
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
2
5
5
6
9
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
2
0
.
3
.
2
0
2
4

Clim. Past, 3, 1–14, 2007
www.clim-past.net/3/1/2007/
© Author(s) 2007. This work is licensed
under a Creative Commons License.

Climate
of the Past

Exposure dating of Late Glacial and pre-LGM moraines in the
Cordon de Doña Rosa, Northern/Central Chile (∼31◦ S)

R. Zech1, Ch. Kull 2, P. W. Kubik 3, and H. Veit1

1Geographical Institute, University of Bern, Hallerstr. 12, 3012 Bern, Switzerland
2PAGES IPO, Sulgeneckstrasse 38, 3007 Bern, Switzerland
3Paul Scherrer Institute c/o Institute of Particle Physics, ETH Zurich, 8093 Zurich, Switzerland

Received: 10 August 2006 – Published in Clim. Past Discuss.: 25 September 2006
Revised: 6 December 2006 – Accepted: 21 December 2006 – Published: 15 January 2007

Abstract. Despite the important role of the Central Andes
(15–30◦ S) for climate reconstruction, knowledge about the
Quaternary glaciation is very limited due to the scarcity of or-
ganic material for radiocarbon dating. We applied10Be sur-
face exposure dating (SED) on 22 boulders from moraines in
the Cordon de Dõna Rosa, Northern/Central Chile (∼31◦ S).
The results show that several glacial advances in the south-
ern Central Andes occurred during the Late Glacial between
∼14.7±1.5 and 11.6±1.2 ka. A much more extensive glacia-
tion is dated to∼32±3 ka, predating the temperature mini-
mum of the global LGM (Last Glacial Maximum:∼20 ka).
Reviewing these results in the paleoclimatic context, we con-
clude that the Late Glacial advances were most likely caused
by an intensification of the tropical circulation and a cor-
responding increase in summer precipitation. High-latitude
temperatures minima, e.g. the Younger Dryas (YD) and
the Antarctic Cold Reversal (ACR) may have triggered in-
dividual advances, but current systematic exposure age un-
certainties limit precise correlations. The absence of LGM
moraines indicates that moisture advection was too limited
to allow significant glacial advances at∼20 ka. The tropical
circulation was less intensive despite the maximum in aus-
tral summer insolation. Winter precipitation was apparently
also insufficient, although pollen and marine studies indicate
a northward shift of the westerlies at that time. The domi-
nant pre-LGM glacial advances in Northern/Central Chile at
∼32 ka required lower temperatures and increased precipita-
tion than today. We conclude that the westerlies were more
intense and/or shifted equatorward, possibly due to increased
snow and ice cover at higher southern latitudes coinciding
with a minimum of insolation.

Correspondence to:R. Zech
(roland.zech@giub.unibe.ch)

1 Introduction

Surface exposure dating is a new, innovative method based
on in-situ production and accumulation of so-called cosmo-
genic nuclides (e.g.10Be,26Al and 36Cl) within the first few
decimetres of an exposed rock surface (Gosse and Phillips,
2001). It can be applied to determine the deposition age of
boulders and moraines, respectively. Several recent studies
have shown that SED is already a powerful tool for glacial
and climate reconstructions (e.g. Briner et al., 2005; Owen et
al., 2005; Shulmeister et al., 2005; Smith et al., 2005).

So far, very little is known about the glaciation history in
the Central Andes, mainly due to the lack of organic ma-
terial for radiocarbon dating (Harrison, 2004; Heine, 2004;
Veit, 2006). The Central Andes play, however, an im-
portant role in Quaternary climate reconstruction, because
they are situated at the transition zone between the tropi-
cal and the mid-latitude atmospheric circulation system of
the PEP I transect (Pole-Equator-Pole American Transect:
www.pages.unibe.ch, Markgraf et al., 2000). Changes in
the intensity or latitudinal shifts of the circulation systems
should be recorded in suitable archives and provide valuable
information about forcings and mechanisms of the climate
system.

We have previously published results from the nearby
Encierro Valley (∼29◦ S, 11 samples), which indicated
that a prominent glacial advance occurred during the Late
Glacial (∼14.0±1.4 ka) (Zech et al., 2006). Several reces-
sional moraines were deposited before deglaciation at the
Pleistocene-Holocene transition (∼11.6±1.2 ka). An earlier
maximum glacial advance (>24.1±2.4 ka) had tentatively
been postulated based on a single boulder. Here, we now
present 22 additional10Be exposure ages from moraines in
the Cordon de Dõna Rosa, Northern/Central Chile (∼31◦ S,
Fig. 1). The aim of the present study is to evaluate the previ-
ous results from the Encierro Valley. Specifically, we tried
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Figure 1 

Location of the research area Cordon de Doña Rosa, as well as our previous research area Valle Encierro. The 

westerlies provide moisture to the Central Andes south of the Arid Diagonal. 
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Fig. 1. Location of the research area Cordon de Doña Rosa, as well as our previous research area Valle Encierro. The westerlies provide
moisture to the Central Andes south of the Arid Diagonal.

to (i) specify the succession of the Late Glacial advances
and (ii) to determine the timing of the earlier, more extensive
glacial advances. In addition, (iii) the paleoclimatic context
has been reviewed in more detail in order to identify possible
forcings on the glaciation in the southern Central Andes.

2 Climate and paleoclimate of Northern/Central Chile

Our research area is situated south of the “Arid Diagonal”
(Fig. 1). This is the transition zone between areas in the Cen-
tral Andes that are influenced by the westerlies (to the south)
and areas that are influenced by the tropical circulation sys-
tem (to the north). The westerlies provide moisture from the
Pacific. Their seasonal northward shift results in an austral
winter maximum. A steep precipitation gradient character-

izes the Andean rainfall at 4000 m altitude: annual precip-
itation exceeds 4000 mm at∼40◦ S, but rapidly decreases
to ∼2000 mm at∼35◦ S. Only 400 mm/a are available at
∼30◦ S, and rainfall further decreases to less than 100 mm/a
at 26◦ S (Vuille and Ammann, 1997). In the centre of the
Arid Diagonal aridity becomes so severe that no glaciers ex-
ist despite altitudes>6000 m a.s.l. (above sea level): that
is between 18◦ S (Vulcan Sajama) and 27◦ S (Cerro Tres
Cruzes) (Ammann et al., 2001). The fact that glaciers are
limited by precipitation rather than temperature has been de-
scribed as “thermal readiness” (Messerli, 1973). Eventually,
north of the Arid Diagonal, the tropical circulation system
provides moisture from the Atlantic and the Amazon Basin
(Zhou and Lau, 1998: “South American Summer Monsoon”
(SASM); Garreaud et al., 2003; Vuille and Keimig, 2004).

Clim. Past, 3, 1–14, 2007 www.clim-past.net/3/1/2007/
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Due to the steep humidity gradient, our research area is
a key site for the reconstruction of changes in the intensity
and/or shifts in the atmospheric circulation patterns. Nev-
ertheless, knowledge about Late Quaternary glacial and cli-
mate changes in the southern Central Andes is still very
limited (Garleff and Stingl, 1991; Veit, 1995; Garleff and
Stingl, 1998; Espizua, 2004; Harrison, 2004; Veit, 2006).
Large moraines have been mapped both north and south of
the Arid Diagonal (Jenny and Kammer, 1996; Ammann et
al., 2001). They document Late Pleistocene phases of sub-
stantially increased precipitation, but age control is almost
absent: North of the Arid Diagonal, they have been corre-
lated with the Late Glacial lake transgression phases, which
are well-documented on the Altiplano (“Tauca”:∼16–14 ka;
“Coipasa”:∼13–11 ka) (Clapperton et al., 1997; Clayton and
Clapperton, 1997; Geyh et al., 1999; Sylvestre et al., 1999;
Grosjean et al., 2001; Placzek et al., 2006). Evidence for
a Late Glacial humid phase disappears south of 25◦ S, both
concerning lacustrine and glacial deposits (Geyh et al., 1999;
Ammann et al., 2001). Amman et al. (2001) concluded that
the maximum glacial advances north and south of the Arid
Diagonal might not have occurred synchronously. The same
conclusion has been deduced from a glacier-climate model
that indicated a temperature depression of∼5.7◦C for the
prominent moraine (M-II) in the Encierro Valley (Kull et al.,
2002). This temperature depression is much stronger than the
ones calculated for the Western Cordillera at∼18◦ and 23◦ S
(2–3◦C), where the modelling results indicated very wet, rel-
atively warm “Late Glacial” climate conditions (Kull, 1999;
Kull and Grosjean, 2000). No age controls, however, have
been available so far to test whether the prominent moraines
south of the Arid Diagonal correlate with the LGM advances
dated in the Chilean Lake District (Lowell et al., 1995; Den-
ton et al., 1999).

As our previous dating efforts in the Encierro Valley re-
vealed a Late Glacial age for the prominent M-II moraine
(Zech et al., 2006:∼14.0±1.4 ka) but did not allow to deter-
mine the timing of the earlier, more extensive glaciation with
certainty (>24 ka), we decided to sample moraines for10Be
SED in the nearby Cordon de Doña Rosa.

3 Cordon de Dõna Rosa/sampling

The Cordon de Dõna Rosa (∼30◦42′ S, 70◦26′ W, Fig. 2)
lies ∼200 km south of the Encierro Valley and∼50 km east
of the town Monte Patria. The summits reach altitudes
of ∼4500 m a.s.l., but no glaciers exist there today. Large
prominent lateral moraines extend down to∼3000 m a.s.l.,
where they just reach the east-west oriented main val-
ley of the Rio Los Molles (DR5, DR6 and DR7, Fig. 3
Photo 1). Farther down-stream, the U-shaped-valley indi-
cates that a former, extensive glaciation reached as deep as
<2000 m a.s.l. (DR8, DR9 and DR10, Fig. 3 Photo 2). A
complex pattern of glacial deposits can be found up-stream

(>3300 m a.s.l., DR1-4, Fig. 3 Photos 3 and 4). These reces-
sional moraines are mostly not well-defined crest-like fea-
tures, but rather flat and smooth.

We sampled (i) the prominent lateral moraines (DR5, DR6
and DR7), (ii) boulders in the main valley (DR8, DR9 and
DR10) and (iii) the recessional moraines (DR1-DR4) for
10Be SED (see Fig. 2 for the exact sampling location). Ap-
proximately 0.5 kg rock surface material was chipped from
the top of the granite boulders with hammer and chisel.
We followed standard sampling strategies, i.e. preferring
large un-eroded boulders in a stable position. All samples
were documented by photograph (see supplementary mate-
rial), GPS (latitude, longitude, altitude) and a field descrip-
tion (including topographic shielding). The laboratory work
followed standard procedures (e.g. Ivy-Ochs, 1996), i.e. in
brief: separation of the quartz, dissolution in HF after a9Be
carrier has been added, purification of beryllium using an-
ion and cation exchange chromatography, precipitation and
oxidation of beryllium. The AMS measurements were con-
ducted by P. Kubik at the ETH/PSI tandem facility in Zurich.

4 Results and discussion

Exposure ages were calculated using the scaling system of
Desilets and Zreda (2003) and a reference production rate of
5.25 atoms a−1 g−1 SiO2 for neutron spallation. This value
has been derived from recalculation of cosmogenic nuclide
data of the K̈ofels landslide in Austria (Kubik et al., 1998;
Kubik and Ivy-Ochs, 2004, and three unpublished data from
Abramowski U., personal communication). Fast and slow
muon production rates at sea level and high latitude are 0.09
and 0.11 atoms a−1 g−1, respectively (Heisinger et al., 2002a;
Heisinger et al., 2002b). All exposure ages are corrected for
changes of the magnetic field intensity (data from McElhinny
and Senanayake, 1982, for the time<10 ka; and from Guy-
odo and Valet, 1996, for the time>10 ka). The dipole wob-
ble is accounted for during the last 10 ka (data according to
Ohno and Hamano, 1992). Before that time, a geocentrical
axial dipole can be assumed without inducing major errors.
All sample data and calculated exposure ages are given in Ta-
ble 1 and illustrated in their stratigraphical context in Fig. 2.

4.1 Sample-specific effects and uncertainties

Exposure ages of boulders do not necessarily reflect the de-
position age of the respective moraine. Too old boulders can
be explained with “inheritance”, i.e. pre-exposure. In gen-
eral, inheritance is assumed to affect less than 3% of the
samples (Shanahan and Zreda, 2000; Putkonen and Swan-
son, 2003). On the other side, too young samples can be the
result of rock surface erosion or post-depositional landform
surface instability: A recent chipping event of 10 cm, for
instance, leads to an underestimation of the deposition age
of ∼10%. Concerning landform surface instability, formerly

www.clim-past.net/3/1/2007/ Clim. Past, 3, 1–14, 2007
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Figure 2 (figure caption on next page) 
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Fig. 2. Geomorphological setting of the sampling locations (red dots) and exposure ages in ka.(a) Landsat image (RGB: 742) of the Cordon
de Dõna Rosa with its north-south tributary valleys joining into the east-west-oriented main valley of the Rio Los Molles.(b) Close-up
view of the prominent latero-frontal moraines and the recessional moraines. The dotted lines indicate terminal moraines, the dashed lines
latero-frontal ones. The arrows indicate the standpoints and views of the photographs 1 to 4. Nomenclature DRxy: DR = Dona Rosa, x =
sampling location/moraine, y = sample number.
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Figure 3 

Photo 1: View from the prominent latero-frontal moraine DR7 in northern direction onto the prominent lateral 

moraine DR6 and 5. Photo 2: View from sampling location DR8 down-valley in western direction. Note the U-

shape of the valley. Photo 3: View in northern direction onto the recessional terminal moraines DR1 to 4. Photo 

4: View from DR4 in north-western direction towards DR3. 
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Fig. 3. Photo 1: View from the prominent latero-frontal moraine DR7 in northern direction onto the prominent lateral moraine DR6 and 5.
Photo 2: View from sampling location DR8 down-valley in western direction. Note the U-shape of the valley. Photo 3: View in northern
direction onto the recessional terminal moraines DR1 to 4. Photo 4: View from DR4 in north-western direction towards DR3.

shielded rock surfaces can be exposed by a wide range of ge-
omorphological processes, like denudation of the surround-
ing soil matrix (Hallet and Putkonen, 1994; Putkonen and
Swanson, 2003), upheaval or rotation of boulders due to cry-
oturbational processes, and long-lasting ice-decay in case of
ice-cored moraines (Zech et al., 2005).

One can try to identify too old or too young samples based
on the overall stratigraphic and chronostratigraphic situation.
For this purpose, we plot all exposure ages in the order of the
anticipated relative chronology, i.e. from younger to older
from left to right (Fig. 4). The data scatter and the inconsis-
tencies are due to the aforementioned sample-specific effects
and the AMS measurement uncertainties (error bars). Note
that negligible sample-specific effects were omitted for sim-
plicity. These are topographic shielding (<1%, calculated
according to Dunne et al., 1999), sample thickness (negligi-
ble for chips<4 cm, Masarik and Reedy, 1995), and vegeta-
tion and snow cover (the vegetation cover is extremely sparse
and preferential sampling of large boulders minimizes snow
cover effects).

4.1.1 Late Glacial moraines

Two boulders from the stratigraphically youngest sampled
moraine have exposure ages of 11.6±0.5 and 12.8±0.5 ka
(DR11 and DR13, respectively. Note that these are only
AMS errors; systematic uncertainties are discussed later).
The two ages are indistinguishable within the AMS measure-
ment uncertainty. A single boulder has been dated from the
terminal moraine DR2. Its exposure age of 17.5±0.6 ka is
rejected, because it is inconsistent with the six younger expo-
sure ages from the moraines DR3 and DR4 down-valley (→

assumed inheritance). The terminal moraines DR3 and DR4
are dated with three exposure ages each to 11.7±0.5 (DR31),
13.2±0.4 (DR33) and 14.7±0.5 ka (DR32), and to 11.7±0.6
(DR41), 12.1±0.5 (DR43) and 12.5±0.5 ka (DR42).

In general, the application of the “oldest age model” can
be recommended (Zech et al., 2005). It suggests that the
oldest exposure age from a deposit is the best available esti-
mate for the deposition age, unless there are stratigraphical
inconsistencies. Unfortunately, this is the case for the Late
Glacial moraines in the Cordon de Doña Rosa. Here, DR4
would be younger than DR3, and both would be younger than
DR2. We therefore conservatively conclude that due to the
sample-specific effects (especially potential inheritance vs.

www.clim-past.net/3/1/2007/ Clim. Past, 3, 1–14, 2007
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Table 1. Sample data and exposure ages calculated according to Desilets and Zreda (2003).

Sample Latitude Longitude Altitude 10Be AMS SDa Exposure Age
◦ S ◦ W [m a.s.l.] [105 at/g SiO2] [%] [ka]b

Late Glacial moraines:
DR11 30.68 70.37 3806 7.657 3.8 11.6±0.5
DR13 30.68 70.37 3762 8.242 3.9 12.8±0.5
DR21 30.68 70.37 3734 11.283 3.9 17.5±0.6
DR31 30.68 70.36 3686 7.170 4.0 11.7±0.5
DR32 30.68 70.36 3683 9.057 3.7 14.7±0.5
DR33 30.68 70.36 3683 8.061 3.1 13.2±0.4
DR41 30.69 70.36 3614 6.895 5.3 11.7±0.6
DR42 30.69 70.36 3603 7.279 4.2 12.5±0.5
DR43 30.69 70.36 3591 7.019 3.9 12.1±0.5

Pre-LGM moraines:
DR51 30.71 70.36 3383 58.263 3.0 98.1±2.5
DR52 30.72 70.36 3376 17.993 3.0 32.1±0.8
DR61 30.72 70.36 3316 18.806 3.6 34.4±1.0
DR62 30.72 70.36 3317 16.685 3.3 31.1±0.9
DR71 30.72 70.37 3293 15.669 5.6 29.8±1.4
DR72 30.72 70.37 3294 7.554 4.2 15.6±0.6
DR73 30.73 70.37 3300 12.855 4.1 25.1±0.9

Maximum glaciation:
DR81 30.75 70.44 2536 10.043 4.3 31.7±1.2
DR82 30.75 70.44 2537 14.542 4.3 43.1±1.6
DR91 30.73 70.51 2058 5.920 4.4 27.2±1.0
DR92 30.73 70.51 2059 5.781 3.3 26.6±0.7
DR101 30.73 70.55 1772 2.791 10.5 16.8±1.6
DR102 30.73 70.55 1773 4.177 4.4 24.2±0.9

a AMS SD=1σ standard deviation of the AMS measurement
b including the propagated 1σ standard deviation of the AMS measurement

erosion/landform surface instability), it seems to be impos-
sible to determine the exact deposition age of the individual
Late Glacial moraines. Glacial advances occurred between
∼11.6 and 14.7 ka. Note that rejecting DR21 (17.5 ka) does
not alter the general paleoclimatic interpretation. Eventually,
Holocene warming (at∼11.6 ka) initiated deglaciation, melt-
ing of buried glacier ice and stabilization of the landform sur-
faces.

4.1.2 Pre-LGM moraines

The inner prominent latero-frontal moraine was sampled
close to a debris fan (DR5) and on a crest-like section (DR6).
Three of four boulders date the corresponding glacial ad-
vance to∼32 ka (DR62: 31.1±0.9, DR52: 32.1±0.8 and
DR61: 34.4±1.0 ka). The outlier DR51 (98.1±2.5 ka) likely
contains inherited10Be. The outer prominent moraine (DR7)
has apparently been affected more intensively by erosion.
This is indicated by the smoother morphology and signs of
weathering on many boulders. In fact, none of the three sam-
pled boulders on DR7 reaches an exposure age older than

the stratigraphically younger inner lateral moraine. Clos-
est is the stable, big boulder DR71 (29.8±1.4 ka). Boulder
DR73 (25.1±0.9 ka) is obviously eroded, and boulder DR72
(15.6±0.6 ka, Photo DR72) is in an unstable position and
might have toppled. The applicability of SED seems to have
reached its limits (set by erosion and landform surface insta-
bility).

4.1.3 Maximum glaciation

Exposure ages from boulders on moraine remnants of the
most extensive glaciation were obtained from three sites in
the U-shaped main valley (DR8, DR9 and DR10). The ages
range from 16.8±1.6 (DR101) to 43.1±1.6 ka (DR82). As
evident from Fig. 4, only two ages are not inconsistent re-
garding the stratigraphical context. In general, all boulders
show signs of weathering and are not ideally suited for SED.
We conclude that it is not possible to determine the age of
the most extensive glaciation. It must have occurred before
32 ka, probably much earlier, because of the intensive ero-
sion of the moraine remnants.

Clim. Past, 3, 1–14, 2007 www.clim-past.net/3/1/2007/
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Figure 4 

Exposure age plot of all samples in the anticipated chronostratigraphic order, i.e. from younger to older from left 

to right. The error bars indicate the propagated 1σ AMS measurement uncertainties.  
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Fig. 4. Exposure age plot of all samples in the anticipated chronostratigraphic order, i.e. from younger to older from left to right. The error
bars indicate the propagated 1σ AMS measurement uncertainties.

4.2 Systematic uncertainties

One should be aware of the current limitations of the dating
method when discussing the exposure ages in the paleocli-
matic context. Systematic uncertainties, i.e. those affecting
all samples in the research area in the same way, are mainly
due to uncertainties concerning the reference production rate
(at sea level and high latitude, SLHL, provided by calibration
studies) and the scaling system. Scaling is necessary to cal-
culate the local, effective production rate from the reference
production rate and thus to account for the altitude and lat-
itude dependence of the cosmic radiation. There is neither
consensus yet concerning the exact value of the reference
production rate, nor concerning scaling. A major interna-
tional effort has started recently with the CRONUS-project
aiming at the development of an internationally accepted pro-
tocol that will ultimately allow a precision of SED better
than 5% (CRONUS-Earth and CRONUS-EU projects:www.
physics.purdue.edu/cronus, andwww.cronus-eu.net, respec-
tively). In the meantime, it is appropriate to illustrate the sen-
sitivity of the exposure ages to various calculations schemes
and assumptions. This is accomplished in Fig. 5, exemplarily
for the samples DR11 and DR71.

The first columns represent the exposure ages as presented
above, i.e. using the scaling system of Desilets and Zreda
(2003), a reference production rate of 5.25 atoms a−1 g−1

SiO2 for neutron spallation and geomagnetic corrections.
The 10% error bars illustrate the total systematic uncertain-
ties as suggested by Gosse and Phillips (2001). The scaling

system of Dunai (2001) (second columns, using a total refer-
ence production rate of 5.51 atoms a−1 g−1 SiO2 again using
the cosmogenic nuclide data from the Köfels landslide, and
a muon contribution of 3.6%) yields slightly higher exposure
ages. Our results are in very good agreement with the cal-
culation scheme provided by Pigati and Lifton (2004) (third
column, also using a total reference production rate based
on the K̈ofels landslide: 5.42 atoms a−1 g−1 SiO2). As il-
lustrated by the fifth columns, calculations using the scaling
system of Stone (2000) result in much older exposure ages.
This is partly due to the fact that geomagnetic corrections are
not included in that protocol. In order to enable direct com-
parison we therefore also did our own calculations (using the
scaling system of Desilet and Zreda) excluding the geomag-
netic corrections (fourth columns). This reveals that most of
the offsets are due to other reasons, like the different cos-
mic ray dataset and the parameterisation of the neutron flux.
The last columns show that even a high hypothetical constant
uplift rate of 5 mm/a would not lead to dramatic underestima-
tion of the exposure ages and can therefore be neglected. We
emphasise that arguments in favour of the scaling system of
Desilet and Zreda (2003) are (i) that it is based on the best-
characterized cosmic-ray dataset, (ii) it takes into account the
altitude dependence of the energy spectrum of the cosmic ra-
diation and (iii) it explicitly includes corrections for changes
in the geomagnetic field. Nevertheless, our results may be
subject to minor changes in the future. An improved under-
standing of the underlying physics will reduce the system-
atic uncertainties, and local calibration studies will be indis-

www.clim-past.net/3/1/2007/ Clim. Past, 3, 1–14, 2007
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Figure 5 

Systematic uncertainties of the exposure ages. From left to right: calculation according to (1) Desilets and Zreda 
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22 

Fig. 5. Systematic uncertainties of the exposure ages. From left to
right: calculation according to (1) Desilets and Zreda (2003), (2)
Dunai (2001), (3) Pigati and Lifton (2004), (4) Desilets and Zreda
(2003), excluding geomagnetic corrections, (5) Stone(2000) and (6)
Desilets and Zreda (2003), assuming an uplift rate of 5 mm/a (in-
cluding geomagnetic corrections). The 10% error bars illustrates
the total systematic uncertainties as suggested by Gosse and Phillips
(2001).

pensable to address long-term atmospheric pressure anoma-
lies and anomalies in the geomagnetic field. In the following,
we quote our ages with the estimated 10% systematic error
according to Gosse and Phillips (2001).

The results of the present study corroborate and supple-
ment the glacial chronology that we have previously derived
from SED in Northern/Central Chile (Zech et al., 2006):

– Glaciers were much more extensive than today during
the Late Glacial between∼14.7±1.5 and 11.6±1.5 ka.
Geomorphological evidence shows that several moraine
stages were deposited by fluctuating glaciers. As men-
tioned above, the sample-specific uncertainties impede
the refinement of the Late Glacial chronology.

– A large, well-defined latero-frontal moraine is dated to
∼32±3 ka. The timing of earlier, even more extensive
glaciations cannot be determined any more with SED
due to erosion.

– We find no evidence for prominent glacial advances
in Northern/Central Chile during the global LGM. Of
course, this does not rule out that glaciers advanced at
that time, but they were limited compared to the other,
datable stages.

We emphasize here that although the reader may not agree
with using the scaling system of Desilets and Zreda, our gen-
eral interpretation would not change. Our above interpreta-
tion of the data and the following discussion refer to glacial
periods, i.e. the Late Glacial and the pre-LGM, and not to
millennial-scale climate events. This would be beyond the
current methodological limitations.

4.3 Paleoclimatic context

In the following, we discuss the glacial chronology of North-
ern/Central Chile in context with other paleoclimate records:
first with a focus on the tropical circulation, then on the west-
erlies. Finally, we consider possible direct insolation forc-
ings and the role of high-latitude temperature. Thus, we try
to identify possible forcings on the glaciation and to con-
tribute to the overall understanding of the Late Pleistocene
climate changes in the Central Andes.

4.3.1 Late Glacial advances and the increase in summer
precipitation

For the 14 ka event in the Encierro Valley, detailed glacier-
climate modelling showed that not only a temperature de-
pression of∼5.5◦C, but also an increase of annual precipi-
tation by∼580 mm (today 400 mm) was necessary (Kull et
al., 2002). Interestingly the model could not determine the
seasonality of precipitation, although today predominantly
winter precipitation prevails. For the reconstruction of the
atmospheric circulation, it is of particular importance to de-
termine the moisture source.

Whereas there is not much information about the
Late Glacial humidity conditions south of our research
area, plenty of evidence proves significantly wetter Late
Glacial/Early Holocene conditions both on the Bolivian Al-
tiplano and as far south as 28◦ S (Geyh et al., 1999; Baker et
al., 2001b; Baker et al., 2001a; Grosjean et al., 2001; Placzek
et al., 2006). Reservoir effects complicate the exact timing
of the trangression phases, but the most recent and exten-
sive study applied U/Th dating in combination with radio-
carbon, showing that high shorelines on the Bolivian Alti-
plano were formed between 16–14 (“Tauca”) and between
13–11 ka (“Coipasa”) (Placzek et al., 2006). Glacier ad-
vances on the Altiplano have been correlated with that hu-
mid phase (Clapperton et al., 1997: Choqueyapu II glacial
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Paleoclimatic context of the glacial advances in Northern/Central Chile (14.7-11.6 and ~32 ka, illustrated as 

brown shaded bars). a, Speleothem δ18O data: more negative values in the SE-Brazil speleothem indicate an 

intensification of the SASM (Cruz et al., 2006). The opposite signal in the Asian speleothem records from Hulu 

cave (Wang et al., 2001) and Dongge cave (Yuan et al., 2004) (reversed scale) illustrates the inter-hemispheric 

anti-phasing of monsoonal precipitation. b, Normalized insolation changes for austral summer (30°S Dec and 

90°S Dec) and austral winter (30°S June) (Berger and Loutre, 1991). c, NGRIP δ18O record as temperature proxy 

for Greenland (NGRIP members, 2004, more negative values -> colder temperatures), and temperature deviation 

from present conditions in Antarctica derived from the Vostok deuterium record (Petit et al., 1999).  
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opposite signal in the Asian speleothem records from Hulu cave (Wang et al., 2001) and Dongge cave (Yuan et al., 2004) (reversed scale)
illustrates the inter-hemispheric anti-phasing of monsoonal precipitation.(b) Normalized insolation changes for austral summer (30◦ S Dec
and 90◦ S Dec) and austral winter (30◦ S June) (Berger and Loutre, 1991).(c) NGRIP δ18O record as temperature proxy for Greenland
(NGRIP members, 2004, more negative values−> colder temperatures), and temperature deviation from present conditions in Antarctica
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advances at 14–13 ka BP and 12–10 ka BP, uncalibrated14C
ages, see e.g.www.calpal.defor calibration). We have al-
ready previously argued that the Late Glacial advances in
Northern/Central Chile at∼30◦ S may have been caused by
the increase in tropical moisture as well (Zech et al., 2006).
This interpretation is in good agreement with pollen analy-
ses from rodent middens in Chile at∼25◦ S, which indicate
increased summer precipitation between 17 and 11 ka (Mal-
donado et al., 2005). Moreover, speleothem data from SE-
Brazil can be interpreted to document the intensification of
the South American Summer Monsoon (SASM) during the

Late Glacial (Wang et al., 2007; Cruz et al., 2005; Cruz et
al., 2006, Fig. 6a). As illustrated in Fig. 6, relatively neg-
ative δ18O values in SE-Brazil correlate with more positive
values in the northern hemispheric speleothems (Wang et al.,
2001; Yuan et al., 2004). This documents the anti-phasing of
the monsoonal precipitation, which is controlled by the hemi-
spheric asymmetry in insolation forcing on orbital timescales
and which likely also reflects millennial-scale latitudinal
shift of the ITCZ due to high-latitude boundary conditions.
The mechanism to transport the tropical/subtropical humid-
ity from the South American lowlands onto the highlands of

www.clim-past.net/3/1/2007/ Clim. Past, 3, 1–14, 2007
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the Central Andes has been identified in both climate mod-
elling and observational studies: upper-tropospheric easterly
anomalies, which result from an intensification and a south-
ward shift of the Bolivian High (Garreaud et al., 2003; Vuille
and Keimig, 2004).

4.3.2 Northward shift of the westerlies during the LGM
and/or the pre-LGM?

As is evident from the speleothem data in SE-Brazil (Cruz
et al., 2006: see Fig. 6) and the shoreline studies on the Al-
tiplano (Placzek et al., 2006), the tropical circulation sys-
tem was less intensive during the LGM than during the Late
Glacial. This is reflected by the absence of corresponding
moraines in our research area. It was obviously too dry
to allow dominant glacial advances despite the global tem-
perature minimum. Apparently, the westerlies did not pro-
vide sufficient moisture either. Several studies have postu-
lated a northward shift of the westerlies and increased win-
ter precipitation in Northern/Central Chile during the LGM
(e.g. Heusser, 1989; Stuut and Lamy, 2004; Maldonado et
al., 2005). There are, however, still unresolved inconsisten-
cies and controversies concerning these findings (Markgraf,
1989; Grosjean et al., 2003; Stuut et al., 2006). Climate mod-
elling can not yet unambiguously contribute to this issue (e.g.
Valdes, 2000; Wyrwoll et al., 2000). The timing and the ex-
tent of the latitudinal shifts of the westerlies clearly deserve
further research.

In any case, much more precipitation than today and dur-
ing the LGM was required in combination with low temper-
atures to trigger the massive pre-LGM advances at∼32 ka
in Northern/Central Chile (preliminary results from glacier-
climate modelling, Kull, 2006, personal communication).
Significant contribution of tropical moisture can be excluded
for that time (Cruz et al., 2006; Placzek et al., 2006), so
that a northward shift and/or intensification of the westerlies
can be inferred. There is glacial evidence for synchronous
advances along the Central Andes as far south as∼40◦ S:
(1) At 36◦ S 40Ar/39Ar dating of glaciated and unglaciated
lava flows shows that pre-LGM ice caps existed and retreat
started already between 25.6 and 23.3 ka (Singer, 2000). (2)
Unpublished own exposure ages from moraines in the Valle
Rucachoroi (∼39◦ S, Argentina) indicate that the maximum
glaciation occurred at∼32 ka. (3) Extensive radiocarbon dat-
ing allowed Denton et al. (1999) to demonstrate that several
glacier advances occurred between∼29 and 1514C ka BP
in the Chilean Lake District (41–43◦ S). Whereas the north-
ern parts of the Chilean Lake District experienced maximum
glaciation at∼2214C ka BP, the glaciers in the southern parts
were most extensive at∼1514C ka BP. From the overall pat-
tern of glaciation we tentatively conclude that the wester-
lies, which have their focus at∼50◦ S today, may have been
shifted northward during the LGM with a focus at∼45◦ S
(e.g. Heusser, 1989; Singer, 2000; Heusser, 2003; Stuut and
Lamy, 2004), but they seem to have been much more inten-

sive and/or shifted north at∼32 ka. This is consistent with
geochemical and stable isotope analyses from the Laguna
Tagua Tagua in Central Chile showing wet conditions from
∼40 to 20 ka (Valero-Garćes et al., 2005).

An explanation for the suggested shifts of the westerlies
may partially be found in the Antarctic sea ice extent, which
seems to play a crucial role for the latitudinal position of the
westerlies according to modeling studies (Valdes, 2000; Wyr-
woll et al., 2000). Mosola and Anderson (2007) and Ander-
son et al. (2002) dated marine sediments immediately over-
lying glacial till and concluded that at least parts of both the
East and West Antarctic ice sheets reached their maximum
extent before the LGM. We speculate that the minimum of
the austral summer insolation at∼30 ka might have been the
respective orbital forcing (Fig. 6b): Low insolation causing a
greater sea ice extent, which in turn might have been respon-
sible for the northward shift of the westerlies.

4.3.3 The role of direct insolation and temperature

Although the above described changes in atmospheric circu-
lation most likely played the dominant role for the glaciation
in the Central Andes, we want to address the potential in-
fluence of direct insolation and temperature for reasons of
completeness (Kaser, 2001; Kull et al., 2002; Kull et al.,
2003). The lack of high-resolution, long terrestrial temper-
ature records from low latitudes limits this discussion to (i)
the possible role of direct insolation forcing and (ii) the influ-
ence of the high-latitudes, where ice-cores provide suitable
temperature proxies.

(i) As illustrated in Fig. 6, the austral summer (December)
insolation at 30◦ S was at a minimum at∼11.6–14.7 ka and
∼32 ka, the time of the glacial advances in Northern/Central
Chile. We suggest that low summer insolation led to reduced
surface temperatures and reduced ablation favoring glacier
growth. On the other hand, austral winter insolation at these
times was quite high (see Fig. 6b). We argue that winter tem-
peratures are not a limiting factor for glacier growth in the
Central Andes. On the contrary, increased winter insolation
changes the ocean-continent temperature and pressure gra-
dient, thus favoring moisture advection and accumulation of
snow and ice. Similar considerations are quite common for
the summer monsoon regimes (Clemens et al., 1991; Gasse,
2000; Cruz et al., 2005). A recent modeling study corrobo-
rates the importance of the precessional forcing and resulting
ocean-continent pressure gradients for low-latitude precipita-
tion responses (Clement et al., 2004).

(ii) According to the same model of Clement et al. (2004),
the low-latitude temperatures react very sensitively to high-
latitude glacial forcing (polar temperatures). As is evident
from the temperature proxies in Greenland and Antarctica
(Fig. 6c), low temperatures prevailed not only at∼20 ka, but
already since∼32 ka, thus allowing for the observed pre-
LGM glacial advances in the southern Central Andes. Con-
cerning the Late Glacial advances they coincide with reduced
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temperatures at high latitudes as well (see Fig. 6c): In Green-
land a sudden return to glacial conditions is well known as
the Younger Dryas (YD). In Antarctica a sudden drop in tem-
peratures interrupts the general Late Glacial warming trend.
This event slightly predates its northern-hemispheric coun-
terpart and is known as the Antarctic Cold Reversal (ACR).
Much controversy exists over the question whether climate
and/or glacial events in South America were synchronous
with the YD or the ACR (reviewed in: Harrison, 2004;
Heine, 2004; Mark et al., 2004). As we have shown above,
the systematic uncertainties currently make it impossible to
resolve that debate by applying SED. Probably both high-
latitude cold events had an effect on low and mid-latitude
temperatures and corresponding glacial advances.

5 Conclusions

Surface exposure dating of moraines in the Cordon de Doña
Rosa, Northern/Central Chile (30◦ S), corroborates the re-
sults from our previous study in the Encierro Valley (Zech
et al., 2006): Between 14.7±1.5 and 11.6±1.2 ka several
glacial advances occurred, probably documenting rapid Late
Glacial temperature changes, as well as very wet conditions
at that time. Lake sediment studies on the Altiplano and
speleothem data from SE Brazil show a substantial intensi-
fication of the tropical circulation system (Cruz et al., 2006;
Placzek et al., 2006). Hitherto the influence of the tropical
circulation on the southern Central Andes might have been
underestimated, but the intensification and southward shift of
the Bolivian High and the corresponding upper-tropospheric
easterlies provide a possible mechanism to transport the
moisture from the South American lowlands onto the high-
lands (Garreaud et al., 2003; Vuille and Keimig, 2004). The
role of the westerlies during the Late Glacial requires fur-
ther investigations. More dating efforts would be necessary
to determine the detailed succession of Late Glacial events,
because pre-exposure and landform surface instability com-
plicate the interpretation of the exposure ages.

Although there is some paleoclimatic evidence for a north-
ward shift of the westerlies during the LGM, no correspond-
ing moraines could be dated. Apparently, it was too dry to
allow significant glacial advances at that time. Instead, an
older, extensive glaciation is dated to∼32±3 ka. Increased
winter precipitation can be inferred for this time. An equa-
torward shift of the westerlies might have been caused by the
maximum extent of at least parts of the Antarctic Ice Sheets
and coincides with minimum solar insolation at high south-
ern latitudes.

Concerning the possible, but probably not so important
role of direct insolation forcing, we note that austral sum-
mer insolation was low at∼32 ka and 14.7–11.6 ka. Re-
duced summer temperatures and reduced ablation probably
favored glacier growth. On the other hand, austral win-
ter insolation was high during these time periods. Winter

temperatures, however, were probably never a limiting fac-
tor. Instead, changes in the ocean-continental temperature
and pressure gradient and thus increased moisture advection
could be inferred. High-latitude glacial forcing (low temper-
atures) probably also played an important role for the glacia-
tion in Northern/Central Chile, both at∼32 ka and during the
Younger Dryas and the Antarctic Cold Reversal, respectively.

Ongoing work applying SED aims at the determination of
the spatial extent of the dated glacial advances. In combina-
tion with the glacier-climate-model, we intend to better quan-
tify the role of temperature and precipitation. The model will
have to consider seasonality in a more sophisticated way, so
that the paleoclimatic interpretations can be further refined.
Lastly, we highlight the need for improvements in the param-
eterisation of the cosmogenic radiation with regard to altitude
and latitude scaling, as well as the need for calibration sites
in the Central Andes in order to reduce the current systematic
uncertainties of SED.

Photographs from all sampled boulders are provided as
supplementary material (http://www.clim-past.net/3/1/2007/
cp-3-1-2007-supplement.pdf).
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auf der jungpleistoz̈anen Vergletscherung in Nordchile – Ein
Fallbeispiel aus den Nordchilenische Anden, Z. Gletscherk.
Glazialgeol., 35, 35–64, 1999.

Clim. Past, 3, 1–14, 2007 www.clim-past.net/3/1/2007/



R. Zech et al.: Exposure dating of Late Glacial and pre-LGM moraines in Chile 13

Kull, C. and Grosjean, M.: Late Pleistocene climate conditions in
the North Chilean Andes drawn from a Climate-Glacier Model,
Journal of Glaciology, 46, 622–632, 2000.

Kull, C., Grosjean, M., and Veit, H.: Modeling Modern and
Late Pleistocene Glacio-Climatological Conditions in the North
Chilean Andes (29–30◦), Climatic Change, 52, 359–381, 2002.

Kull, C., Hanni, F., Grosjean, M., and Veit, H.: Evidence of an LGM
cooling in NW-Argentina (22◦ S) derived from a glacier climate
model, Quaternary International, 108(1), 3–11, 2003.

Lowell, T. V., Heusser, C. J., Andersen, B. G., Moreno, P. I., Hauser,
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W., Wien, 2006.

Vuille, M. and Ammann, C.: Regional Snowfall Patterns in the
High, Arid Andes (South America), Clim. Change, 36, 413–423,
1997.

Vuille, M. and Keimig, F.: Interannual Variability of Summer-
time Convective Cloudiness and Precipitation in the Central An-
des Derived from ISCCP-B3 Data, J. Clim., 17(17), 3334–3348,
2004.

www.clim-past.net/3/1/2007/ Clim. Past, 3, 1–14, 2007



14 R. Zech et al.: Exposure dating of Late Glacial and pre-LGM moraines in Chile

Wang, X., Auler, A. S., Edwards, R. L., Cheng, H., Ito, E., and
Solheid, M.: Interhemispheric anti-phasing of rainfall during the
last glacial period, Quat. Sci. Rev., in press, 2007.

Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen,
C.-C., and Dorale, J. A.: A High-Resolution Absolute-Dated
Late Pleistocene Monsoon Record from Hulu Cave, China, Sci-
ence, 294(5550), 2345–2348, 2001.

Wyrwoll, K.-H., Dong, B., and Valdes, P.: On the Position of South-
ern Hemisphere Westerlies at the Last Glacial Maximum: An
Outline of AGCM Simulation Results and Evaluation of their
Implications, Quat. Sci. Rev., 19, 881–898, 2000.

Yuan, D., Cheng, H., Edwards, R. L., Dykoski, C. A., Kelly, M.
J., Zhang, M., Qing, J., Lin, Y., Wang, Y., Wu, J., Dorale, J. A.,
An, Z., and Cai, Y.: Timing, Duration, and Transitions of the
Last Interglacial Asian Monsoon, Science, 304(5670), 575–578,
2004.

Zech, R., Glaser, B., Sosin, P., Kubik, P. W., and Zech, W.: Evi-
dence for long-lasting landform surface instability on hummocky
moraines in the Pamir Mountains from surface exposure dating,
Earth Planet. Sci. Lett., 237, 453–461, 2005.

Zech, R., Kull, C., and Veit, H.: Late Quaternary glacial history
in the Encierro Valley, Northern Chile (29◦ S), deduced from
10Be surface exposure dating, Palaeogeography, Palaeoclimatol-
ogy, Palaeoecology, 234(2–4), 277–286, 2006.

Zhou, J. and Lau, K.-M.: Does a monsoon climate exist over South
America?, J. Clim., 11(5), 1020–1040, 1998.

Clim. Past, 3, 1–14, 2007 www.clim-past.net/3/1/2007/


	1

