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ABSTRACT

A Bayesian uncertainty analysis of 12 parameters of the Bern2.5D climate model is presented. This
includes an extensive sensitivity study with respect to the major statistical assumptions. Special attention is
given to the parameter representing climate sensitivity. Using the framework of robust Bayesian analysis,
the authors first define a nonparametric set of prior distributions for climate sensitivity S and then update
the entire set according to Bayes’ theorem. The upper and lower probability that S lies above 4.5°C is
calculated over the resulting set of posterior distributions. Furthermore, posterior distributions under
different assumptions on the likelihood function are computed. The main characteristics of the marginal
posterior distributions of climate sensitivity are quite robust with regard to statistical models of climate
variability and observational error. However, the influence of prior assumptions on the tails of distributions
is substantial considering the important political implications. Moreover, the authors find that ocean heat
change data have a considerable potential to constrain climate sensitivity.

1. Introduction

Uncertainty and risk will be a cross-cutting theme in
the forthcoming Intergovernmental Panel on Climate
Change (IPCC) Fourth Assessment Report (Manning
et al. 2004), and there has been considerable effort re-
cently to quantify uncertainty in climate system prop-
erties.

Although attempts have been made (Allen et al.
2000; Stott and Kettleborough 2002; Murphy et al. 2004;
Stainforth et al. 2005), there are limitations in using

atmosphere–ocean general circulation models for this
purpose, since these models are very expensive to run.
Therefore in many studies, climate models of interme-
diate complexity are employed. Their short runtimes
make the application of rigorous statistical methods
possible, while they are still able to reproduce the mean
climate characteristics on a global scale. Furthermore,
due to the simplified nature of such models, model-
independent climate system properties, such as the cli-
mate sensitivity, can be treated as explicit parameters,
which in turn allows for exploration of a wide range of
model behavior.

To determine values for climate system properties
and estimate their uncertainty, it is reasonable to use
comparisons between model predictions and climate
observations. The methods of Bayesian statistics seem
to be best suited to combine prior knowledge about the
climate system with observational evidence (Knutti et
al. 2002, 2003; Forest et al. 2002; Tebaldi et al. 2005),
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although other approaches have also been adopted
[such as bootstrapping techniques, see Andronova and
Schlesinger (2001)]. However, it has been proven that,
in a certain sense, Bayes’ theorem is an optimal infor-
mation processing rule (Zellner 1988).

There are further advantages of the Bayesian ap-
proach. Every statistical analysis is based on specific
assumptions that can only partly be corroborated by
empirical data. This is, amongst other things, the reason
for the different estimates of probability distributions
for climate sensitivity in Forest et al. (2002, 2006) and
Knutti et al. (2002). Bayesian statistics is a consistent
framework in which the adopted statistical assumptions
are transparent and explicitly formulated. This allows
extensive sensitivity and robustness studies to be con-
ducted, a particular strength of this approach (Box and
Tiao 1962).

Robust Bayesian analysis (Berger 1984, 1994) pro-
vides a suitable framework for such sensitivity and ro-
bustness studies. In robust Bayesian analysis, instead of
single prior distributions or single likelihood functions,
sets of prior distributions and sets of likelihood func-
tions are considered. Then upper and lower expecta-
tions of quantities of interest are computed (Wasser-
man and Kadane 1992). The range of these expecta-
tions provides a measure of robustness of the statistical
analysis [see Berliner et al. (2000) for an application of
robust Bayesian analysis to the climate change detec-
tion problem].

In situations where the computation of upper and
lower expectations over a set of distributions is too
computationally expensive, metrics on the space of dis-
tributions, such as the relative entropy distance, can be
used to measure the distances between posterior distri-
butions under different assumptions on the prior distri-
butions and likelihood functions. These distances again
provide a sensitivity or robustness measure (see Dey
and Birmiwal 1994 for an overview).

In decision science, uncertainty in probabilistic esti-
mates is often referred to as ambiguity. It has been
shown in empirical studies that ambiguity affects deci-
sion making (Camerer and Weber 1992). Traditional
decision science fails to capture ambiguity. Instead, un-
der ambiguity, additional decision criteria, such as the
precautionary principle, have to be considered (Borsuk
and Tomassini 2005). One possible method to represent
ambiguity is by sets of probability distributions as ap-
plied in robust Bayesian statistics [cf. Camerer and
Weber (1992) for a comprehensive review and Kriegler
and Held (2005) for a non-Bayesian application to cli-
mate change assessment].

We turn to the description of the content of the pa-
per. In section 2 we briefly describe the climate model

used, the parameters that were subject to the uncer-
tainty analysis, the basic statistical methods that we ap-
plied, and the datasets that were used.

In section 3 the results of our analysis are presented.
Throughout the paper, we focus mainly on the marginal
distribution for climate sensitivity, since climate sensi-
tivity is a property of the climate system, which does not
depend on the type of model or parameterizations
used.

In section 3a we show the result of the uncertainty
analysis under our baseline statistical assumptions.

In section 3b we define a set of prior distributions for
climate sensitivity S and calculate upper and lower pos-
terior probabilities for the event that S lies above 4.5°C,
which is the upper limit of the canonical [1.5, 4.5] IPCC
range. This allows the sensitivity of the uncertainty
analysis with respect to prior assumptions to be assessed.

In section 3c we investigate likelihood robustness.
The sensitivity of the outcome of the uncertainty analy-
sis to the scaling of the observational error and the
estimate of natural climate variability is examined. The
rationale behind this is that the observational errors
that are published together with the data do not usually
comprise all possible sources of uncertainty (Gregory et
al. 2004). Also, our estimate of natural variability is
uncertain (Collins et al. 2001; Gent and Danabasoglu
2004). For this reason it is important to assess the in-
fluence of the observational error and the estimate of
climate variability on the result of the uncertainty
analysis. In this section, we also study robustness with
respect to the normality assumption in the likelihood
function and quantify the effect of learning from the
ocean heat content change data.

Discussions and conclusions follow in section 4.

2. Model and methods

a. Climate model

We use the Bern2.5D climate model, an earth system
model of intermediate complexity. It consists of a zon-
ally averaged dynamic ocean model (Stocker and
Wright 1991; Wright and Stocker 1991) resolving the
Atlantic, Pacific, Indian, and Southern Oceans, coupled
to a zonally and vertically averaged energy and mois-
ture-balance model of the atmosphere (Stocker et al.
1992; Schmittner and Stocker 1999).

The additional radiative forcing at the top of the at-
mosphere is specified as

�Ftoa�t� � �Fdir�t� � ��Tatm�t�, �1�

where �Fdir is the direct radiative forcing reconstructed
over the industrial period. Feedback processes that in-
crease the climate sensitivity S are represented by the
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feedback term ��Tatm(t), where �Tatm is the time-
dependent atmospheric temperature increase and � is a
constant, which is prescribed to lead to different climate
sensitivities for the same radiative forcing.

The climate sensitivity S is defined as the equilibrium
global mean near-surface warming for a doubling of
preindustrial atmospheric carbon dioxide, equivalent to a
radiative forcing of about 3.71 W m�2 (Myhre et al. 1998).

We used a model version with a lateral ocean mixing
scheme and constant vertical ocean diffusivity K�

(Wright and Stocker 1991). Knutti et al. (2000) inves-
tigated the effect of different ocean mixing parameter-
izations. For the present study, the relevance of other
mixing schemes is small and was subsequently ne-
glected (Knutti et al. 2002).

The net heat uptake by the ocean F is given by
Stocker et al. (1992) as

F � �1 � ��Qshort � �eOT 4 � �eAT A
4 � D�T � TA� � E,

�2�

where E is the temperature-dependent evaporation, TA

is the atmospheric temperature, T is the ocean surface
temperature, Qshort is the net incoming shortwave ra-
diation, 	 is a constant atmospheric absorptivity, eA and
eO are atmospheric and oceanic emissivities, 
 is the
Boltzmann constant, cE is the bulk coefficient of evapo-
ration, and D is a constant transfer coefficient for sen-
sible heat (Haney 1971).

The anthropogenic radiative forcing from changes in
well-mixed greenhouse gases (CO2, CH4, N2O, SF6, and
28 halocarbons including those controlled by the Mon-
treal Protocol), stratospheric O3, the direct forcing of
black and organic carbon, stratospheric H2O due to
CH4 changes, and the direct and indirect effects of
aerosols are individually prescribed from reconstruc-
tions for the years 1765–2000 (Joos et al. 2001). The
radiative forcing by volcanoes (Ammann et al. 2003)
and variations in solar irradiance (Crowley 2000) are
prescribed for the historical period.

b. Basic statistical method, observations, and the
likelihood function

Here we present a Bayesian uncertainty analysis for
parameters of the Bern2.5D climate model. That is, for
a vector of parameters � � (�1, . . . , �p) and observa-
tions y � (y1, . . . , ym), we calculate the multivariate
posterior probability density of the parameters given
the data according to Bayes’ theorem:

p�� |y� � ��y, ��p���, �3�

where �(y, �) is the likelihood function (the conditional
probability density of the observations y given the pa-

rameters �) and p(�) is the prior probability density for
the vector of parameters.

For the computation of the posterior distribution, we
apply a Metropolis–Hastings Markov chain algorithm
with componentwise transitions (Gamerman 1997, sec-
tion 6.4.1) using the computer program UNCSIM
(Reichert 2005). To this end the vector of parameters is
divided into two blocks (see section 2c for details).
Componentwise transitions can accelerate the conver-
gence of the chain because the rejection rate in each
step of the algorithm may decrease. The sample size
is 150 000 for all distributions presented in this paper.
The corresponding probability density functions were
estimated with a kernel density estimator (Silverman
1986).

The observations that we use consist of global annual
mean surface temperature data (Jones and Moberg
2003) from the years 1861 to 2003 and annual mean
change in World Ocean heat content down to 700-m
depth (Levitus et al. 2005) from the years 1955 to 2003.
Both datasets are publicly available. Thus the length m
of vector y is 192.

We can write the likelihood function as

��y, �� � p� �y � yM���, �4�

where yM is the output of the deterministic climate
model, and p� is the probability density function of a
random variable � with E[�] � 0.

The likelihood function implies an assumption on the
distribution of the measurements around the computer
model simulation, assuming that the computer model
reproduces the trend in the data correctly. This distri-
bution comprises the observational error as well as a
statistical model for the natural processes that are not
included in the dynamics of the climate model. These
processes are called climate variability and are assumed
to be stationary in the long run.

In section 3 we assess the sensitivity of the uncer-
tainty analysis to the assumptions contained in the
baseline likelihood function. Also, in section 3a we
compare the distribution of residuals (the differences
between data and the computer model) with the statis-
tical error model formulated as the likelihood function
in the baseline case.

We assume that the observation errors are indepen-
dent from each other. The corresponding standard de-
viations for surface temperature and change in ocean
heat content are taken from Jones and Moberg (2003)
and Levitus et al. (2005), respectively. We are left to
specify the variance–covariance structure of the climate
variability part of the likelihood function.

We cannot estimate natural variability from data
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alone because of the difficulty in separating natural
variability from the underlying trend and because the
data time series are relatively short. As is common
practice in climate change attribution and detection
studies (cf., e.g., Stott et al. 2001), we therefore consider
a control run of a complex climate model, in our case
the Third Hadley Centre Coupled Ocean–Atmosphere
General Circulation Model (HadCM3) [see Collins et
al. (2001) for a detailed discussion of the internal vari-
ability of HadCM3], as a representation of climate vari-
ability. This control run contains processes such as
short-term weather fluctuations and ENSO-related
variability that are not included in the parameteriza-
tions of the Bern2.5D model.

The control run has a length of 341 yr and was first
detrended by a local polynomial fit. We then estimated
the autocovariance in the HadCM3 control run time
series of global annual mean surface temperature and
annual mean change of World Ocean heat content
down to 700 m. For the cross correlation, we first fitted
autoregressive processes to each time series [the
Akaike information criterion (AIC) selected a process
of order 3 for global annual mean temperature and a
process of order 19 for annual mean change of World
Ocean heat content down to 700 m] and then estimated
the cross correlation of the residuals. From this, the
cross correlation of the original time series can be cal-
culated. We found this cross correlation to be insignifi-
cant. The cross covariance in � between global average
annual mean surface temperature and annual mean
change of World Ocean heat content was therefore set
to zero.

Under the assumption that � is Gaussian, the vari-
ance–covariance matrix � of � is the sum of the diago-
nal matrix D that contains the variances of the obser-

vational error and the matrix � that is made up of the
estimated variance–covariance structure of climate
variability (see Berliner et al. 2000 for the precise ar-
gument).

c. Parameters and prior distributions

We present a comprehensive Bayesian uncertainty
analysis of climate system properties that includes 12
parameters of the Bern2.5D climate model. Although
in the following we will focus on the marginal posterior
distributions of climate sensitivity under different sta-
tistical assumptions, our study produces a multivariate
posterior distribution of all the considered parameters.

The set of considered parameters consists of the cli-
mate sensitivity S, the vertical ocean diffusivity K�, the
transfer coefficient for sensible heat D [see Eq. (2)],
and nine forcing scale parameters.

Although latent heat dominates the heat exchange
between ocean and atmosphere, in the final analysis we
included only the transfer coefficient D of sensible heat
and not the bulk coefficient of evaporation cE, since in
our climate model the influence of cE on the ocean heat
uptake is limited. Because in the model the atmosphere
has no capacity to store water, the moisture evaporated
in one ocean cell of the climate model falls as precipi-
tation in the same time step in another ocean cell, and
therefore the exchange of energy between ocean and
atmosphere globally is independent of the value of cE.

The forcing parameters consist of multiplicative di-
mensionless factors by which the historical forcing re-
constructions for the various atmospheric components
were individually scaled (see Table 1). This includes a
scale parameter sindir for the indirect aerosol forcing
(Knutti et al. 2002). Greenhouse gases CO2, CH4, N2O,
SF6, and halocarbons are combined in one group. The

TABLE 1. Parameters and prior distributions.

Parameter Distribution Mean Std dev

Climate sensitivity S Uniform 5.5a K 2.6a K
Vertical ocean diffusivity K� Uniform 8.25b 10�5 m2 s�1 4.0b 10�5 m2 s�1

Transfer coefficient D Normal 10 W m�2 K�1 2.5 W m�2 K�1

Greenhouse gas forcing scale sGHG Normal 1 0.05
Stratospheric O3 forcing scale sstratO3

Normal 1 0.335
Tropospheric O3 forcing scale stropO3

Normal 1 0.215
Direct aerosol forcing scale sdir Lognormal 1 0.375
Indirect aerosol forcing scale sindir Uniform 1.5c 0.58c

Organic and black carbon forcing scale scarbon Lognormal 1.163 0.69
Stratospheric water vapor forcing scale sstratH2O Lognormal 1.163 0.69
Volcanic forcing scale svolc Lognormal 0.9 0.379
Solar forcing scale ssolar Normal 1 0.335

a Implies a range of [1, 10].
b Implies a range of [1.375, 15.125].
c Implies a range of [0.5, 2.5].
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standard deviations of the prior distributions for the
forcing scale parameters are derived from the assump-
tion that the uncertainties given by IPCC in the Third
Assessment Report (Houghton et al. 2001) represent a
range of �1 standard deviation. A Gaussian prior dis-
tribution is assumed where the uncertainties are given
in percent, and a lognormal distribution is used where
the uncertainty is given as a factor (Knutti et al. 2003).

For climate sensitivity and the vertical ocean diffu-
sivity, a uniform prior distribution is applied in our
baseline assumptions (but see section 3b for different
prior assumptions on climate sensitivity S). The uni-
form prior for climate sensitivity is restricted to the
interval [1, 10] because the climate sensitivity S of the
model is controlled by the parameter � [see Eq. (1)].
The relation between S and � is nonlinear and approxi-
mated numerically. This approximation is only accurate
on the interval [1, 10]. Similarly, the uniform prior for
K� is restricted to the interval [1.375, 15.125]. Previous
studies (and the results of the present paper) suggest
that these are reasonable ranges (Knutti et al. 2003).

For the transfer coefficient of sensible heat D an ob-
jectively estimated best-guess value is available (Haney
1971) and a Gaussian prior was used [for uncertainty
estimates see also Ganachaud and Wunsch (2000)].

In Table 1 all the parameters with the baseline prior
distributions are listed. For simplicity we assume a
priori that all parameters are independent. Note that all
prior distributions used are proper.

For the computation of the Markov chain Monte
Carlo samples from the various posterior distributions,
the 12-dimensional vector of parameters was divided
into two blocks (cf. section 2b). One block contains all
the forcing scale parameters except for the indirect
aerosol forcing scale, and the second block contains
climate sensitivity S, the indirect aerosol forcing scale,
vertical ocean diffusivity K�, and the transfer coefficient
for sensible heat D. The two blocks are then sequen-
tially updated in each iteration of the Markov chain
Monte Carlo algorithm.

d. Classes of priors

The use of informative prior distributions in a Bayes-
ian uncertainty analysis for climate sensitivity is contro-
versial. One might argue that the knowledge used to
construct such priors draws at least partly on the same
observational evidence as that used in the Bayesian up-

date procedure. That is why uniform priors have been
used in some previous studies.

Nevertheless, the use of a uniform prior for climate
sensitivity is itself questionable for another reason
(Frame et al. 2005). In the literature, instead of climate
sensitivity S one often encounters the feedback param-
eter � defined as � � Fdouble/S where Fdouble is the
forcing that corresponds to a doubling of CO2 concen-
trations with respect to preindustrial times. If there is
no prior knowledge on the climate sensitivity, then
clearly there is no prior knowledge on the parameter �.
�he use of a uniform prior on � nevertheless implies a
prior for climate sensitivity that is far from being uni-
form. This suggests that there are difficulties with uni-
form priors as a model of prior ignorance.

Jeffreys (1946) proposed to use “Jeffreys’ prior,”
which is proportional to the square root of the Fisher
information and therefore invariant under invertible
parameter transformations, in cases of prior ignorance
(see, e.g., Gelman et al. 1995, section 2.8 for a more
extensive discussion). But in circumstances where the
likelihood function is not given explicitly as a function
of the parameters and has to be approximated by a
Monte Carlo sample using a multitude of computer
model simulations, the application of Jeffreys’ prior is
not a feasible option.

According to robust Bayesian practice, we take a
somewhat different stance and introduce a nonpara-
metric set of prior distributions for climate sensitivity
that includes the uniform distribution as well as other
informative priors. This entire set of prior distributions
is then updated according to Bayes’ theorem, which
results in a set of posterior distributions.

There are several advantages to this approach. First,
it allows the introduction of measures of the sensitivity
of the uncertainty analysis to prior assumptions. Sec-
ond, sets of distributions allow for better models of
prior ignorance (Pericchi and Walley 1991).

There are different classes of distributions commonly
used in robust Bayesian analysis, for example, mixture
class, contamination class, density-bounded class, and
density ratio class [see Berger (1994) for an overview
and Borsuk and Tomassini (2005) for a discussion of
different classes in the context of climate change assess-
ment].

In the present paper we make use of the density ratio
class of distributions (De Robertis and Hartigan 1981).
This is defined by the set of distributions of the form

B�l, u� � �p ∈ C���|p �
q

�
�

q d�

, l�x� � q�x� � u�x�	x ∈ �� , �5�
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where l and u are specific functions, called the lower
bound and the upper bound, respectively, of B(l, u).

In other words, for any probability density function p
in B(l, u) there is a continuous function q, which is
bounded by l and u, such that p is equal to q times a
normalizing constant (which guarantees that p is nor-
malized to 1).

Figure 1 shows an example of a density ratio class of
distributions for a parameter �, with upper bound u and
lower bound l.

The probability density functions contained in this
set of distributions are by definition all probability den-
sities for which the shape can be placed within the up-
per and lower bounds, regardless of the normalization.

e. Calculation of the set of posterior distributions

We opted for the density ratio class because it enjoys
the important property of update invariance (De Rob-
ertis and Hartigan 1981). This means that updating all
distributions contained in B(l, u) according to Bayes’
theorem results again in a set of distributions of density
ratio class B(l̃, ũ), with new bounds l̃ and ũ. This allows
for incremental learning by updating the set of prior
distributions sequentially (when more data become
available), for a concise graphical representation of the
posterior class, and for simple and inexpensive compu-
tations of upper and lower posterior probabilities (and,
more generally, expectations).

The calculation of the posterior bounds l̃ and ũ is
based on the observation that the ratio �(x) � u(x)/l(x)
between the upper and lower bounds is invariant under

updating, that is, �̃(x) � (ũ(x)/l̃(x)) � �(x). One can
therefore choose a certain reference prior pr(x) �
cq(x), l(x) � q(x) � u(x), (where c is the appropriate
normalization constant) in the prior class, calculate the
prior ratios �lr � l(x)/q(x) and �ur � u(x)/q(x), and
produce a Markov chain Monte Carlo sample of the
posterior p̃r. The posterior lower bound is then sim-
ply l̃(x) � p̃r(x)�lr(x) and similar for the posterior upper
bound ũ(x) � p̃r(x)�ur(x). For a more general discussion
(but using the same principle) see Geweke and Petrella
(1998).

Note that in order to calculate the upper and lower
bound of the posterior class only one single standard
Markov chain Monte Carlo sample has to be produced.
Robust Bayesian analysis using the density ratio class
does not therefore substantially increase the computa-
tional burden compared to standard Bayesian calcula-
tions.

3. Results

a. Results under baseline assumptions

We present the marginal posterior distribution for all
parameters included in the uncertainty analysis with
our baseline prior distributions (as described in sec-
tion 2c).

In the baseline case, we assume a Gaussian likeli-
hood function. The variance–covariance matrix of the
likelihood function is estimated as described in sec-
tion 2b.

For the baseline case, we scaled the observational
standard deviation of the ocean heat content data by a
factor of 1.5. We believe this is justified because in the
calculation of the observational error not all types of
uncertainties are considered (Levitus et al. 2005). The
observations for heat content are sparse in some re-
gions of the earth, especially in the Southern Ocean,
and there is considerable uncertainty in the choice of an
interpolation scheme between data points [see Gregory
et al. (2004) for a thorough discussion of this issue].

Also, for the baseline case, we scaled our estimate of
the autocovariance in the climate variability for ocean
heat content by a factor of 1.25 to account for the fact
that there is some variance in the control runs of
HadCM3 for ocean heat content and that complex cli-
mate models tend to underestimate the climate vari-
ability of ocean heat content [Collins et al. (2001); Gent
and Danabasoglu (2004) for a detailed discussion of this
point with respect to the Community Climate Model
version 2].

For the surface temperature data, no such scaling was
introduced since these observations are more reliable

FIG. 1. Example of a set of distributions of the density ratio
class with upper bound u and lower bound l.
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(Jones et al. 2001; Jones and Moberg 2003) and climate
variability is believed to be well reproduced by
HadCM3 (Collins et al. 2001).

In section 3c we will investigate the sensitivity of our
results to scalings of the observational error as well as
the estimate of climate variability.

In Fig. 2 the marginal prior and posterior probability
distributions for all parameters under baseline statisti-
cal assumptions are summarized. Some posterior distri-
butions seem to be multimodal. The multimodality of
the marginal posterior for the transfer coefficient of
sensible heat D is probably caused by lack of full con-

FIG. 2. Solid lines: Posterior distributions of all parameters under baseline statistical assumptions. Dashed lines: Assumed prior
distributions (for details on definitions of the prior distributions and the units of the parameters see Table 1). The vertical axes denote
the density of the distributions. (a) Greenhouse gas forcing; (b) stratospheric O3 forcing; (c) tropospheric O3 forcing; (d) direct aerosol
forcing; (e) indirect aerosol forcing; (f) organic and black carbon forcing; (g) stratospheric H2O forcing; (h) volcanic forcing; (i) solar
forcing; (j) climate sensitivity S; (k) vertical ocean diffusivity K� ; and (l) transfer coefficient D of sensible heat.
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vergence. The coefficient D is expected to be insuffi-
ciently identifiable by the data used in this analysis, and
the posterior distribution is supposed to converge to the
prior distribution in this case. However, the influence of
D on the uncertainty analysis for the remaining param-
eters appears to be minor anyway. The multimodality
of K� on the other hand seems to be genuine. Figure 3
shows a plot of the trace of the 150 000 iterations of the
Markov chain for the three most important parameters:
climate sensitivity S, vertical ocean diffusivity K�, and
the indirect aerosol forcing scale. The trace plot of K�

shows the rather typical pattern caused by a multimodal
posterior distribution.

The multimodality of the posterior distribution for

K� may be due to the limited number of degrees of
freedom of the relatively simple model and the small
number of observations. It cannot be concluded that
the multimodality of the distribution of K� is a univer-
sal, model-independent phenomenon. To our knowl-
edge, there is no physical, model-independent evidence
that K� should have a multimodal distribution.

Also the possibility that the Markov chain has not
fully converged can never be completely excluded.
Convergence is intrinsically slow if the target distribu-
tion is multimodal. However, the trace plots of the forc-
ing scale parameters (including the ones not shown in
Fig. 3) indicate good convergence of the respective
marginal distributions.

FIG. 3. Trace plot of the Markov chain Monte Carlo sample of size 150 000 for (top) climate sensitivity S,
(middle) indirect aerosol forcing scale, and (bottom) vertical ocean diffusivity K� . The trace of K� hints at a
multimodal marginal posterior distribution for K� .
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Besides the marginal posterior distributions, the
correlations between parameters are of interest. Fig-
ure 4 depicts plots of pairs of parameters from the
Markov chain Monte Carlo sample for climate sen-
sitivity S, the indirect aerosol forcing scale, and the ver-
tical ocean diffusivity K�. The pairs plots suggest
that the full multidimensional posterior distribution
has a very complicated structure and is not character-
ized by clear and distinct correlations between the pa-
rameters.

Figure 5 shows the model simulation with parameter
values derived from the Bayesian parameter estima-
tion. The parameter values correspond to the highest
posterior probability density value of the full 12-dimen-
sional posterior probability distribution. The difference
between model output and observations is supposed to
be accounted for by the statistical model of the obser-
vational error and climate variability. The shaded area
represents �2 standard deviations of the statistical er-
ror model formulated by means of the baseline likeli-

FIG. 4. Plots of pairs of parameters from the Markov chain Monte Carlo posterior sample for climate sensitivity S, vertical ocean
diffusivity K� , and the indirect aerosol forcing scale. Only every 10th sample point is shown, a total of 15 000 points in each panel.
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hood function (the assumed correlation cannot be vi-
sualized in this figure).

Figure 6 presents quantile–quantile plots of the re-
siduals (differences between the data and the best fit
solution shown in Fig. 5) versus samples of the distri-
bution of the statistical error model specified by means
of the likelihood function for surface temperature
and ocean heat uptake. If the data are well represented

by the likelihood model, the points will fall on the
1:1 line. Whereas for surface temperature the statis-
tical error model is overall adequate, there seem to
be systematic deviations for ocean heat uptake in
the region of high values. However, it has to be consid-
ered that the data time series is short compared to the
range of the correlation in the HadCM3 control run
for ocean heat uptake that serves as a model of cli-

FIG. 5. (top) Model-simulated anomalies in global mean surface temperature relative to 1961–90 (solid
line) for the parameter set with the highest posterior probability density value (climate sensitivity S �
2.49°C, vertical ocean diffusivity K� � 6.46 � 10�5 m2 s�1). Observed annual mean values of global
surface temperature are given as dots (Jones and Moberg 2003). (bottom) Model simulated anomalies
in global mean ocean heat change down to 700 m relative to 1955–95 (solid line) for the parameter set
with the highest posterior probability density value (same values as for the top panel). Observed annual
mean ocean heat change down to 700 m is given as dots (Levitus et al. 2005). The shaded area represents
�2 standard deviations of the statistical error model formulated by means of the baseline likelihood
function (the assumed correlation cannot be depicted in this figure).
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mate variability (cf. section 2b). The difference be-
tween the distribution of the residuals versus the statis-
tical error model might diminish if the data time series
for ocean heat uptake spanned over a time period of
100 yr or more (and not just 49 yr as in our analysis,
section 2b).

There is a discussion in the literature (e.g., Foukal et
al. 2004) that the solar forcing has been overestimated
in the past. Our results (Fig. 2i) suggest that the scaling
factor for the solar forcing is overestimated by about
25%, that is, variations in solar forcing might be
slightly overestimated in the reconstruction used here.
This is consistent with recent findings that question
the existence of long-term changes in solar irradiance
and suggest that they might be substantially smaller
than estimated in early reconstructions. However, it
should be noted that the energy balance model used
here neglects any possible indirect effects of solar vari-
ability on temperature. These include variations in the
solar ultraviolet portion of the spectrum that affect
stratospheric ozone concentrations, which in turn
change incoming solar and outgoing infrared variations.
These produce thermal gradients that drive motion and
alter circulation patterns and therefore can influence
global temperature by processes other than just the to-
tal amount of energy arriving at the top of the atmo-
sphere.

The marginal posterior distribution for climate sen-
sitivity under the described baseline assumptions is the
focus of our analysis (Fig. 2j). The probability that the
climate sensitivity S lies above 4.5°C is 0.16 in this case.

The sensitivity of this result to prior assumptions will be
investigated in section 3b.

b. Prior robustness

We defined a set of prior distributions of density ra-
tio class (see section 2d) for climate sensitivity S with
lower bound l and upper bound u as shown in Fig. 7a.
These bounds were chosen in such a way that B(l, u)
contains the uniform distribution as well as several ex-
pert priors on climate sensitivity of Morgan and Keith
(1995). Of course it would be desirable to elicit the
bounds l and u from experts directly, but appropriate
elicitation techniques have yet to be developed.

The upper bound is a rescaled density function of the
uniform distribution restricted to the interval [1, 10].
The lower bound is a rescaled density of the lognormal
distribution with mean m � 3 and standard deviation
std � 1.2 (again restricted to [1, 10]). Expert priors for
climate sensitivity often have the form of a lognormal
distribution, and the value of 3°C is a reasonable best
estimate for climate sensitivity. The prior distributions
for all the other parameters were kept fixed.

If we update all prior distributions that are contained
in B(l, u) according to Bayes’ theorem using the base-
line likelihood function, we get a set of posterior dis-
tributions B(l̃, ũ) that is again characterized by upper
and lower bounds l̃ and ũ, as shown in Fig. 7b (see
section 2e for more details; in the present case we chose
the uniform prior on the interval [1, 10] as our reference
prior pr).

As a measure of sensitivity of our analysis to the

FIG. 6. Quantile–quantile plots of the residuals (differences between the data and the best fit solution shown in
Fig. 5) vs samples of the distribution of the statistical error model specified by means of the likelihood function for
(left) surface temperature and (right) ocean heat uptake. If the data are well represented by the model, the points
will fall on the 1:1 line.
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prior assumption on climate sensitivity, we calculated
the upper and lower posterior probabilities of the event
that S lies above 4.5°C. This yielded an upper probabil-
ity of 0.24 and a lower probability of 0.01, which can be
compared to the (precise) probability of 0.16 in the
baseline case (see section 3a).

We emphasize that the exact numbers of these upper
and lower probabilities are not of primary importance.
Rather they serve as a measure of sensitivity to assess
the influence of prior assumptions on the uncertainty
analysis. Also recall that the likelihood function was
kept fixed in this calculation.

From Fig. 7b one can see that prior assumptions con-
siderably influence the upper tail of the posterior dis-
tribution. Large climate sensitivities cannot be ex-
cluded by means of the data alone. However, the use of
a uniform prior for the feedback parameter � would
imply a strongly informative prior for climate sensitivity
S, which would result, after Bayesian updating, in a
posterior distribution for climate sensitivity whose sup-
port is almost exclusively bounded to the [1.5, 4.5]
range [see Allen et al. (2005) for a further discussion of
this point].

c. Likelihood robustness

1) OBSERVATIONAL ERROR OF SURFACE

TEMPERATURE DATA

The scaling of the observational error of the sur-
face temperature data (Jones and Moberg 2003)
may influence the uncertainty analysis. Figure 8a (solid
line) shows the marginal posterior distribution of
climate sensitivity after a scaling of the observa-

tional error of the surface temperature data by a factor
of 1.5.

The difference between the two distributions is
within sampling uncertainty and therefore considered
to be insignificant.

2) SURFACE TEMPERATURE VARIABILITY

The effect of a scaling of the estimated natural vari-
ability in surface temperature on the uncertainty analy-
sis is addressed next. Recall that this variability was
estimated using a HadCM3 control integration.

Figure 8b (solid line) depicts the marginal posterior
distribution of climate sensitivity after a scaling of the
estimated variance–covariance matrix of natural vari-
ability by a factor of 2. A narrowing of the distribution
can be observed.

This might seem somewhat surprising at first, as the
likelihood function is widened by the scaling. Neverthe-
less the increase of the natural variability in surface
temperature gives less weight to the strong surface tem-
perature increase in the last 30 yr compared to the
whole temperature time series, which in turn reduces
the likelihood of very large values for climate sensitivi-
ties. This effect corresponds to the fact that a strong
climate reaction caused by anthropogenic CO2 emis-
sions is more difficult to detect if natural variability in
surface temperature is assumed to be large.

3) OBSERVATIONAL ERROR OF OCEAN HEAT

CONTENT CHANGE

In this section we investigate the effect of a scaling of
the observational error of the ocean heat content data
(Levitus et al. 2005) on the uncertainty analysis.

FIG. 7. (a) Set of prior distributions for climate sensitivity characterized by the lower bound l and the upper
bound u; (b) set of posterior distributions of climate sensitivity after updating all distributions in the prior set. The
set of posterior distributions is again characterized by lower and upper bounds.
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Figure 8c shows the marginal posterior distribution
of climate sensitivity after a scaling of the observational
error of the ocean heat content data by a factor of
socean

data � 1.25 (dotted line). The dashed line is the base-
line case. Recall that for the baseline case the observa-

tional error of the ocean heat content data was scaled
by a factor of 1.5. Finally, the solid line represents the
marginal posterior distribution of climate sensitivity
with socean

data � 1.8.
The widening of the distribution that can be observed

FIG. 8. (a)–(f) Posterior distributions of climate sensitivity under different likelihood functions. (a) Solid line:
observational error of surface temperature data scaled by a factor of 1.5; dashed line: baseline case. (b) Solid line:
surface temperature variability scaled by a factor of 2; dashed line: baseline case. (c) Dotted line: observational
error of the ocean heat content change data scaled by a factor of 1.25; dashed line: baseline case (observational
error of the ocean heat content change data scaled by a factor of 1.5); solid line: observational error of the ocean
heat content change data scaled by a factor of 1.8. (d) Dotted line: no scaling of the estimate of natural variability
of ocean heat content change; dashed line: baseline case (estimate of natural variability of ocean heat content
change scaled by a factor of 1.25); solid line: estimate of natural variability of ocean heat content change scaled by
a factor of 1.5. (e) Solid line: posterior distribution of climate sensitivity derived by means of a likelihood function
that consists of the density of a multivariate t distribution with 3 degrees of freedom; dashed line: baseline case. (f)
Solid line: posterior distribution of climate sensitivity derived without considering the ocean heat content change
data of Levitus et al. (2005); dashed line: baseline case with the ocean heat content change data included.
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when comparing the dotted and the solid lines indicates
that the data on the change in ocean heat content help
to constrain the distribution of climate sensitivity. See
section 3d for a further discussion of this point.

4) OCEAN HEAT CONTENT VARIABILITY

Figure 8d depicts the marginal posterior distribution
of climate sensitivity without any scaling of the natural
variability of the change in ocean heat content (dotted
line). The solid line corresponds to socean

var � 1.5. The
dashed line again is the baseline case, for which the
natural variability of change in ocean heat content, es-
timated from a HadCM3 control run, was scaled by a
factor of socean

var � 1.25.
An increase of the assumed natural variability in the

change in ocean heat content results in a somewhat
more pronounced tail of the posterior distribution of
climate sensitivity. The general width of the distribu-
tion though is not significantly affected in the range of
the scaling that was considered.

5) DISTRIBUTIONAL ASSUMPTION

In this section, we present the marginal posterior dis-
tribution of climate sensitivity with the same variance–
covariance structure in the likelihood function as in the
baseline case but with a likelihood function assumed to
be the density of a multivariate t distribution with 3
degrees of freedom instead of a multivariate normal
distribution. The small number of degrees of freedom
was chosen in order to let the likelihood function
become distinctly heavy tailed. The result is shown in
Fig. 8e

We do not suggest that a t-distributed likelihood
function would be more appropriate than a normal like-
lihood. Annual means of globally averaged climate ob-
servations, as drawn upon in this study, do not show a
distinct extreme event pattern that would justify the use
of a particularly heavy-tailed distribution. The results
of this section should be interpreted in the sense of a
sensitivity study with respect to assumptions on the
likelihood function. Nevertheless the use of the prob-
ability density of a multivariate t distribution as likeli-
hood function is not unsubstantiated. In the present
study we assume that the variance–covariance structure
that enters the likelihood function is known and can be
determined independently from the data used (in our
case it was estimated using a HadCM3 control run, see
section 2b). If however the variance–covariance struc-
ture was considered uncertain, this would lead to a like-
lihood function for the standardized residuals that is the
density of a multivariate t distribution.

d. Ocean heat content change data

In this section we quantify the effect of learning from
the ocean heat change data (Levitus et al. 2005). Figure
8f shows the posterior probability density of climate
sensitivity under baseline statistical assumptions but
without the ocean heat change data included. Only the
surface temperature record is considered.

A comparison against the posterior distribution with
the ocean heat change data included reveals that the
ocean heat content change data considerably help to
constrain climate sensitivity in the present study.

4. Discussion

The posterior probability distribution for climate
sensitivity that was derived under our baseline statisti-
cal assumptions is in line with the results of other stud-
ies (Andronova and Schlesinger 2001; Forest et al.
2002; Murphy et al. 2004). Compared to previous work
with the same Bern2.5D climate model (Knutti et al.
2002, 2003), we succeeded in further constraining cli-
mate sensitivity. This was accomplished mainly by for-
mulating a more realistic statistical error model for the
observations.

We took advantage of past global surface tempera-
ture and change in ocean heat content records that con-
sist of yearly measurements. This led to more con-
strained posterior distributions compared to studies
where differences of zonal means between specific time
periods were used (Forest et al. 2006). Clearly, the in-
clusion of data related to the seasonal cycle in the un-
certainty analysis would improve the results and most
probably further narrow the distributions (Knutti et al.
2006).

Given a set of plausible priors, the range of posterior
probabilities of the event that climate sensitivity lies
above 4.5°C is considerable given the important politi-
cal implications and highlights the significance of a
careful choice of a prior distribution. However, it
should be noted in this context that tails of distributions
are intrinsically difficult to estimate.

The use of a nonparametric set of prior distributions
of the density ratio class is computationally inexpensive
and suitable for assessing the sensitivity of the uncer-
tainty analysis to prior assumptions. It is, in our opin-
ion, to be favored over ad hoc choices of prior distri-
butions.

An important result of our study is the finding that
the estimate of natural variability in surface tempera-
ture has a quite significant effect on the uncertainty
analysis: large natural variability in surface temperature
leads to a narrower distribution for climate sensitivity.
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This should be considered in other, similar studies.
However, natural variability in surface temperature es-
timated by control runs of complex general circulation
models is generally believed to be realistic and there-
fore well represented in our baseline case.

Our sensitivity analysis with respect to the influence
of ocean heat uptake observations on the uncertainty
analysis suggests that there is indeed a significant po-
tential in ocean diagnostics to constrain climate sensi-
tivity (Barnett et al. 2001). However, this potential is
hampered by the fact that natural variability in change
of World Ocean heat content is difficult to estimate.
Also a comprehensive analysis of the observational er-
ror and the reliability of the dataset is lacking (Gregory
et al. 2004). Our study accentuates the need for a
greater effort in monitoring ocean temperature and un-
derstanding its natural variability.

Certain main characteristics are shared by all esti-
mated distributions of climate sensitivity under the
various statistical assumptions, such as the general
shape and the region of highest likelihood.

Our work makes a first step toward a more appro-
priate representation of uncertainty in climate system
properties by conducting an extensive sensitivity analy-
sis with respect to statistical assumptions. Robust
Bayesian analysis proves to be a useful framework for
this purpose. Using sets of probability distributions in-
stead of single distributions whenever computationally
feasible not only allows for a better communication of
uncertainties to policy makers but also provides a
sound basis for further developments in decision and
risk theory.
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