Calibration of a portal imaging device for high-precision dosimetry: a Monte Carlo study

Keller, H; Fix, M; Rüegsegger, P (1998). Calibration of a portal imaging device for high-precision dosimetry: a Monte Carlo study. Medical physics, 25(10), pp. 1891-902. College Park, Md.: American Association of Physicists in Medicine AAPM 10.1118/1.598378

Full text not available from this repository. (Request a copy)

Today electronic portal imaging devices (EPID's) are used primarily to verify patient positioning. They have, however, also the potential as 2D-dosimeters and could be used as such for transit dosimetry or dose reconstruction. It has been proven that such devices, especially liquid filled ionization chambers, have a stable dose response relationship which can be described in terms of the physical properties of the EPID and the pulsed linac radiation. For absolute dosimetry however, an accurate method of calibration to an absolute dose is needed. In this work, we concentrate on calibration against dose in a homogeneous water phantom. Using a Monte Carlo model of the detector we calculated dose spread kernels in units of absolute dose per incident energy fluence and compared them to calculated dose spread kernels in water at different depths. The energy of the incident pencil beams varied between 0.5 and 18 MeV. At the depth of dose maximum in water for a 6 MV beam (1.5 cm) and for a 18 MV beam (3.0 cm) we observed large absolute differences between water and detector dose above an incident energy of 4 MeV but only small relative differences in the most frequent energy range of the beam energy spectra. It is shown that for a 6 MV beam the absolute reference dose measured at 1.5 cm water depth differs from the absolute detector dose by 3.8%. At depth 1.2 cm in water, however, the relative dose differences are almost constant between 2 and 6 MeV. The effects of changes in the energy spectrum of the beam on the dose responses in water and in the detector are also investigated. We show that differences larger than 2% can occur for different beam qualities of the incident photon beam behind water slabs of different thicknesses. It is therefore concluded that for high-precision dosimetry such effects have to be taken into account. Nevertheless, the precise information about the dose response of the detector provided in this Monte Carlo study forms the basis of extracting directly the basic radiometric quantities photon fluence and photon energy fluence from the detector's signal using a deconvolution algorithm. The results are therefore promising for future application in absolute transit dosimetry and absolute dose reconstruction.

Item Type:

Journal Article (Original Article)


04 Faculty of Medicine > Department of Haematology, Oncology, Infectious Diseases, Laboratory Medicine and Hospital Pharmacy (DOLS) > Clinic of Radiation Oncology > Medical Radiation Physics

UniBE Contributor:

Fix, Michael






American Association of Physicists in Medicine AAPM




Factscience Import

Date Deposited:

04 Oct 2013 14:56

Last Modified:

04 May 2014 23:16

Publisher DOI:


PubMed ID:


Web of Science ID:


URI: (FactScience: 47022)

Actions (login required)

Edit item Edit item
Provide Feedback