significant trend over time ( ). FurtherP p .28

sensitivity analyses included separate models for male and fe-

male subjects, for individuals aged !50 years and those aged

�50 years, for participants with African ethnicity, for patients

with ritonavir-boosted PI regimens, and for patients receiving

no ART versus patients receiving their first ART regimen versus

patients receiving later regimens. None of these analyses re-

vealed appreciable alterations of the main findings. Similarly,

findings were unchanged in models incorporating BMI or

waist-to-hip ratio instead of central obesity, including lipohy-

pertrophy and lipoatrophy, or excluding hypertension. Finally,

estimates for the association of HCV and HBV coinfection with

DM remained virtually unchanged when adjusting for antiret-

roviral treatment: HCV infection was associated with an IRR

of 1.10 (95% CI, 0.57–2.12), and active HBV infection was

associated with an IRR of 1.42 (95% CI, 0.65–3.13).

DISCUSSION

In this analysis of 6513 participants who were followed-up for

27,798 person-years in the SHCS, we found an incidence of

DM of 4.42 cases per 1000 PYFU. Similar to the HIV-sero-

negative population, factors such as male sex, older age, African

or Asian ethnicity, and obesity were strong predictors of DM

in this population [27–29].

Because there are no data available for the incidence of DM

in Switzerland, we compared our results with published results

of a large cohort of HIV-negative persons from Germany for

the period 1984–1998 [27]. As shown in figure 2, the sex- and

age-specific incidence rates are very similar, except for the high-

est age groups. There are, however, substantial differences in

prevalence and incidence of DM between Europe and the

United States. The incidence in the United States [30] is ap-

proximately twice as high as the incidence in Germany, and it

is also higher than the findings from our study in most strata

(figure 2). This higher background incidence may, therefore,

partly explain the observed higher incidences in US cohorts of

HIV-infected persons, such as the Multicenter AIDS Cohort

Study [7], which reported incidences of 47 cases per 1000 PYFU

(95% CI, 32–71 cases per 1000 PYFU) among individuals re-

ceiving cART, 17 cases per 1000 PYFU (95% CI, 6–45 cases

per 1000 PYFU) among individuals not receiving cART, and

14 cases per 1000 PYFU (95% CI, 8–26 cases per 1000 PYFU)

among HIV-seronegative individuals. Other factors contrib-

uting to the high incidences in the Multicenter AIDS Cohort

Study [7] may include that the definition of DM was based on

a single fasting plasma glucose determination without confir-

mation, that the subjects had a median BMI that was 3 greater

than that in our study, and that their subjects had a median

age that was ∼10 years older than that of our subjects. From

1994 through 1998, the Women’s Interagency HIV Study found

incidences of 28 cases per 1000 PYFU (95% CI, 16–41 cases

per 1000 PYFU) among individuals receiving PI-containing reg-

imens, 12 cases per 1000 PYFU (95% CI, 7–18 cases per 1000

PYFU) among individuals receiving NRTIs or NNRTIs only or

no ART, and 13 cases per 1000 PYFU (95% CI, 7–22 cases per

1000 PYFU) among HIV-seronegative participants [6]. Al-

though age and BMI data appear to be similar to data in our

study, 55% and 26% of HIV-infected Women’s Interagency HIV

Study participants were black and Hispanic, respectively, com-

pared with only 22.7% and 2.6% of women with black and

Hispanic ethnicity in our study. Analysis of the Veterans Affairs

administrative database, which includes almost 27,000 male

individuals free of DM at baseline, identified substantial in-

creases in the risk of developing DM in the cART period, com-

pared with the pre-cART period, among nonwhite individuals

and older individuals [15]. In addition, HCV seropositivity in

the cART era was associated with a rather modest, but statis-

tically significant, hazard ratio of 1.39 (95% CI, 1.27–1.53) in

the multivariable analyses. Our study may have failed to find

a significant association with HCV infection because of our

limited sample size.

Several antiretroviral drugs and drug combinations were re-

lated to the development of DM; in particular, these include

indinavir, lamivudine-stavudine, didanosine-stavudine, and di-

danosine-tenofovir. Although several studies have reported as-

sociations between DM and PI use [1–7], only limited data are

available on the association of DM or hyperglycemia with ex-

posure to NRTIs. Regimens including stavudine plus indinavir

were found to increase the risk for DM in an Italian study [8],

and hyperglycemia was associated with regimens that included
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Table 3. Univariable and multivariable Poisson regression of hepatitis-associated
risk of developing type 2 diabetes mellitus, based on 6513 individuals with 123 events.

Infection status, by virus

IRR from
univariable

models (95% CI)

IRR from
basic baseline

modela (95% CI)

IRR from
basic time-updated
modelb (95% CI)

Hepatitis B virus
Negative 1 1 1
Vaccinated 0.84 (0.41–1.75) 1.04 (0.50–2.18) 1.03 (0.49–2.16)
Inactive infection 1.25 (0.84–1.88) 1.20 (0.77–1.85) 1.20 (0.77–1.86)
Active infection 1.42 (0.66–3.06) 1.35 (0.62–2.96) 1.28 (0.59–2.81)
NA 1.23 (0.44–3.44) 1.36 (0.43–4.33) 1.40 (0.43–4.50)

Hepatitis C virus
Infection absent 1 1 1
Infection present 0.78 (0.50–1.21) 1.16 (0.61–2.21) 1.20 (0.63–2.29)
NA 1.30 (0.48–3.53) 1.30 (0.42–4.01) 1.38 (0.44–4.31)

NOTE. IRR, incidence rate ratio; NA, not available.
a Model also adjusted for all of the variables from the basic baseline model (table 2).
b Model also adjusted for all of the variables from the basic time-updated model.

Figure 1. Incidence rate ratios (IRRs) for the development of new-onset type 2 diabetes mellitus (DM) based on 123 events among 6513 participants
with 27,798 person-years of follow-up. Shown are associations with current receipt of specific drug classes and individual protease inhibitor (PI) and
nucleoside or nucleotide reverse-transcriptase inhibitor (NRTI) combinations. Multivariable Poisson models were adjusted for all variables listed in
table 2. 3TC, lamivudine; ABC, abacavir; ATV, atazanavir; AZT, zidovudine; D4T, stavudine; DDI, didanosine; IDV, indinavir; LPV, lopinavir; NFV, nelfinavir;
NNRTI, nonnucleoside reverse-transcriptase inhibitor; SQV, saquinavir; TDF, tenofovir.

didanosine plus tenofovir in Spain [10]. In another report from

the Multicenter AIDS Cohort Study, increased insulin resistance

was associated with cumulative exposure to regimens contain-

ing indinavir, stavudine, and lamivudine [9].

Several mechanisms have been postulated to explain how

antiretroviral drug toxicity may lead to insulin resistance and

DM. Insulin sensitivity is reduced by a single dose of indinavir

[31], and there are specific effects of PIs on the glucose trans-

porter GLUT4 [32] and of NRTIs on mitochondria. Among

the currently used NRTIs, the strongest association with mi-

tochondrial toxicity, measured as inhibition of the mitochon-

drial DNA polymerase-g, is found for didanosine and stavudine

(known as the d-drugs) [33]; notably, these 2 drugs were

strongly associated with DM in our study. Lipodystrophy is a

crucial aspect of the association of cART with insulin resistance,

leading to relative preponderance of visceral fat, hepatic stea-

tosis, and fat deposition at other “ectopic” sites. In the fatless

mouse animal model, diabetes and insulin resistance develop

but respond to transplantation of subcutaneous fat [34]. HIV-

infected persons with lipodystrophy, compared with those with-

out lipodystrophy, have a reduction in plasma adiponectin and

adipose tissue adiponectin mRNA levels of ∼50%, correlating

with insulin resistance and with increased cytokine levels [35].

Finally, there may also be a direct effect of HIV on the pancreas,
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Figure 2. Comparison of sex- and age-specific incidence rates of type
2 diabetes mellitus (DM) between the present study of HIV-infected
persons, the MONICA Augsburg Cohort (persons not infected with HIV)
[27], and the US population in 2004 [30]. Whiskers indicate standard error.
PYFU, person-years of follow-up.

because there have been reports of the spontaneous resolution

of DM in patients starting cART [36, 37].

The strengths of this clinic-based study are the large number

of patient-years with prospectively collected anthropometric

data and plasma glucose and treatment information, as well as

the verification of hyperglycemia values in relation to a DM

diagnosis by the treating physicians. Unfortunately, we do not

have information on family history of DM and adherence to

antiretroviral drug regimens.

As the life expectancy of HIV-infected persons with access

to cART has dramatically increased over the last decade, the

risks for metabolic problems have also increased. Strong pre-

dictors for DM are nonmodifiable characteristics, such as age

and ethnicity, but, importantly, the strong predictors also in-

clude obesity, which should become a major target for pre-

vention. Furthermore, there are risks for DM associated with

ART, especially therapy with PIs and some NRTI combinations.

Because of their association with other metabolic disorders,

regimens containing stavudine and didanosine are avoided as

long as possible in developed countries, but they belong to

first-line regimens in resource-limited areas. Together with the

probably genetically determined elevated DM risk associated

with Asian and African ethnicity, this may have an important

impact on the long-term tolerability of anti-HIV treatment in

the regions that are most affected.

In conclusion, type 2 DM is a serious but partially prevent-

able complication in HIV-infected persons. In this study, we

have identified several drugs and drug combinations that are

associated with an increased risk of DM. As the number of

antiretroviral drugs increases, continued monitoring in large

cohort studies and collaborations remains an important pre-

requisite for the early identification of new toxicities and long-

term side effects.
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