Alexander Lorenz • Anna Estreicher • Jürg Kohli Josef Loidl

Meiotic recombination proteins localize to linear elements in Schizosaccharomyces pombe

Received: 25 November 2005 / Revised: 12 January 2006 / Accepted: 13 January 2006 / Published online: 31 March 2006

Abstract

In fission yeast, meiotic prophase nuclei develop structures known as linear elements (LinEs), instead of a canonical synaptonemal complex. LinEs contain Rec10 protein. While Rec10 is essential for meiotic recombination, the precise role of LinEs in this process is unknown. Using in situ immunostaining, we show that Rec7 (which is required for meiosis-specific DNA double-strand break (DSB) formation) aggregates in foci on LinEs. The strand exchange protein Rad51, which is known to mark the sites of DSBs, also localizes to LinEs, although to a lesser degree. The number of Rec7 foci corresponds well with the average number of genetic recombination events per meiosis suggesting that Rec7 marks the sites of recombination. Rec7 and Rad51 foci do not co-localize, presumably because they act sequentially on recombination sites. The localization of Rec7 is dependent on Rec10 but independent of the DSB-inducing protein Rec12/Spo11. Neither Rec7 nor Rad51 localization depends on the LinEassociated proteins Hop1 and Mek1, but the formation of Rad51 foci depends on Rec10, Rec7, and, as expected, Rec12/Spo11. We propose that LinEs form around

[^0]designated recombination sites before the induction of DSBs and that most, if not all, meiotic recombination initiates within the setting provided by LinEs.

Introduction

Meiosis is the cell division that reduces the number of chromosomes by half to compensate for the chromosome doubling event that occurs at fertilization. Meiosis leads to the production of spores or gametes, each of which contains a haploid chromosome set, consisting of randomly assorted parental chromosomes. These chromosomes are mosaics as the original parental homologs have exchanged corresponding pieces by crossing over. Crossing over is initiated at multiple sites on recombining chromosomes by the induction of DNA double-strand breaks (DSBs) by Spo11 (a.k.a. Rec12 and Mei-W68). Repair synthesis across the breakpoints takes place using the complementary sequence from the homologous chromosome as the template. This process is recombinogenic, that is, it can lead to the reciprocal exchange of DNA between the chromosomes involved (for a review, see Keeney 2001). In the budding yeast Saccharomyces cerevisiae, DSBs are generated by Spo11 in conjunction with about ten other proteins (Kee et al. 2004; Prieler et al. 2005). Three of these factors, Rec102, Rec104, and Rec114, are required to target Spo11 to designated DSB sites (Arora et al. 2004; Prieler et al. 2005). In the fission yeast, Schizosaccharomyces pombe, Rec6, Rec7, Rec10, Rec14 and Rec15, Rec16/Rep1, Mei4, and Mde2 are indispensable for the formation of DSBs (see Davis and Smith 2001; Young et al. 2004; Ellermeier et al. 2004; Gregan et al. 2005). N-terminal sequence homology suggests that S. pombe Rec 7 is the ortholog of S. cerevisiae Rec114 (Malone et al. 1997; Molnar et al. 2001). By inference, Rec7 is, therefore, expected to be one of the earliest factors to localize to chromatin to recruit and activate Rec12 (S. pombe's Spo11 ortholog) for DSB induction. While Northern blot experiments and nuclear
spreads made from azygotic meiotic timecourses have revealed meiosis-specific expression of rec 7, a Rec7-GFP fusion protein was observed to localize to the nucleus of whole cells before karyogamy, during prophase, and after zygotic meiosis I (Molnar et al. 2001).

DSB activity is particularly high in special regions, known as recombination hotspots, for which various sequence criteria have been identified (Petes 2001; de Massy 2003). It is assumed that an open chromatin configuration in these regions favors access of a Spo11/ Rec12-containing complex to DNA. Recombinationprone repair of the DSB involves the formation of a nucleoprotein filament by a flanking single-stranded DNA tract with Rad51. This filament is able to invade a homologous DNA template to initiate a strand exchange reaction which may lead to crossing over (Sauvageau et al. 2005; for a review, see Pâques and Haber 1999; Aylon and Kupiec 2004).
A ladder-like proteinaceous structure, the synaptonemal complex (SC), is formed along chromosomes and causes their close juxtapositioning. In most organisms, this takes place after the initiation of recombination, and in S. cerevisiae, the SC often seems to start forming from the sites of incipient crossovers (Agarwal and Roeder 2000; Börner et al. 2004; Henderson and Keeney 2004). The SC consists of two lateral elements, to which the chromatin loops of the paired homologs are attached, as well as of transversal filaments connecting the lateral elements and, thereby, keeping the homologs intimately juxtaposed. In addition, the lateral elements play an important role in chromosome condensation, in pairing and in prohibiting DSBs from entering into recombination pathways that involve sister chromatids (see review by Page and Hawley 2004). The SC is almost ubiquitous in eukaryotes with chiasmate meiosis and is highly conserved at the structural level but poorly conserved at the molecular level (for a review, see Bogdanov et al. 2002; Öllinger et al. 2005; Anderson et al. 2005).
S. pombe does not form an SC in meiotic prophase nuclei. Instead, thin threads, known as linear elements (LinEs), are observed in meiotic nuclei by electron microscopy (Olson et al. 1978; Bähler et al. 1993). LinE morphogenesis starts with dots or short threads, which grow into long threads and later form networks by local associations. Still later, bundles of parallel threads appear, which presumably separate again and progressively shorten before they disappear (Bähler et al. 1993) (Fig. 1). In situ immunostaining of $\operatorname{Rec} 10$, a protein related to the S. cerevisiae SC protein Red1, highlights nuclear structures of similar morphology (Lorenz et al. 2004). Importantly, the LinEs as seen in the electron microscope (EM) are missing in a Rec 10 mutant in which the immunostained structures are also absent (Molnar et al. 2003; Lorenz et al. 2004). This provides strong evidence that Rec 10 is the major component of LinEs (Fig. 1). Moreover, S.p.Hop1, an S. pombe homolog of the SC-associated protein Hop1 in S. cerevisiae, and the meiotic kinase Mek1 localize to LinEs (Lorenz et al. 2004). (Throughout this paper, we will define LinEs as the structures decorated by Rec10 immunostain-
ing even in cases where the accessory proteins are missing.) Altogether, it appears that LinEs are evolutionary related to the axial/lateral elements of the SC (Lorenz et al. 2004).

The LinE component Rec 10 is essential for meiotic recombination (Ellermeier and Smith 2005), but LinEs are more numerous than chromosomes and do not extend along the entire lengths of meiotic chromosomes (Bähler et al. 1993). This raises the question as to whether a spatial relationship between recombination sites and LinEs exists. In this research, we used immunocytology to study the temporal and spatial relationships between LinEs and Rec7 and Rad51, proteins that are involved in the formation and processing of meiotic DSBs, respectively.

Materials and methods

Strains, culture, and sporulation
For a list of strains used, see Table 1. The construction of the hop 1Δ strain will be described in a forthcoming publication.

The construction of the rec $7:$:GFP fusion is described elsewhere (Molnar et al. 2001). The presence of the rec 7 :: GFP in the various strain constructs was tested by polymerase chain reaction on genomic DNA with primers 5^{\prime}-GGGTTGCTCAACCGGAGAACC- 3 ' in the rec 7 gene and 5^{\prime}-CTCCTGGACGTAGCCTTCGGG- 3^{\prime} in the GFP gene. These primers amplified a ~ 490-bp product. Diploid strains were maintained as prototrophs on yeast extract agar plates through the use of the interallelic complementing auxotrophic markers ade6-M210 and ade6-M216 (Moreno et al. 1991).

Sporulating cells were obtained using the following procedure (see Molnar et al. 2003). Single colonies were transferred to yeast extract liquid and cultivated over night. (Liquid cultures were always kept shaking at $30^{\circ} \mathrm{C}$.) This culture was used to inoculate PM (S. pombe minimal) medium, and cells were grown to a density of $1-2 \times 10^{7}$ cells $/ \mathrm{ml}$. They were then pelleted by centrifugation and transferred to $\mathrm{PM}-\mathrm{N}\left(\mathrm{PM}\right.$ without $\left.\mathrm{NH}_{4} \mathrm{Cl}\right)$ at a density of 1×10^{7} cells $/ \mathrm{ml}$ to induce sporulation. Five-milliliter samples from sporulating cultures were drawn at hourly intervals and used for the preparation of microscopical slides (see below) and, at the same time, 1 ml aliquots were taken to follow meiotic progression by DAPI (4' 6-diamidino-2-phenylindole) staining (Molnar et al. 2003).

Preparation and immunostaining

Meiotic cells were prepared for microscopy according to a nuclear spreading method as described previously (Bähler et al. 1993; Molnar et al. 2003; Lorenz et al. 2004), with the following modifications: To spheroplast meiotic cells, a 5ml aliquot of cell suspension was harvested and resuspended in 1 ml of 0.65 M KCl containing 10 mM DTT, 0.2 mg of Zymolyase 100T (Seikagaku, Tokyo), 2 mg of

Fig. 1 Different LinE morphologies, as seen with the electron microscope after silver staining (upper row) and by Rec10 immunostaining (mid row) (for a review, see Bähler et al. 1993; Lorenz et al. 2004). LinEs develop from dots (which are poorly visible with the EM presumably to the granular silver background)
to threads which then link to form networks and bundles of parallel LinEs. As the last step in LinE development, presumably threads reappear which cannot be distinguished morphologically from the early ones (not shown). Bar $5 \mu \mathrm{~m}$
lysing enzymes from Rhizoctonia solani (Sigma, St Louis, MO) and 15 mg of lysing enzymes from Trichoderma harzianum (Sigma), and shaken for 27 min at $30^{\circ} \mathrm{C}$. The spheroplasts were treated with a detergent, spread on slides and fixed as described previously (Lorenz et al. 2004).
For immunostaining, slides were incubated three times in $1 \times$ phosphate-buffered saline (PBS) $+0.05 \%$ Triton X100 for 15 min . Primary antibodies ($1: 50$ mouse monoclonal antibody against recombinant Rad51 protein, Clone 51RAD01, NeoMarkers, Fremont, CA, USA; 1:400 rabbit α-Rec 10; or 1:1000 chicken polyclonal α-GFP, Chemicon, Temecula, CA, USA) were applied under a coverslip and stored overnight at room temperature. The coverslip was rinsed off and the preparations were washed in $1 \times$ PBS + 0.05% Triton X-100 three times for 15 min . Appropriate FITC-, Cy3-, and Cy5-conjugated secondary antibodies were applied under a coverslip and stored for $\sim 4 \mathrm{~h}$ at room temperature. Finally, the slides were incubated in $1 \times$ PBS + 0.05% Triton X-100 three times for 15 min and mounted under a coverslip in Vectashield anti-fading agent (Vector

Laboratories, Burlingame, CA, USA), supplemented with $1 \mu \mathrm{~g} / \mathrm{ml}$ DAPI as a DNA-specific counter-stain.

Microscopy and evaluation
Immunostained preparations were evaluated using a Zeiss Axioskop epifluorescence microscope equipped with sin-gle-band-pass filters for the excitation of infrared, red, green, and blue. Black and white exposures of single-color channels were made with a cooled CCD camera controlled by IPLab Spectrum software (Scanalytics, Fairfax, VA, USA) and colored and merged using Adobe Photoshop software.

To quantitate the localization of immunostained Rad51 spots to Rec10 LinEs in a nucleus, we determined the proportion of nuclei that was occupied by LinEs. The segment tool of IPLab software was used to measure the DAPI-positive area of nuclei and the area of Rec 10 LinEs they contained. The fluorescence inten-

Table 1 Strains used in this paper

Strain	Genotype	Source
ALP3	h^{+} / h^{-}ade6-M210/ade6-M216	Lorenz et al. 2004
ALP22	h^{+} / h^{-}ade6-M210/ade6-M216 mekl $\Delta::$ kanMX6/mek1 ${ }^{\text {a }}$:kanMX6	Lorenz et al. 2004
ED10	h^{+} / h^{-}ade6-M210/ade6-M216 ura4-D18/ura4-D18rec8s::ura4 ${ }^{+}$/rec8 $8::$ ura 4^{+}	E. Doll, Berne, Switzerland; Lorenz et al. 2004
ALP38	h^{+} / h^{-}ade6-M210/ade6-M216 hop $1 \Delta-1:$ kanMX6/hop $1 \Delta-1::$ kanMX6	A. Lorenz, unpublished
GP4439	h^{+}rec10వ-175::kanMX6	G. R. Smith, Seattle, WA
GP4440	h^{-}rec10 $-175:: \mathrm{kanMX6}$	G. R. Smith, Seattle, WA
ALP194	h^{-}ade6-M210 rec10 ${ }^{\text {-175: }}$: $\mathrm{kanMX6}$	This study
ALP195	h^{+}ade6-M216 rec10 ${ }^{\text {-175: }}$: kanMX6	This study
ALP197	h^{+} / h^{-}ade6-M210/ade6-M216 rec100-175::kanMX6/rec10 ${ }^{\text {-175 }}$: $\mathrm{kanMX6}$	This study, cross ALP194×ALP195
ALP247	h^{-}ade6-M210 ura4-D18 rec12s: $:$ura 4^{+}	This study
ALP248	h^{+}ade6-M216 ura4-D18 rec124::ura4 4^{+}	This study
ALP250	h^{+} / h^{-}ade6-M210/ade6-M216 ura4-D18/ura4-D18 rec120::ura4 ${ }^{+}$/rec12 ${ }^{\text {a }}:$:ura4 4^{+}	This study, cross ALP247×ALP248
ALP257	h^{-}ade6-M210 ura4-D18 rec70::ura 4^{+}	This study
ALP258	h^{+}ade6-M216 ura4-D18 rec70 : ura $^{+}$	This study
ALP260	h^{+} / h^{-}ade6-M210/ade6-M216 ura4-D18/ura4-D18 rec70::ura4 ${ }^{+}$rec70 $:$:ura4 ${ }^{+}$	This study, cross ALP $257 \times$ ALP258
76-3038	h^{+}ade6-M210 leul-32 ura4-D18 rec7::GFP	Kohli lab stock
76-3037	h^{-}ade6-M216 leu1-32 ura4-D18 rec7::GFP	Kohli lab stock
ALP75	h^{+} / h^{-}ade6-M210/ade6-M216 ura4-D18/ura4-D18 leu1-32/leu1-32 rec $7:: G F P /$ rec $7:: G F P$	This study, cross 76-3038×76-3037
ALP10	h^{+}ade6-M210	This study
ALP288	h^{+} / h^{-}ade6-M210/ade6-M216 ura4-D18/ura4 ${ }^{+}$leu1-32/leu1 ${ }^{+}$rec7::GFP/rec 7^{+}	This study, cross ALP $10 \times 76-3037$
ALP91	h^{-}ade6-M210 mek1 $\triangle:: k a n M X 6$ rec $7:: G F P$	This study
ALP92	h^{+}ade6-M216 mek1 $\triangle:: \mathrm{kanMX6}$ rec $7:: G F P$	This study
ALP93	h^{+} / h^{-}ade6-M210/ade6-M216 mek1 $1::$ kanMX6/mek1 $\Delta:: \mathrm{kanMX6}$ rec $7::$ GFP/rec $7:: G F P$	This study, cross ALP91×ALP92
ALP180	h^{-}ade6-M210 ura4-D18 rec8 $\Delta::$ ura4 ${ }^{+}$rec 7 $:$:GFP	This study
ALP181	h^{+}ade6-M216 ura4-D18 rec8 $4::$ ura4 ${ }^{+}$rec 7 $:$:GFP	This study
ALP182	h^{+} / h^{-}ade6-M210/ade6-M216 ura4-D18/ura4-D18 rec8 $\Delta::$ ura4 4^{+}rec8 $8::$ ura4 ${ }^{+}$rec $7:: G F P /$ rec $7:: G F P$	This study, cross ALP180×ALP181
ALP64	h^{-}ade6-M210 hop1 $\Delta-1:: k a n M X 6$ rec $7:: G F P$	This study
ALP65	h^{+}ade6-M216 hop 1 $\Delta-1:: \mathrm{kanMX6}$ rec7::GFP	This study
ALP66	h^{+} / h^{-}ade6-M210/ade6-M216 hop1 $\Delta-1::$ kanMX6/hop1 $\Delta-1::$ kanMX6 rec7::GFP/rec7::GFP	This study, cross ALP64×ALP65
ALP190	h^{-}ade6-M210 rec10 $-175:: k a n M X 6$ rec $7:: G F P$	This study
ALP191	h^{+}ade6-M216 rec10 $-175::$ kanMX6 rec $7:: G F P$	This study
ALP192	h^{+} / h^{-}ade6-M210/ade6-M216 rec10 $-175::$ kanMX6/rec10 $-175::$ kanMX6 rec $7::$ GFP/rec $7::$ GFP	This study, cross ALP190×ALP191
ALP187	h^{-}ade6-M210 ura4-D18 rec124::ura4 ${ }^{+}$rec $7:: G F P$	This study
ALP188	h^{+}ade6-M216 ura4-D18 rec12 $1::$ ura $^{+}$rec $7:: G F P$	This study
ALP189	h^{+} / h^{-}ade6-M210/ade6-M216 ura4-D18/ura4-D18 rec12 $\Delta::$ ura $4^{+} /$rec $12 \Delta::$ ura 4^{+} rec $7:: G F P / r e c 7:: G F P$	This study, cross ALP $187 \times$ ALP188

sity threshold of the regions to be included in the LinE area was selected such as to include the fluorescence halo surrounding the LinEs. This area includes the region of LinE-associated fluorescence spots.

Results

Rec7 accumulates in foci on LinEs
To establish a possible relationship between the temporal appearance and the spatial distribution of the early
recombination protein Rec 7 and LinEs, we tested the colocalization of a GFP-tagged version of Rec7 with Rec10immunostained LinEs. Rec7 formed spherical to slightly elongated foci in nuclei in which LinEs were present and the number of foci was found to increase concomitantly with LinE development (Table 2, Fig. 2a-c). In nuclei from a sporulating culture without LinEs (i.e., before meiotic induction or at a very early stage of meiosis), Rec 7 did not form visible foci, but up to 54 foci were detected in nuclei with LinE threads and networks. This number corresponds well with the number of ~ 45 crossovers per meiosis which

Table 2 Rec7 foci in meiotic (LinE-bearing) nuclei of wild type and mutants

	Dots	Threads	Networks	Bundles
Wild type				
Mean number of Rec7 foci/nucleus	2.2	18.1	22.8	2.08
Maximum number of Rec7 foci/nucleus	21	54	54	12
n	30	30	30	25
rec 8Δ				
Mean number of Rec7 foci/nucleus	1.8	2.1	n.a. ${ }^{\text {a }}$	n.a. ${ }^{\text {a }}$
Maximum number of Rec7 foci/nucleus	7	8	n.a. ${ }^{\text {a }}$	n.a. ${ }^{\text {a }}$
n	50	49	n.a. ${ }^{\text {a }}$	n.a. ${ }^{\text {a }}$
hop1s				
Mean number of Rec7 foci/nucleus	0.6	5.5	8.6	2.9
Maximum number of Rec7 foci/nucleus	3	19	19	8
n	25	30	30	20
$m e k l \Delta$				
Mean number of Rec7 foci/nucleus	1.1	17.9	n.d. ${ }^{\text {b }}$	3.5
Maximum number of Rec7 foci/nucleus	4	46	n.d. ${ }^{\text {b }}$	11
n	30	50	-	20
recl2 ${ }^{\text {d }}$				
Mean number of Rec7 foci/nucleus	0.9	15.2	40.2	9.0
Maximum number of Rec7 foci/nucleus	3	52	60	22
n	20	20	22	19

Numbers of Rec7 foci are given for nuclei with different stages of LinE development (dots, threads, networks, and bundles) n Indicates sample size
${ }^{a}$ Not applicable as this stage is not present in the rec 8Δ mutant
${ }^{\mathrm{b}}$ This stage was very rare in the mekl Δ mutant and was, therefore, not quantitatively evaluated
was estimated on the basis of recombination data by Munz (1994). Virtually all of the foci (98.7\%) localized to LinEs.

Nuclei with LinE bundles were heterogeneous with respect to their endowment with Rec7 (Fig. 2d). Thirty-six percent lacked Rec7-staining foci altogether, and the remainder displayed highly variable Rec7 staining, ranging from a few foci to extensive coverage of LinE bundles by Rec7. It is possible that Rec7 reaches its maximum during the bundle stage and then quickly starts to disappear. This interpretation is consistent with the observation that a minority of nuclei (3.3\%) existed with long individual LinEs, which were completely devoid of Rec7. These LinEs may represent the last stage in LinE development, when bundles and networks have dissolved (Bähler et al. 1993) and Rec7 has disappeared.

We conclude that Rec7 foci appear later than Rec10, are deposited on LinEs and probably disappear before the LinEs. In a rec10 Δ strain, 96% of the nuclei $(n=131)$ did not display any Rec 7 staining (Fig. 2e), while the remainder possessed one or two spots, presumably representing unspecific background signals. Western blot analysis showed that Rec7-GFP is expressed in the absence of Rec 10 (data not shown). Together with the localization of the vast majority of Rec 7 foci to LinEs in the wild type, this suggests that the formation of Rec7 aggregates is dependent on Rec10. Conversely, it can be excluded that LinEs depend
on (microscopically not visible amounts of) Rec7 as they were present in a rec 7 disruption strain (Molnar et al. 2001 and own unpublished observations).

Rec 7 associates with aberrant or residual LinEs in meiotic mutants

To further bear out the role of Rec7-Rec10 association in meiotic recombination, we studied Rec7 localization in a set of mutants.

The rec8 Δ mutant, in which recombination is reduced (Parisi et al. 1999), develops a few truncated LinEs which never assemble into networks or bundles (Lorenz et al. 2004). The majority of nuclei with such residual LinEs contained Rec7 foci (Table 2), virtually all of which localized to the LinEs. We found that, in accordance with reduced LinE formation, there were fewer Rec7 foci present than in the wild type (Fig. 2f). Many of these foci were of an elongated shape.

In a strain lacking the LinE-associated meiotic kinase Mek1, recombination is somewhat reduced (Pérez-Hidalgo et al. 2003). Nuclei mostly do not develop extended LinE networks but rather display only short and sometimes fat LinEs (Lorenz et al. 2004). Similarly, deletion of the LinEassociated protein Hop1 caused a moderate reduction in

Fig. 2 Temporal sequence of LinE formation (Rec10 immunostaining, red) and Rec7 focus formation (Rec7-GFP immunostaining, green). a Early LinEs are largely devoid of Rec 7 foci. b At a later stage, most elongated LinEs accommodate one or several Rec 7 foci, whereas dot-shaped LinEs may be devoid of Rec7. The black-andwhite image shows the Rec 7 foci, some of which are too weak to be highlighted in the merged image. Even the weak foci are situated on

LinEs, as can be seen from the comparison of the two images. $\mathbf{c} \operatorname{Rec} 7$ is most abundant in nuclei with LinE networks. d LinE bundles are often devoid of Rec7 but sometimes are massively decorated. e-i Rec 7 in meiotic mutants. e No Rec7 is detected in a recl0 Δ mutant. f The rudimentary LinEs of a rec 8Δ strain carry strong Rec 7 foci. In mekl Δ (\mathbf{g}), hopl Δ (h), and recl2 Δ (i) mutant strains, Rec 7 foci are often larger than those in the wild type. Bar $5 \mu \mathrm{~m}$
(Grishchuk et al. 2004). In many organisms, the correlation between the occurrence of Rad51 foci and genetically measured recombination, and the direct observation of Rad51 foci at the sites of induced DSBs have provided strong evidence that Rad51 foci correspond to the sites where Rad51 nucleofilaments form in the course of strand exchange (Shinohara et al. 1992; Alpi et al. 2003 and literature cited therein; Miyazaki et al. 2004; for a review, see Aylon and Kupiec 2004). In this paper, we studied the localization of Rad51 and its dependence on early recombination genes.

We first analyzed Rad51 dynamics in the wild type. Rad51 foci were virtually absent from nuclei without LinEs (0.4 per nucleus, $n=50$) and were rarely found in nuclei with dot-like LinEs. Rad51 foci were more abundant in nuclei with individual elongated LinEs (Table 3). The highest number of Rad51 foci was found in nuclei with LinE networks, with a mean of 22.2 and a maximum of 50 per nucleus (Table 3). This frequency of Rad51 foci corresponds well with the frequency of recombination as there occur an estimated ~ 45 crossovers (Munz 1994) plus a small number of gene conversions (Cromie et al. 2005) per meiosis.

We next evaluated the localization of Rad51 foci to LinEs (Fig. 3). We only scored nuclei with greater than or equal to five Rad51 signals to minimize the possible contribution of unspecific background signals and signals contributed by events that are not specific to meiosis. A total of $58 \pm 26 \%$ (standard deviation, SD) of Rad51 foci in such nuclei ($n=67$) localized to LinEs (i.e., the center of the Rad51 spot was on the LinE). As this is a relatively low

Table 3 Rad51 foci in meiotic (LinE-bearing) nuclei of the wild type and mutants

	Dots	Threads	Networks	Bundles
Wild type				
Mean number of Rad51 foci/nucleus	0.9	10.3	23.8	4.3
Maximum number of Rad51 foci/nucleus	6	33	50	17
n	30	38	34	25
rec8 Δ				
Mean number of Rad51 foci/nucleus	1.1	1.8	n.a. ${ }^{\text {a }}$	n.a. ${ }^{\text {a }}$
Maximum number of Rad51 foci/nucleus	7	7	n.a. ${ }^{\text {a }}$	n.a. ${ }^{\text {a }}$
n	77	79	n.a. ${ }^{\text {a }}$	n.a. ${ }^{\text {a }}$
hop1 ${ }^{\text {d }}$				
Mean number of Rad51 foci/nucleus	2.0	5.4	7.8	7.3
Maximum number of Rad51 foci/nucleus	6	13	17	16
n	22	49	49	32
mekl Δ				
Mean number of Rad51 foci/nucleus	3.2	9.0	n.d. ${ }^{\text {b }}$	14.3
Maximum number of Rad51 foci/nucleus	14	42	n.d. ${ }^{\text {b }}$	16
n	33	45	-	19
recl2 ${ }^{\text {d }}$				
Mean number of Rad51 foci/nucleus	0.1	0.5	0.4	0.4
Maximum number of Rad51 foci/nucleus	2	2	1	3
n	20	20	22	21
$r e c 7 \Delta$				
Mean number of Rad51 foci/nucleus	0.5	0.8	1.8	2.6
Maximum number of Rad51 foci/nucleus	2	3	7	10
n	20	20	20	20

Numbers of Rad51 foci are given for nuclei with different stages of LinE development (dots, threads, networks, and bundles) n Indicates sample size
${ }^{a}$ Not applicable as this stage is not present in the rec 8Δ mutant
${ }^{\mathrm{b}}$ This stage was very rare in the mekl Δ mutant and was, therefore, not quantitatively evaluated
degree of co-localization, we wanted to determine whether it was different from a random distribution of Rad51 foci within nuclei. To achieve this, we measured the proportion of the nuclear area (without the nucleolus) occupied by Rec 10 (see "Materials and methods"; Fig. 3a). The average area occupied by LinEs was $22 \pm 9 \%$ (SD). For most nuclei, this area was smaller than the percentage of Rad51 foci that localized to LinEs, and a t test showed this difference to be highly significant ($P<0.001$). This confirmed that Rad51 is over-represented on LinEs. Moreover, in some experiments, nuclei occurred where Rad51 foci completely localized to LinEs (Fig. 3c). While there were exceptions, it seemed that co-localization was better in nuclei with long LinEs than in nuclei with LinE bundles (Fig. 3d). We scored nuclei from an early ($t=5 \mathrm{~h}$) and a late ($t=9 \mathrm{~h}$) timepoint in sporulation, when nuclei at early and late stages of LineE development, respectively, would prevail. At both of these timepoints, only few Rec10-positive nuclei were present, but all LinE classes were represented and localization of Rad51 to LinEs was variable.

Taking all observations together, a clear pattern of a dependency of Rad51 localization on the stage of development of LinEs did not emerge. It is conceivable that Rad51 foci transiently form on LinEs but later detach or that LinEs start to disintegrate while recombination is still in progress. It is also possible that a fraction of recombination events take place outside LinEs altogether.

To study the spatial and temporal correlation of LinEbound Rec7 and DSB-associated Rad51, we wanted to simultaneously visualize Rec7 and Rad51 foci. The homozygous rec7::GFP strain was not like the wild type with respect to the abundance of Rad51 (data not shown). Also, in our hands, spore viability was considerably reduced to 17% of the viability found in the wild type and spore morphology was not normal. We, therefore, colocalized Rec7 and Rad51 in a rec $7+$ rec $7:: G F P$ heterozygote. In this strain, sporulation efficiency and spore viability was as in the wild-type. The mean number of Rec7 foci in the heterozygote was similar to the number of foci in the rec $7:: G F P$ homozygote (data not shown). This suggests that, in the heterozygote, visible Rec7 foci contain both

Fig. 3 Abundance of Rad51 foci at different stages of LinE development in wild type. a Evaluation of the co-localization of Rad51 with Rec10. Fluorescent spots of Rad51 (green, see "Results") partially localize to LinEs (Rec10, red) (arrows). The areas of the nucleus (DAPI-positive chromatin without the nucleolus, white) and the areas occupied by LinEs (gray) were measured. The ratio of foci with their center on LinEs vs foci outside LinEs (here: $6: 15$, i.e., $1: 2.5$) was compared to LinE area vs non-LinE area (here: $1: 4.2$) to determine whether spots were over-represented on

LinEs. b No Rad51 foci were present on dot-shaped LinEs. c Example of a nucleus with a virtually complete localization of Rad51 to LinEs. d The localization of Rad51 to LinE bundles is variable. e, f The relative localization of Rad51 (green) and Rec7 (red) foci. e Examples of nuclei with only Rad51 or Rec7 foci and with both types of foci are given. In nuclei with both types, Rad51 and Rec7 do not colocalize. f Triple immunostaining of Rad51, Rec7, and Rec10 (Cy5, gray). Rec 7 foci always localize to Rec10 LinEs, whereas Rad51 foci sometimes do not. Bar $5 \mu \mathrm{~m}$

Rad51 foci are dependent on Rec10, Rec7, and Rec12

We next determined Rad51 foci formation in the absence of LinEs and LinE-associated recombination proteins. In the rec10 deletion strain (in which recombination is abolished; Ellermeier and Smith 2005), 96% of nuclei ($n=142$) did not show any Rad51 foci; the remaining nuclei displayed only one or two Rad51 signals, which might represent unspecific background staining and/or non-meiotic DNA repair.

In the rec8 Δ mutant, the abundance of Rad51 foci was notably reduced. We found a maximum of seven foci per nucleus ($n=156$ nuclei) as compared to ~ 50 in the wild type. Of these foci, 21.2% localized to LinEs. Given the low number and the small size of the residual LinEs, this seems to indicate that there is a preference for Rad51 to associate with LinEs. In the hop1 Δ strain, Rad51 foci were less abundant than in wild type (Table 3), which is in accordance with the moderately reduced recombination (unpublished data). In the mek1 Δ strain, Rad51-staining was not notably different from the corresponding wild-type stages (Table 3).

In the rec 12Δ strain, Rad51 foci were only present in a sporadic manner. Seventy-two percent of all nuclei with

LinEs were completely devoid of Rad51, and the remainder showed mostly one to two foci. This indicates that most, if not all, Rad51 filament formation in meiosis depends on Rec12. A very similar phenotype was presented by a $\operatorname{rec} 7 \Delta$ strain. On average, there was less than one Rad51 focus per nucleus (Table 3). It should be mentioned that an extensive painting of LinE bundles was occasionally observed in the two mutants (data not shown). It remains to be clarified whether this resulted from the unspecific deposition of free Rad51 protein on these structures.
In summary, the observations on mutants demonstrate that the truncated LinEs that form in the absence of Rec8 are proficient in loading recombination proteins and, hence, in supporting the reduced recombination that was reported to occur in the mutant (Parisi et al. 1999; Ellermeier and Smith 2005). The complete lack of LinEs and/or LinE-associated Rec7, however, prevents recombination. Lack of Rec 12 does not inhibit localization of Rec7 to LinEs (see above), but both proteins must be present to support recombination and Rad51 focus formation.

Discussion

The timing of appearance of LinEs and LinEassociated proteins

It is increasingly recognized that the first event in meiotic recombination is a chromatin modification that allows the co-factor-aided access of Spol1 to DNA (Wu and Lichten 1994; Mizuno et al. 1997; Reddy and Villeneuve 2004). In S. cerevisiae, it was shown that this so-called chromatin transition, detected as a quantitative increase in micrococcal nuclease sensitivity, depends on DNA replication (Murakami et al. 2003). In S. pombe, the binding of the Atf1/Pcr1 heterodimeric transcription factor is required for the activation of the M26 recombination hot spot (Kon et al. 1997). Other chromatin binding factors might be responsible for chromatin transition at other sites. Histone acetylation also plays a major role in the opening of chromatin and the recruitment or activation of recombinases (Yamada et al. 2004).

The earliest cytological structures to appear in meiotic nuclei are spots and threads of Rec10, constituting the LinEs. Bähler et al. (1993) and Lorenz et al. (2004) proposed the following stages of LinE development and the according classification of nuclei (Fig. 1): First, nuclei develop very short or dot-shaped LinEs that are refractory to detection by EM and can only be seen by Rec10 immunostaining (class Ia). Individual thread-shaped LinE pieces then appear (class Ib) and, later, parts of these threads associate with each other, forming a network (class IIa). Thereafter (but possibly only in a subset of nuclei), the associations extend along most of or the entire length of the LinEs and the LinEs form bundles (class IIb). Finally, the LinE networks or bundles disintegrate and individual thread-shaped LinEs re-appear (class III) before they shorten and finally disappear.

Once LinE spots have begun to elongate, Hop1 and Mek1 associate with them, the former painting much of the length of the LinEs, the latter forming foci (Lorenz et al. 2004). At around the same time, Rec 7 appears in the nuclei.

Recombination may initiate in the spatial context of LinEs

In S. cerevisiae, it has been shown that Rec114 and Spo11 cooperate in inducing DSBs (Arora et al. 2004). The respective S. pombe orthologs, Rec7 and Rec12, are essential for meiotic DSB formation in the same way (see "Introduction"). Our results demonstrate that Rec7 is deposited as foci on LinEs and, as it occurs in numbers that correspond well with the estimated number of meiotic recombination events and as it does not require Rec12, we infer that it localizes to designated recombination sites before or together with Rec12. This suggestion must await the cytological visualization of Rec12 for its confirmation. In addition, the majority of Rad51 foci localize to LinEs. Therefore, we presume that DSB formation and initial DSB processing occur in the spatial context of LinEs. Not all Rad51 foci were located on LinEs, however. It is conceivable that chromatin tracts with Rad51 nucleofilaments detach from LinEs or that LinEs start to disintegrate while DSB repair is still in progress. It is also possible that, while Rad51 foci formation depends on the presence of Rec 10 and Rec7, a fraction of recombination events might take place spatially separated from LinEs and Rec7 foci.

Rad51 is most abundant in nuclei with long individual LinEs and LinE networks. These may be the stages when most recombination is ongoing, and Scherthan et al. (1994) provided circumstantial evidence that homologous pairing is achieved by this time. They observed maximal association of fluorescence-in-situ-hybridization-probed loci in a mei4-B2 mutant which arrests with long, presumably latestage LinEs (Bähler et al. 1993).

A proposed role for Rec 10 in recruiting the recombination machinery to chromatin

Based on our results, we suggest that Rec 10 helps to determine recombination sites. We speculate that Rec10 nucleates at a designated recombination site (such as a region of open chromatin), recruits Rec7 to this site and forms elongated complexes which become visible as LinEs. Rec7 is involved in loading and/or activating Rec 12 which initiates formation of a DSB. Hop1 and Mek1 also associate with Rec10 but are not required for Rec7 binding. They may rather play a role in recombination further downstream because genetic recombination is reduced in mekld (Pérez-Hidalgo et al. 2003) and hop 1Δ (unpublished data) strains.

One of the functions of the axial/lateral elements of the SC is to serve as the scaffold where the transversal filaments insert and, therefore, to establish a firm physical bond between recombining homologous chromosomes. In
addition, the axial/lateral elements provide a barrier against sister chromatid recombination (e.g., Kleckner 1996; Roeder 1997; Thompson and Stahl 1999; Wan et al. 2004) and they may organize chromatin loops, thus providing the structural basis for the mutual exposure of homologous DNA tracts for recombination (for a review, see Zickler and Kleckner 1999; Blat et al. 2002). Based on the similarity of Rec10 to the axial element protein Red1 of budding yeast and on the homology of S. pombe Hop1 to the axial element-associated protein Hop1, it was proposed that LinEs are evolutionary relics of SC axial elements that have maintained some of their original functions (Lorenz et al. 2004). It is conceivable, however, that LinEs have acquired novel functions, such as the one proposed here, namely, the recruitment of the Rec12/Spo11 loading and/or activation factor Rec7 (the Rec114 orthologue) to chromatin. This is a role not shared by the axial elements of the SC, as DSB formation is reduced but not completely abolished in a S. cerevisiae redl deletion strain (Blat et al. 2002 and literature cited therein; Davis et al. 2001).

While we provide evidence for the spatial coincidence of crossovers and LinEs, there remains the fact that considerable genetic recombination is achieved in some intervals by mutant strains [e.g., rec10-144 (Pryce et al. 2005), rec10109 (De Veaux and Smith 1994; Krawchuk et al. 1999), mekl Δ (Pérez-Hidalgo et al. 2003), rec8 8 (De Veaux and Smith 1994; Parisi et al. 1999)] that do not develop wildtype LinEs (Lorenz et al. 2004; Pryce et al. 2005). This suggests that while Rec 10 is essential for DSB formation and recombination (Ellermeier and Smith 2005) (presumably because DSBs are generated at LinE-associated Rec7 aggregates), the full elaboration of LinEs is not required for the initiation and processing of at least a subset of DSBs.

Acknowledgements Rec10 antibody was kindly provided by Ramsay McFarlane (Bangor, UK). We thank Eveline Doll (Berne, Switzerland), Pedro San-Segundo (Salamanca, Spain), and Gerald R. Smith (Seattle, WA, USA) for strains. The valuable comments of Ramsay McFarlane and Gerald R. Smith on the manuscript are gratefully acknowledged. We also wish to thank Mario Spirek for help with the Western blotting experiment. This work was supported by the Austrian Science Fund (Grant P18186).

References

Agarwal S, Roeder GS (2000) Zip3 provides a link between recombination enzymes and synaptonemal complex proteins. Cell 102:245-255
Alpi A, Pasierbek P, Gartner A, Loidl J (2003) Genetic and cytological characterization of the recombination protein RAD51 in Caenorhabditis elegans. Chromosoma 112:6-16
Anderson LK, Royer SM, Page SL, McKim KS, Lai A, Lilly MA, Hawley RS (2005) Juxtaposition of C(2)M and the transverse filament protein C(3)G within the central region of Drosophila synaptonemal complex. Proc Natl Acad Sci U S A 102:44824487
Arora C, Kee K, Maleki S, Keeney S (2004) Antiviral protein Ski8 is a direct partner of Spo11 in meiotic DNA break formation, independent of its cytoplasmic role in RNA metabolism. Mol Cell 13:549-559

Aylon Y, Kupiec M (2004) New insights into the mechanism of homologous recombination in yeast. Mutat Res Rev Mutat Res 566:231-248
Bähler J, Wyler T, Loidl J, Kohli J (1993) Unusual nuclear structures in meiotic prophase of fission yeast: a cytological analysis. J Cell Biol 121:241-256
Blat Y, Protacio RU, Hunter N, Kleckner N (2002) Physical and functional interactions among basic chromosome organizational features govern early steps of meiotic chiasma formation. Cell 111:1-20
Bogdanov YF, Dadashev SY, Grishaeva TM (2002) Comparative genomics and proteomics of Drosophila, Brenner's nematode, and Arabidopsis: identification of functionally similar genes and proteins of meiotic chromosome synapsis. Russ J Genet 38:908-917
Börner GV, Kleckner N, Hunter N (2004) Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117:29-45
Cromie GA, Rubio CA, Hyppa RW, Smith GR (2005) A natural meiotic DNA break site in Schizosaccharomyces pombe is a hotspot of gene conversion, highly associated with crossing over. Genetics 169:595-605
Davis L, Smith GR (2001) Meiotic recombination and chromosome segregation in Schizosaccharomyces pombe. Proc Natl Acad Sci U S A 98:8395-8402
Davis L, Barbera M, McDonnell A, McIntyre K, Sternglanz R, Jin Q, Loidl J, Engebrecht J (2001) The Saccharomyces cerevisiae MUM2 gene interacts with the DNA replication machinery and is required for meiotic levels of double strand breaks. Genetics 157:1179-1189
de Massy B (2003) Distribution of meiotic recombination sites. Trends Genet 19:514-522
De Veaux LC, Smith GR (1994) Region-specific activators of meiotic recombination in Schizosaccharomyces pombe. Genes Dev 8:203-210
Ellermeier C, Schmidt H, Smith GR (2004) Swi5 acts in meiotic DNA joint molecule formation in Schizosaccharomyces pombe. Genetics 168:1891-1898
Ellermeier C, Smith GR (2005) Cohesins are required for meiotic DNA breakage and recombination in Schizosaccharomyces pombe. Proc Natl Acad Sci U S A 102:10952-10957
Gregan J, Rabitsch PK, Sakem B, Csutak O, Latypov V, Lehmann E, Kohli J, Nasmyth K (2005) Novel genes required for meiotic chromosome segregation are identified by a high-throughput knockout screen in fission yeast. Curr Biol 15:1663-1669
Grishchuk AL, Kraehenbuehl R, Molnar M, Fleck O, Kohli J (2004) Genetic and cytological characterization of the RecA-homologous proteins Rad51 and Dmcl of Schizosaccharomyces pombe. Curr Genet 44:317-328
Henderson KA, Keeney S (2004) Tying synaptonemal complex initiation to the formation and programmed repair of DNA double-strand breaks. Proc Natl Acad Sci U S A 101:4519-4524
Kee K, Protacio RU, Arora C, Keeney S (2004) Spatial organization and dynamics of the association of Rec102 and Rec104 with meiotic chromosomes. EMBO J 23:1815-1824
Keeney S (2001) Mechanism and control of meiotic recombination initiation. Curr Top Dev Biol 52:1-53
Kleckner N (1996) Meiosis: how could it work? Proc Natl Acad Sci U S A 93:8167-8174
Kon N, Krawchuk MD, Warren BG, Smith GR, Wahls WP (1997) Transcription factor Mts1/Mts2 (Atf1/Pcr1, Gad7/Pcr1) activates the M26 meiotic recombination hotspot in Schizosaccharomyces pombe. Proc Natl Acad Sci U S A 94:13765-13770
Krawchuk MD, De Veaux LC, Wahls WP (1999) Meiotic chromosome dynamics dependent upon the rec8 ${ }^{+}$, recl0 0^{+}and rec 11^{+} genes of the fission yeast Schizosaccharomyces pombe. Genetics 153:57-68
Lorenz A, Wells JL, Pryce DW, Novatchkova M, Eisenhaber F, McFarlane RJ, Loidl J (2004) S. pombe meiotic linear elements contain proteins related to synaptonemal complex components. J Cell Sci 117:3343-3351

Malone RE, Pittman DL, Nau JJ (1997) Examination of the intron in the meiosis-specific recombination gene REC114 in Saccharomyces. Mol Gen Genet 255:410-419
Miyazaki T, Bressan DA, Shinohara M, Haber JE, Shinohara A (2004) In vivo assembly and disassembly of Rad51 and Rad52 complexes during double-strand break repair. EMBO J 23:939-949
Mizuno K, Emura Y, Baur M, Kohli J, Ohta K, Shibata T (1997) The meiotic recombination hot spot created by the single- base substitution ade6-M26 results in remodeling of chromatin structure in fission yeast. Genes Dev 11:876-886
Molnar M, Parisi S, Kakihara Y, Nojima H, Yamamoto A, Hiraoka Y, Bozsik A, Sipiczki M, Kohli J (2001) Characterization of rec7, an early meiotic recombination gene in Schizosaccharomyces pombe. Genetics 157:519-532
Molnar M, Doll E, Yamamoto A, Hiraoka Y, Kohli J (2003) Linear element formation and their role in meiotic sister chromatid cohesion and chromosome pairing. J Cell Sci 116:1719-1731
Moreno S, Klar A, Nurse P (1991) Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol 194:795-823
Munz P (1994) An analysis of interference in the fission yeast Schizosaccharomyces pombe. Genetics 137:701-707
Murakami H, Borde V, Shibata T, Lichten M, Ohta K (2003) Correlation between premeiotic DNA replication and chromatin transition at yeast recombination initiation sites. Nucleic Acids Res 31:4085-4090
Neale MJ, Pan J, Keeney S (2005) Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436:1053-1057
Öllinger R, Alsheimer M, Benavente R (2005) Mammalian protein SCP1 forms synaptonemal complex-like structures in the absence of meiotic chromosomes. Mol Biol Cell 16:212-217
Olson LW, Edén U, Mitani ME, Egel R (1978) Asynaptic meiosis in fission yeast? Hereditas 89:189-199
Page SL, Hawley RS (2004) The genetics and molecular biology of the synaptonemal complex. Annu Rev Cell Dev Biol 20:525-558
Pâques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63:349-404
Parisi S, McKay MJ, Molnar M, Thompson MA, van der Spek PJ, van Drunen-Schoenmaker E, Kanaar R, Lehmann E, Hoeijmakers JHJ, Kohli J (1999) Rec8p, a meiotic recombination and sister chromatid cohesion phosphoprotein of the Rad21p family conserved from fission yeast to humans. Mol Cell Biol 19:3515-3528

Pérez-Hidalgo L, Moreno S, San-Segundo PA (2003) Regulation of meiotic progression by the meiosis-specific checkpoint kinase Mek1 in fission yeast. J Cell Sci 116:259-271
Petes TD (2001) Meiotic recombination hot spots and cold spots. Nat Rev Genet 2:360-368
Prieler S, Penkner A, Borde V, Klein F (2005) The control of Spo11's interaction with meiotic recombination hotspots. Genes Dev 19:255-269
Pryce DW, Lorenz A, Smirnova JB, Loidl J, McFarlane RJ (2005) Differential activation of M26-containing meiotic recombination hot spots in Schizosaccharomyces pombe. Genetics 170:95-106
Reddy KC, Villeneuve AM (2004) C. elegans HIM-17 links chromatin modification and competence for initiation of meiotic recombination. Cell 118:439-452
Roeder GS (1997) Meiotic chromosomes: it takes two to tango. Genes Dev 11:2600-2621
Sauvageau S, Stasiak AZ, Banville I, Ploquin M, Stasiak A, Masson J-Y (2005) Fission yeast Rad51 and Dmc1, two efficient DNA recombinases forming helical nucleoprotein filaments. Mol Cell Biol 25:4377-4387
Scherthan H, Bähler J, Kohli J (1994) Dynamics of chromosome organization and pairing during meiotic prophase in fission yeast. J Cell Biol 127:273-285
Shinohara A, Ogawa H, Ogawa T (1992) Rad51 protein involved in repair and recombination in Saccharomyces cerevisiae is a RecA-like protein. Cell 69:457-470
Thompson DA, Stahl FW (1999) Genetic control of recombination partner preference in yeast meiosis: isolation and characterization of mutants elevated for meiotic unequal sister-chromatid recombination. Genetics 153:621-641
Wan L, de los Santos T, Zhang C, Shokat K, Hollingsworth NM (2004) Mek1 kinase activity functions downstream of RED1 in the regulation of meiotic DSB repair in budding yeast. Mol Biol Cell 15:11-23
Wu T-C, Lichten M (1994) Meiosis-induced double-strand break sites determined by yeast chromatin structure. Science 263:515-517
Yamada T, Mizuno K, Hirota K, Kon N, Wahls WP, Hartsuiker E, Murofushi H, Shibata T, Ohta K (2004) Roles of histone acetylation and chromatin remodeling factor in a meiotic recombination hotspot. EMBO J 23:1792-1803
Young JA, Hyppa RW, Smith GR (2004) Conserved and nonconserved proteins for meiotic DNA breakage and repair in yeasts. Genetics 167:593-605
Zickler D, Kleckner N (1999) Meiotic chromosomes: integrating structure and function. Annu Rev Genet 33:603-754

[^0]: Communicated by E.A. Nigg
 A. Lorenz • A. Estreicher • J. Loidl (\triangle)

 Department of Chromosome Biology,
 University of Vienna,
 A-1030 Vienna, Austria
 e-mail: josef.loidl@univie.ac.at
 J. Kohli

 Institute of Cell Biology,
 University of Berne, CH-3012 Berne, Switzerland

 Present address:
 A. Lorenz

 Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK

