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Short Communication

Vitamin C deficiency in weanling guinea pigs: differential expression

of oxidative stress and DNA repair in liver and brain
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Neonates are particularly susceptible to malnutrition due to their limited reserves of micronutrients and their rapid growth. In the present study, we

examined the effect of vitamin C deficiency on markers of oxidative stress in plasma, liver and brain of weanling guinea pigs. Vitamin C

deficiency caused rapid and significant depletion of ascorbate (P,0·001), tocopherols (P,0·001) and glutathione (P,0·001), and a decrease

in superoxide dismutase activity (P¼0·005) in the liver, while protein oxidation was significantly increased (P¼0·011). No changes in lipid oxi-

dation or oxidatively damaged DNA were observed in this tissue. In the brain, the pattern was markedly different. Of the measured antioxidants,

only ascorbate was significantly depleted (P,0·001), but in contrast to the liver, ascorbate oxidation (P¼0·034), lipid oxidation (P,0·001), DNA

oxidation (P¼0·13) and DNA incision repair (P¼0·014) were all increased, while protein oxidation decreased (P¼0·003). The results show that

the selective preservation of brain ascorbate and induction of DNA repair in vitamin C-deficient weanling guinea pigs is not sufficient to prevent

oxidative damage. Vitamin C deficiency may therefore be particularly adverse during the neonatal period.

Vitamin C deficiency: Weanling guinea pigs: Oxidative stress markers: DNA repair

Pre- and postnatal malnutrition may have serious conse-
quences for neuronal development and growth1,2. The impact
of vitamin C deficiency, beyond that of scurvy, has not been
studied in detail. Vitamin C, for example, is known to play an
important role inmaintainingbrain function3.Thebrain is particu-
larly susceptible to oxidative damage and therefore highly depen-
dent on proper maintenance of redox homeostasis, especially
during development, when brain metabolism and growth are
maximal4. An imbalance in redox homoestasis has also been
implicated in neurodegenerative diseases of ageing and other
neurological disorders such as schizophrenia5–8.
It has been known for a while that vitamin C is preferen-

tially retained in the brain during deficiency9. As established
recently, this is due to the high-affinity sodium ascorbate
cotransporter SVCT210. Experiments with homozygous
SVCT2-knockout mice have shown that this transporter is
essential for perinatal survival10, indicating that vitamin C is
crucial for early brain development, although the precise
mechanism of death is unknown. Moreover, studies of com-
bined vitamin C and E deficiency in guinea pigs have revealed
extensive neuronal damage despite a relatively modest
increase in oxidative stress in the brain11,12.

Unfortunately, neonatal vitamin C deficiency is fairly
common. In a study with 127 pregnant Brazilian women, it
was found that 40% of the smokers and 27% of the non-smo-
kers had hypovitaminosis C (i.e. a plasma concentration
,23mmol/l) and that this condition was passed on to their
fetuses13. Major epidemiological studies have shown that
this prevalence of hypovitaminosis C can largely be extended
to the Western world14. Vitamin C deficiency due to
inadequate perinatal feeding (e.g. with pasteurized milk) is
also fairly common15.

Like man, guinea pigs completely depend on dietary vitamin
C16,17. In the present study,we used newlyweaned guinea pigs to
test if neonates are susceptible to vitamin C deficiency and if
even small changes in antioxidant status in the brain result in
deleterious events as measured by oxidative damage.

Methods

Animals and study design

The study was approved by the Danish Animal Experimen-
tation Inspectorate. Dunkin Hartley guinea pigs were born in
our animal facility by breeder guinea pigs obtained from
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Statens Serum Institut (Allerød, Denmark), that had been
maintained at the animal facility for at least 2 weeks. After
2 d, the neonates were taken from their mothers and random-
ized into two weight-matched groups (control group, n 8;
deficient group, n 12). All animals were housed in plastic
cages (four per cage) and fed pathogen-free standard diets
(Altromin International, Lage, Germany). The diets were
essentially identical except for vitamin C content. Control ani-
mals were placed on a normal guinea pig diet (Diet #3010,
1036mg vitamin C/kg)18, while deficient animals were sup-
plied with a diet low in vitamin C (Diet #2010, 36mg vitamin
C/kg)19. The dietary regimen was continued for about 3
weeks. Animals were checked daily by educated staff and
weighed twice a week (Fig. 1). No clinical signs of scurvy
were observed during the experiment.

After 3 weeks, the animals were anaesthetized using pento-
barbital (55mg/kg containing 2% lidocain, by intraperitoneal
injection). Heparin (500 units; 100ml) was injected intracar-
dially using a 27G needle and after 1min a 2ml blood
sample was obtained by cardiac puncture using a 18G
needle while carefully avoiding haemolysis. The animals
were perfused with 100ml ice-cold PBS, after which liver
and brain were removed and immediately frozen at 2808C
until further analysis. Blood samples were immediately centri-
fuged (2000g, 5min, 48C). One aliquot (200ml) of plasma was
acidified with an equal volume of 10% meta-phosphoric acid
containing 2mM-EDTA, briefly vortex mixed and frozen at
2808C for ascorbate (Asc) and dehydroascorbic acid analysis.
The remaining plasma was stored neat in aliquots at 2808C.

Biochemical analyses

Asc and dehydroascorbic acid in meta-phosphoric acid-stabil-
ized plasma and tissues were analysed by HPLC with coulo-
metric detection as described previously20,21. Because of the
very low vitamin C levels in plasma of animals fed with the
deficient diet, dehydroascorbic acid was below the detection
limit of this assay. a-Tocopherol and g-tocopherol were ana-
lysed by HPLC with amperometric detection as described22.
Glutathione was measured as described by Hissin & Hilf23.
Superoxide dismutase activity was quantified by the pyrogallol
method24. Plasma oxidizability was quantified essentially as

described by Kontush & Beisiegel25 except that lag time
was objectively based on a sigmoidal curve-fitting model
with subsequent calculation of the inflexion. The intercept
between the baseline and inflexion was used as lag time.

Malondialdehyde (MDA) was used as an index of lipid
oxidation and was assessed by thiobarbituric acid (TBA)
derivatization, followed by specific quantification of the genu-
ine MDA(TBA)2 adduct by HPLC with fluorescence detection
as described previously26. Protein carbonyls were measured
using the ZenTech ELISA kit (Alexis Corporation) based on
the method by Buss & Winterbourn27. Oxidatively modified
DNA as measured by 8-oxo-deoxyguanosine content was
quantified by HPLC with electrochemical detection as
described28 and expressed per 106 unmodified guanosine resi-
dues. Base excision repair was estimated by the nicking tech-
nique as described earlier29. Protein concentrations were
measured by using the Bradford method30.

Statistical analysis

Effects were analysed by one-way ANOVA followed by post
hoc t-tests. A two-tailed P value less than 0·05 was considered
statistically significant. All data are reported as means and
standard deviations.

Results and discussion

In the present study, we examined the effect of vitamin
C deficiency on liver and brain redox homeostasis in weanling
guinea pigs. We were particularly interested in the brain, since
it is highly susceptible to oxidative damage and known to
accumulate high concentrations of Asc, the reduced and anti-
oxidative form of vitamin C. Although no significant differ-
ences in growth were observed over the course of the study
(Fig. 1), the deficient guinea pigs showed clear signs of
growth arrest after 3 weeks and would have developed
scurvy and died had the experiment been allowed to continue.
Apart from its antiscorbutic effect, vitamin C plays a pivotal
role in redox homeostasis3,31,32.

Weanling guinea pigs fed for 3 weeks on a vitamin
C-deficient diet displayed severe depletion of plasma and
liver Asc, showing less than 1% Asc compared to control ani-
mals (P,0·001; Table 1). In contrast, the depletion of Asc in
the brain was only about 70%. This preferential preservation
of vitamin C in the brain is in agreement with other studies9,33

and is most likely the result of active transport of vitamin C
across the blood–brain barrier.

Asc depletion in plasma and liver was accompanied by a
general change in the antioxidant status. Thus, vitamin C
deficiency caused a decrease of a- and g-tocopherol in
plasma and liver, and resulted in lower glutathione levels
and superoxide dismutase activity in the liver, suggesting a
collapse of the redox homeostasis in this tissue (Table 1). In
contrast, Asc was the only antioxidant in the brain that was
significantly decreased. The significant 2·5-fold increase in
dehydroascorbic acid observed in vitamin C-deficient animals
(P¼0·034) is indicative of elevated oxidative stress in the
brain. Thus, increased antioxidant action of Asc combined
with inadequate recycling capacity for vitamin C results in
increased turnover as recognized by the increased presence
of dehydroascorbic acid.

Fig. 1. Weights of 2-d-old neonatal guinea pigs maintained on either a con-

trol diet (W) or a vitamin C-deficient diet (†) for 3 weeks. No significant differ-

ence was observed over the course of the study period. Values are means

with standard deviations depicted by vertical bars.
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Vitamin C deficiency was also associated with increased
oxidative damage. In plasma, lipid oxidation was significantly
increased in vitamin C-deficient animals (P¼0·013) and the
resistance to lipid oxidation (lag time) was significantly dimin-
ished to less than one-quarter of that of animals fed with the
normal diet (P,0·001). In the liver, protein oxidation was
increased (P¼0·011) while lipid and DNA oxidation were
unchanged.
As with the antioxidants, the pattern of oxidative damage

was different in the brain. Here, MDA was increased by
130% in deficient animals compared to that of controls
(P,0·001). In contrast, protein oxidation was significantly
lower (P¼0·003). Whether this is related to vitamin C’s role
in protein synthesis is not known. With regard to DNA
damage, both oxidatively damaged DNA and DNA repair
capacity was assessed, the latter as 8-oxo-deoxyguanosine gly-
cosylase activity. Since de novo synthesis of DNA is only
possible during cell proliferation, the capacity to repair
damaged DNA is of major importance for the ability of the
cells to survive an oxidative insult. In the brain, DNA incision
repair was 38% higher in deficient animals compared to con-
trols (P¼0·014), suggesting an up-regulation of DNA repair in
response to the increased oxidative stress. This response
was apparently adequate, since 8-oxo-deoxyguanosine did
not significantly increase in the vitamin C-deficient animals
(P¼0·13).

Recently, it was reported that in vitro-cultured cells do not
respond to oxidative DNA damage by inducing repair34. The
authors concluded that DNA damage per se does not induce
DNA repair34. However, it is possible that DNA repair was
already maximally induced in their in vitro system, or that
induction was no longer possible due to cell transformation.
Our in vivo data, however, suggest that either the reduced
levels of antioxidants per se or a secondary effect of such
depletion indeed do induce DNA repair in vivo.

Neonatal guinea pigs appear to be more susceptible to malnu-
trition compared to their older counterparts, possibly due to
their limited reserve of micronutrients and their rapid growth.
This became apparent in the present study as the neonates began
suffering growth arrest and even weight loss, usually among the
first signs of emerging lameness in the hind limbs and clinical
scurvy, already after 3 weeks (Fig. 1), while in older animals
(e.g. 3 months old) the same condition is normally reached only
after more than 5 weeks on a deficient diet35. Thus, neonates
appear to be particularly susceptible to vitamin C deficiency.

Conclusion

The present results show that in weanling guinea pigs, vitamin
C deficiency results in altered brain redox homeostasis and
increased lipid oxidation. Preferential preservation of vitamin
C in the brain over other tissues, antioxidant function of Asc

Table 1. Biomarkers of oxidative stress and damage in plasma, liver and brain of weanling guinea pigs after
3 weeks on a vitamin C-deficient diet compared to animals on a control diet

(Mean values and standard deviations)

Controls (n 8) Deficient (n 12)

Mean SD Mean SD P value*

Plasma
Ascorbate (mm) 168·3 49·1 1·0 0·5 ,0·001
a-Tocopherol (mm) 5·8 1·8 3·8 1·4 0·017
g-Tocopherol (mm) 0·10 0·04 0·02 0·01 ,0·001
Malondialdehyde (mmol/l) 0·34 0·10 0·61 0·15 0·013
Plasma oxidizability lag time (min) 268 25 62 30 ,0·001

Liver
Ascorbate (nmol/g tissue) 2835 623 26·2 4·6 ,0·001
Dehydroascorbic acid (% of total vitamin C) 3·3 1·8 5·3 9·7 NS
a-Tocopherol (nmol/g tissue) 33·8 9·9 15·0 3·2 ,0·001
g-Tocopherol (nmol/g tissue) 1·0 0·4 0·2 0·1 ,0·001
Glutathione (nmol/g tissue) 3511 490 1822 755 ,0·001
Superoxide dismutase (mg/mg protein) 7·8 0·6 6·5 1·1 0·005
Malondialdehyde (nmol/g tissue) 128 15 127 23 NS
Protein carbonyls (nmol/mg protein) 151 5 171 18 0·011
8-Oxo-deoxyguanosine (1/106 dG) 12·9 4·6 11·4 3·8 NS
Base excision repair (%, arbitrary units) 1·22 0·14 1·04 0·22 NS

Brain
Ascorbate (nmol/g tissue) 1450 138 453 80 ,0·001
Dehydroascorbic acid (% of total vitamin C) 6·5 8·2 14·8 4·0 0·034
a-Tocopherol (nmol/g tissue) 17·0 1·7 15·3 2·4 NS
g-Tocopherol (nmol/g tissue) 0·4 0·1 0·4 0·1 NS
Glutathione (nmol/g tissue) 1189 80 1146 92 NS
Superoxide dismutase (mg/mg protein) 2·6 0·3 2·5 0·5 NS
Malondialdehyde (nmol/g tissue) 186 47 429 79 ,0·001
Protein carbonyls (pmol/mg protein) 77·6 5·5 64·3 9·0 0·003
8-Oxo-deoxyguanosine (1/106 dG)† 3·18 0·52 3·71 0·51 NS
Base excision repair (%, arbitrary units) 0·24 0·05 0·33 0·09 0·014

dG, unmodified guanosine residues.
* Compared to control group.
†Control, n 4; deficient, n 8.
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and induction of DNA incision repair provide some protection
against oxidative damage to DNA and proteins. To strengthen
the link between oxidative stress and disease, future studies
should include the evaluation of brain injury. Also, the
expression of SVCT2 in the brain during vitamin C deficiency
may be of importance in understanding the preferential preser-
vation of vitamin C in the brain.
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