Antioxidant activities of some tryptophan metabolites: possible implication for inflammatory diseases

Christen, S; Peterhans, E; Stocker, R (1990). Antioxidant activities of some tryptophan metabolites: possible implication for inflammatory diseases. Proceedings of the National Academy of Sciences of the United States of America - PNAS, 87(7), pp. 2506-10. Washington, D.C.: National Academy of Sciences NAS 10.1073/pnas.87.7.2506

Full text not available from this repository. (Request a copy)

The antioxidant properties of tryptophan and some of its oxidative metabolites were examined by measuring how efficiently they inhibited peroxyl radical-mediated oxidation of phosphatidylcholine liposomes and B-phycoerythrin. Low micromolar concentrations of 5-hydroxytryptophan, 3-hydroxykynurenine, xanthurenic acid, or 3-hydroxyanthranilic acid, but not their corresponding nonhydroxylated metabolic precursors, scavenged peroxyl radicals with high efficiency. In particular, 3-hydroxykynurenine and 3-hydroxyanthranilic acid protected B-phycoerythrin from peroxyl radical-mediated oxidative damage more effectively than equimolar amounts of either ascorbate or Trolox (a water-soluble analog of vitamin E). Enzyme activities involved or related to oxidative tryptophan metabolism, as well as endogenous concentrations of tryptophan and its metabolites, were determined within tissues of mice suffering from acute viral pneumonia. Infection resulted in a 100-fold induction of pulmonary indoleamine 2,3-dioxygenase (EC 1.13.11.17) as reported [Yoshida, R., Urade, Y., Tokuda, M. ; Hayaishi, O. (1979) Proc. Natl. Acad. Sci. USA 76, 4084-4086]. This was accompanied by a 16- and 3-fold increase in the levels of lung kynurenine and 3-hydroxykynurenine, respectively. In contrast, endogenous concentrations of tryptophan and xanthurenic acid did not increase and 3-hydroxyanthranilic acid could not be detected. The activity of the superoxide anion (O2-.)-producing enzyme xanthine oxidase increased 3.5-fold during infection while that of the O2-.-removing superoxide dismutase decreased to 50% of control levels. These results plus the known requirement of indoleamine 2,3-dioxygenase for superoxide anion for catalytic activity suggest that viral pneumonia is accompanied by oxidative stress and that induction of indoleamine 2,3-dioxygenase may represent a local antioxidant defence against this and possibly other types of inflammatory diseases.

Item Type:

Journal Article (Original Article)

Division/Institute:

04 Faculty of Medicine > Service Sector > Institute for Infectious Diseases

UniBE Contributor:

Christen, Stephan

ISSN:

0027-8424

ISBN:

2320571

Publisher:

National Academy of Sciences NAS

Language:

English

Submitter:

Factscience Import

Date Deposited:

04 Oct 2013 14:56

Last Modified:

05 Dec 2022 14:17

Publisher DOI:

10.1073/pnas.87.7.2506

PubMed ID:

2320571

Web of Science ID:

A1990CX49700026

URI:

https://boris.unibe.ch/id/eprint/23704 (FactScience: 43513)

Actions (login required)

Edit item Edit item
Provide Feedback