Novel approach for genotyping varicella-zoster virus strains from Germany

Schmidt-Chanasit, Jonas; Sturmer, Martin; Hahn, Anke; Schad, Susanne; Gross, Gerd; Ulrich, Rainer; Heckel, Gerald; Doerr, Hans (2007). Novel approach for genotyping varicella-zoster virus strains from Germany. Journal of clinical microbiology, 45(11), pp. 3540-3545. Washington, D.C.: American Society for Microbiology 10.1128/JCM.00979-07

Full text not available from this repository. (Request a copy)

In this study, we present a novel genotyping scheme to classify German wild-type varicella-zoster virus (VZV) strains and to differentiate them from the Oka vaccine strain (genotype B). This approach is based on analysis of four loci in open reading frames (ORFs) 51 to 58, encompassing a total length of 1,990 bp. The new genotyping scheme produced identical clusters in phylogenetic analyses compared to full-genome sequences from well-characterized VZV strains. Based on genotype A, D, B, and C reference strains, a dichotomous identification key (DIK) was developed and applied for VZV strains obtained from vesicle fluid and liquor samples originating from 42 patients suffering from varicella or zoster between 2003 and 2006. Sequencing of regions in ORFs 51, 52, 53, 56, 57, and 58 identified 18 single-nucleotide polymorphisms (SNPs), including two novel ones, SNP 89727 and SNP 92792 in ORF51 and ORF52, respectively. The DIK as well as phylogenetic analysis by Bayesian inference showed that 14 VZV strains belonged to genotype A, and 28 VZV strains were classified as genotype D. Neither Japanese (vaccine)-like B strains nor recombinant-like C strains were found within the samples from Germany. The novel genotyping scheme and the DIK were demonstrated to be practical and simple and allow the highly efficient replication of phylogenetic patterns in VZV initially derived from full-genome DNA sequence analyses. Therefore, this approach may allow us to draw a more comprehensive picture of wild-type VZV strains circulating in Germany and Central Europe by high-throughput procedures in the future.

Item Type:

Journal Article (Original Article)

Division/Institute:

08 Faculty of Science > Department of Biology > Institute of Ecology and Evolution (IEE) > Population Genetics

UniBE Contributor:

Heckel, Gerald

ISSN:

0095-1137

Publisher:

American Society for Microbiology

Language:

English

Submitter:

Factscience Import

Date Deposited:

04 Oct 2013 14:58

Last Modified:

05 Dec 2022 14:17

Publisher DOI:

10.1128/JCM.00979-07

Web of Science ID:

000250932700009

URI:

https://boris.unibe.ch/id/eprint/24786 (FactScience: 52949)

Actions (login required)

Edit item Edit item
Provide Feedback