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Bacterial meningitis represents an infection in an area of impaired host defence.
Optimal therapy of meningitis requires attaining bactericidal activity within
cerebrospinal fluid (CSF). Studies in experimental animal models of meningitis
suggest that maximal rates of bacterial killing in vivo and optimal cure rates are
achieved when CSF antibiotic concentrations exceed the MBC of the test strain by
^ten-fold. The results of clinical trials support this conclusion. In addition, a
variable post-antibiotic effect occurs in-vivo after short periods of exposure to
antimicrobial activity, thus maintaining therapeutic efficacy with intermittent
dosage regimens These basic principles of therapy are outlined in this review and
serve as a basis for rational treatment regimens. For most antibiotics, the optimal
dose, dosage interval, and duration of therapy for bacterial meningitis remain to be
established.

Introduction

The optimal therapy of bacterial meningitis appears to require attaining bactericidal
activity in the cerebrospinal fluid (CSF) against the responsible pathogen (Sande,
1981), as suggested by clinical evidence and a large amount of data from
experimental animal models. Eradication of bacteria from the CSF serves as the
definition of bacteriological response to or cure during therapy of meningitis. Multiple
factors determine whether antibiotics achieve bactericidal activity within CSF,
including the dosage regimen chosen. The major determinants of optimal dosing of
antibiotics for the therapy of meningitis are as follows: (1) factors influencing drug
entry or passage (i.e. "penetration") into the CSF; (2) factors determining
antimicrobial activity within purulent CSF in vivo; (3) the critical need for achieving
bactericidal activity within the CSF; (4) the mode of drug administration (i.e.
intermittent vs. continuous regimens) and the potential importance of "post-antibiotic
effects" in vivo; and (5) the duration of therapy. These and other factors have been
reviewed recently (Scheld, 1984a; Tauber & Sande, 1984).

This symposium has emphasized the important correlations between in-vitro models
and the results of therapy in vivo both in experimental animal models of infection and
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304 W. M. ScheW et al.

in humans. For the therapy of meningitis, these relationships are most relevant to two
of the five areas outlined above, (1) the relationship between in-vitro determination of
the MBC and quantitative time-kill studies and peak CSF and rate of bactericidal
activity in vivo, and (2) the influence of in-vitro post-antibiotic effects (PAE) on
appropriate intermittent dosage regimens and the response to therapy in vivo. These
two concepts of in vitro-in vivo interactions are emphasized in this brief review.

The necessity for bactericidal activity in CSF

Bacterial meningitis, like bacterial endocarditis or bacteremia in a granulocytopaenic
host, represents an infection in an area of impaired host defence. Once bacteria gain
access to the subarachnoid space (SAS), host defences are, in general, inadequate
(Scheld, 1981, 19846). Antibody and complement concentrations are low or absent in
normal or purulent CSF; functional opsonic or bactericidal activity is usually
undetectable early in the disease course (Scheld & Brodeur, 1984; Simberkoff,
Moldover & Rahal, 1980; Zwahlen et al., 1982). As a result of these deficiencies,
phagocytosis of the major encapsulated meningeal pathogens is inefficient and the
organisms attain enormous population densities in purulent CSF, often exceeding
108 cfu/ml (Feldman, 1977). Studies in leucopaenic animals support these conclusions
(Ernst, Decazes & Sande, 1983). After the intracisternal inoculation of pneumococci
into rabbits, maximal bacterial concentrations were nearly identical in leucopaenic
animals when compared to normal controls. In addition, other altered CSF parameters
(increased protein and lactate and decreased glucose) were similar in the two groups,
suggesting that a CSF pleocytosis does not contribute substantially to these changes in
the CSF during meningitis. Surface phagocytosis is also inefficient in the fluid medium
of the CSF. These defects in host defence within the CSF suggest that bactericidal
activity at the site of infection within the SAS is necessary for optimal therapy of
bacterial meningitis.

Early studies in a rabbit model of bacterial meningitis clearly documented that
eradication of the organisms from purulent CSF in vivo was dependent upon achieving
maximal CSF concentrations in excess of the MBC of the pathogen inoculated
(Strausbaugh & Sande 1978; Scheld, Brown & Sande 1978; Schaad et al., 1981). Rapid
bacterial killing in vivo was observed only when CSF concentrations of /Mactams or
aminoglycosides exceeded the MBC by 10- to 20-fold. The poor in-vivo activity of
aminoglycosides was partially related to the acid pH (mean = 6-98) of purulent CSF in
the animals, since the MBC rises approximately 16- to 32-fold as pH declines from 7-8
to 70 (Strausbaugh & Sande 1978).

The effect of bactericidal activity in CSF on the cure rate of experimental
pneumococcal meningitis was examined recently in a rabbit model (Scheld & Sande,
1983). Two different strains of Streptococcus pneumoniae were employed; they had
identical susceptibility to ampicillin in vitro (MBC = 0-125 mg/1) but with divergent
chloramphenicol MBCs of 16 and 2 mg/1, respectively. The ampicillin dosage (250 mg)
produced mean peak CSF concentrations of 6-6-6-8 mg/1, approximately 50-fold
greater than the MBC of both test strains. In contrast, two different dosages of
chloramphenicol were used; one achieved a bacteriostatic effect in CSF against strain!
(i.e. peak CSF concentration = 4-4 mg/1; MBC = 16 mg/1) but was bactericidal against
strain2. The second chloramphenicol regimen resulted in mean peak CSF
concentrations of over 30 mg/1, bactericidal against both isolates. All drugs were given
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Principles of therapy of meningitis 305

Table I. Results of therapy of experimental pneumococcal meningitis in rabbits Dependence on
bactericidal activity within CSF in vivo

Inoculum Drug

Strain, Ampicillin
Chloramphenicol
Chloramphenicol

Strain2 Ampicillin
Chloramphenicol

MBC (mg/l)

0 125
16
16
0125
2

Mean 'peak'
CSF cone.

6-6
4.4

32 0
68
4.9

Mean±s.D.Alogio
Str pneumonias cfu/ml

CSF after 48 h
of therapy

-5 5± 11
"2-4±l-7
~53±l-5
"56±l-2
"4-6±l-4

Cure rate %

77
17
64
80
70

Adapted from Scheld & Sande (1983)

intramuscularly every 8 h for five days beginning 18 h after intracisternal inoculation;
the CSF was sampled daily and again three days after cessation of therapy to assess
rapidity of response and ultimate cure rates.

The results (Table I) clearly document that cure was associated only with regimens
that achieved bactericidal activity in CSF. More than 90% of animals on bactericidal
regimens demonstrated greater than 5 log decreases in CSF bacterial concentrations
after 48 h and sterile CSF samples after five days of treatment. Bacteriostatic CSF
concentrations (i.e. peak CSF concentrations between the MIC and MBC of strain,)
produced slower declines in CSF pneumococcal counts after 48 h and none of the
surviving rabbits had sterile CSF after five days (Table I). Thus, bactericidal activity in
CSF was associated with rapid bacterial killing in vivo and an optimal response to
therapy in this experimental model (Scheld & Sande, 1983). The inhibition of
bactericidal activity in vivo by the coadministration of bacteriostatic antibiotics in
animal models (Strausbaugh & Sande, 1978) and humans (Lepper & Dowling, 1951;
Mathies et al., 1967) supports this concept.

Recent short-term studies in a variety of experimental animal models of bacterial
meningitis suggest that peak CSF concentrations greater than ten times the MBC of
the pathogen are necessary for optimal rates of bacterial killing in vivo. In one recent
analysis (Decazes, Ernst & Sande, 1983), ceftriaxone was administered to rabbits with
experimental Escherichia coli meningitis. The drug was given by intravenous (iv) bolus
and was followed 4 h later by a continuous infusion of 01 , 0-5, 1, 5, or 10 mg/kg per
hour; steady-state ceftriaxone concentrations in CSF were achieved by this method.
Although the percentage penetration ([CSF]/[serum] x 100) into CSF was only
21-8-9%, the CSF concentration of ceftriaxone ranged from less than the MBC
(006 mg/l) for the test strain to more than ten times this value. As shown in Table II,
maximal rates of eradication of E. coli from CSF occurred when the mean ceftriaxone
concentration in CSF was ^lOxthe MBC. More important, the rate of bacterial
killing did not increase further when CSF concentrations were 20- to 100-fold greater
than the MBC of the test strain (data not shown). In addition, in-vitro quantitative
"time-kill" curves were more accurate than the MBC alone in predicting the maximal
rate of bacterial eradication from CSF in vivo These results suggest that CSF
antibiotic concentrations should exceed the MBC of the responsible pathogen by 10-
to 20-fold to ensure maximum efficacy. Similar studies performed by McCracken and
colleagues in Dallas support this conclusion (Schaad et al., 1980, 1981; McCracken &
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Table II. Results of therapy of experimental E. coli meningitis: correlaUon
between mean ceftriaxone concentration in CSF and rate of bacterial

killing in vivo

Mean CSF ceftriaxone Mean A log,0 cfu E. coli/ml
concn. (mg/1) (xMBQ CSF/h of therapy

Controls +0 4
< 0 0 6 ( < l ) "015

006-0-6(1-10) "0 7
>0-6(>10) "1-5

Decazcs et al (1983)

Schaad, 1982; McCracken, Nelson & Grimm, 1982; Sakata, Boccazzi & McCracken,
1983). A large number of antimicrobials were evaluated in rabbits with meningitis
induced by the intracisternal inoculation of Str. pneumoniae, Str. agalactiae,
Haemophilus influenzae, or various Gram-negative aerobic bacilli. The drugs were
given by continuous intravenous infusion; serum concentrations closely approximated
those found in man. The results (mean A log10 cfu/ml CSF) were analyzed after 9 h of
therapy. In general, when CSF bactericidal titres exceeded 1:32 (e.g. with third-
generation cephalosporin therapy of experimental E. coli meningitis), maximum
reductions of CSF bacterial concentrations of 41-4-8 logs were noted after 9 h of
intravenous infusion. In contrast, when CSF bactericidal titres achieved values of only
1 :2 to 1:4 (e.g. netilmicin and ampicillin in the E. coli model, latamoxef (moxalactam)
therapy of experimental group B streptococcal meningitis), the mean decrease in CSF
bacterial concentrations was only 1-6 to 2-7 logs after the same treatment interval.
Maximal rates of bacterial killing in vivo were achieved only when CSF bactericidal
titres were greater than 1:16, similar to the results presented in Tables I and II.
Latamoxef (moxalactam) was also ineffective when administered intermittently for
three days in another model of experimental group B streptococcal meningitis
(Khurana & Deddish, 1983). The poor in-vitro activity of latamoxef (moxalactam)
(relative to that of other third-generation cephalosporins) results in low CSF
bactericidal titres against these organisms (Schaad et al., 1981) and correlates with its
suboptimal efficacy in humans with serious infections caused by Gram-positive cocci
(Salzer, Pegram & McCalL 1983).

The need for CSF bactericidal activity to achieve maximal rates of bacterial killing
in vivo is also suggested by clinical experience. This principle was first suggested by
French investigators (Chabbert, 1967; Armengaud et al., 1979) following retrospective
review of the results of therapy in large numbers of patients treated with various
regimens. Recently careful review of results has supported this position. For example,
the mortality rate for patients with Gram-negative aerobic bacillary meningitis treated
during the past decade in New York City with regimens including chloramphenicol
was 83% (Cherubin et al., 1981). Chloramphenicol is bacteriostatic against these
organisms in vitro (Rahal & SimberkofT, 1979) and negates the bactericidal activity of
aminoglycosides in vivo in experimental proteus meningitis in rabbits (Strausbaugh &
Sande, 1978). Thus, bactericidal activity in the CSF against members of the
Enterobacteriaceae is not attainable with chloramphenicol, and the poor therapeutic
results reflect this property. In contrast, as noted in the above discussion of
experimental models, the third-generation cephalosporins readily produce CSF
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bactericidal titres of 1:32 to 1:64 against this group of organisms. These new agents
have been evaluated extensively in the therapy of Gram-negative bacillary meningitis
in humans, and the initial results are encouraging, with cure rates of 78-94% in adults
(Landesman et al., 1981; Cherubin et al.. 1982) versus mortality rates of 40-90% in
patients receiving traditional therapy of aminoglycosides (by various routes of
administration), chloramphenicol, ampicillin, or combinations of these agents
(Cherubin et al., 1981).

This type of analysis suggests that some of the newer third-generation
cephalosporins may prove useful in the therapy of meningitis due to the more common
meningeal pathogens, including ampicillin-resistant H. influenzae. For example, several
clinical trials have compared ceftriaxone alone (usually 50 mg/kg q 12 h) to ampicillin
plus chloramphenicol for the therapy of acute bacterial meningitis in children (Del Rio
et al., 1983; Congeni, 1984; Steele & Bradsher, 1983). The outcome (e.g. cure rate,
mortality rate, neurologic sequelae, toxicity) in both regimens was equivalent in these
carefully performed studies. The CSF was sterilised more quickly during ceftriaxone
therapy when compared with ampicillin plus chloramphenicol (57% vs. 42% sterile
after 4-12 h of treatment, respectively) (Del Rio et al., 1983). In addition, the median
CSF bactericidal titres were 1:512-1:1024 for patients receiving ceftriaxone and 1:8
for the ampicillin plus chloramphenicol group (/•< 0-001). Although ceftriaxone may
prove extremely useful in the therapy of meningitis due to a convenient q 12 h (or
q 24 h) dosage regimen, the results of current studies suggest that increasing the CSF
bactericidal titre above 1:8 is unlikely to produce enhanced clinical efficacy in humans.
This conclusion is identical to that reached in the studies with experimental models of
meningitis discussed above.

The mode of drug administration, dosage intervals,
and the post-antibiotic effect (PAE) in vivo

The optimal route and mode of antibiotic administration for the therapy of serious
infections (e.g. meningitis) has been the subject of considerable debate. The parenteral
route is preferred, but unpredictable absorption due to shock or hypotension and
clotting abnormalities renders the intramuscular route undesirable. Although higher
CSF concentrations were achieved in the first 20 min following intracarotid
administration of penicillin when compared to the intravenous route, the former was
not practical, and the experimental technique employed may have inadvertently
opened the blood-brain barrier thus accounting for enhanced drug entry into CSF
(Kourtopoulos, Holm & Norrby, 1983).

The intravenous route is currently favoured for the therapy of bacterial meningitis,
but the mode of administration is controversial. Experimental studies in animals
support both continuous infusion with serum levels constantly above the MBC of the
responsible pathogen (Eagle, Fleischmann & Levy, 1953) and intermittent "bolus'
infusions, since higher extracellular fluid (including CSF) antibiotic concentrations are
achieved by the latter method (Barza et al.. 1974; Plorde, Garcia & Petersdorf, 1964).
Intermittent infusions may also produce periods of bacterial exposure to subinhibitory
concentrations with subsequent rapid regrowth and enhanced susceptibility of the
remaining bacterial population to antimicrobial activity (McDermott, 1958); this is of
particular importance with /Mactam agents. In addition, as discussed elsewhere in this
symposium, the post-antibiotic effect (PAE) may permit successful therapy with
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infrequent dosages of antibiotics. None of the above studies evaluated the influence of
the mode of drug administration or the PAE m vivo on the rate of bacterial
elimination from CSF.

We investigated these concepts in a recent series of experiments with a rabbit model
of experimental pneumococcal meningitis. The first studies (Sande et al., 1981)
compared the effect of penicillin delivered by intermittent bolus (q 4 h) and continuous
intravenous infusion. Both groups received a total dose of 800,000 units over an 8 h
treatment period; CSF was sampled frequently for quantitative bacterial counts and
penicillin concentrations. Serum penicillin concentrations closely approximated those
found in humans during therapy with standard parenteral regimens of penicillin.
Higher penicillin concentrations were detected earlier in CSF in animals receiving
intermittent bolus infusions but the rate of bacterial killing was nearly identical in both
groups. Rapid bacterial killing was observed despite trough CSF penicillin
concentrations below the MBC in 60% of the rabbits receiving intermittent therapy
(Sande et al., 1981).

The CSF was sterile after 8 h of therapy in 10 of 15 and 11 of 15 rabbits treated with
intermittent or continuous infusions, respectively. Both modes of penicillin
administration resulted in a straight-line logarithmic decrease in CSF bacterial
counts, an effect independent of pre-therapy CSF bacterial counts. All rabbits
with CSF bacterial counts less than 105 cfu/ml before therapy had sterile CSF 8 h later.
Because the CSF penicillin concentrations were above the MBC for nearly the entire
8 h exposure period, the effect of a PAE could not be assessed with these regimens.

The influence of the PAE on bacterial viability in CSF was examined in a second
series of studies. After induction of experimental pneumococcal meningitis, treatment
was commenced 18 h later with a single intravenous bolus infusion of ampicillin at the
following dosages: 1, 2, 3, 4, 6, 12-5, 20, and 62-5 (mg/kg). The CSF was sampled for
quantitative bacterial and ampicillin concentrations every 2 h for the next 24 h. When
ampicillin dosages achieved CSF concentrations below the MBC of the test strain
(0-12 mg/1), a significant PAE was observed in vivo, characterized by a con-
tinued decline or stable pneumococcal counts in CSF for variable periods. All
animals demonstrated an early bactericidal period of 1-5—2 h with decline in CSF
bacterial counts of approximately 2-5 logs, followed by a variable 'static' phase
of 4 to 20 h with slower decline or stable bacterial counts. This PAE in vivo
was longer (4-12 h) than that observed in vitro under similar conditions (1—4-3 h), it
occurred even after exposure to subinhibitory concentrations of ampicillin (an effect
not observed in vitro), and there was no definite relationship between peak CSF
ampicillin concentration or area under the CSF concentration-time curve and its
duration (Sande et al., 1981; Tauber et al., 1984). The longer PAE in vivo may be
related to the longer generation time of pneumococci in CSF when compared with that
in broth (Ernst et al., 1983). The PAE in vitro clearly differed from that observed in
vivo, since the addition of /Mactamase influenced only the latter. In these studies, /?-
lactamase was given at a dosage of 300,000 units intravenously plus 100,000 units
intracisternally 2 and 4-5 h following the administration of ampicillin. Bacterial
regrowth in CSF began immediately following /Mactamase, suggesting a prolonged
'gamma' phase of ampicillin elimination from the CSF and continued antibacterial
activity in vivo at subinhibitory concentrations below the lower limit of detectability of
our bioassay (~0-06 mg/1). In contrast, as shown in other studies (McDonald, Craig &
Kunin, 1977), the enzyme did not influence the course of the PAE in vitro.
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Table III. Results of ampicillin (MBC = 01 mg/1) therapy in experimental
pneumococcal meningitis

Dose (mg/kg)

6 25
125
25
37.5

Tauber el a/ (1984)

Mean peak
[CSF] (mg/1)

0-25
0-53
1-28
1-49

Cure rate
2 x q 12h

21
57
95
92

(%) after.
4 x q 4 h

43
79

100
100

These issues were examined further in a recent study (Tauber et al., 1984) employing
186 rabbits with experimental pneumococcal meningitis. Treatment was begun 18 h
following intracisternal inoculation with ampicillin at the following dosages: 417, 6-25,
12-5, 25, and 37-5 mg/kg. Two treatment regimens were employed: two injections 12 h
apart and four injections at 4 h intervals with both regimens being completed in 12 h.
The CSF was then sampled every 4 h, and cure was denned as a sterile CSF 36 h after
the last dose of ampicillin. Due to rapid elimination, the CSF ampicillin concentration
fell below the MBC (01-012 mg/1) of the test strain within 4 h. Thus, subinhibitory or
undetectable ampicillin concentrations were present for approximately 2/3 of the
treatment interval for the q l 2 h regimen but the q 4 h schedule maintained CSF
concentrations greater than the MBC for the entire 12 h.

A compilation of the results is shown in Table III. A consistent PAE was again
demonstrated. Both regimens produced similar results in this model as judged by cure
rate 36 h following the last injection of ampicillin; no statistically significant differences
(by Chi-square analysis) were found (Table III). The only parameter that determined
the cure rate was the mg/kg dosage per injection; the number of injections (two or
four) over the 12-h treatment interval did not affect the outcome (Tauber et al., 1984).
It is also apparent (Table III) that once peak ampicillin concentrations exceeded the
MBC by greater than ten-fold (25 and 37-5 mg/kg doses), cure rates of more than 90%
were obtained. This result is in excellent accordance with the general principle that
greater than 1:10 bactericidal activity in CSF gives maximal bacterial killing in vivo.

These studies suggest that bactericidal activity (2= 1:10) in CSF is the critical
variable for efficacy in meningitis and that the mode of drug administration is
irrelevant as long as this criterion is fulfilled. The PAE may permit continued efficacy
even when CSF antibiotic concentrations fall below bactericidal levels for portions of
the dosing interval. This principle has already been demonstrated in African studies
with cures of meningococcal meningitis after a single dose of penicillin or ceftriaxone
(MacFarlane et al., 1979; Cadoz et al., 1982) or five days of chloramphenicol therapy
(Whittle et al., 1973). Further studies are necessary to determine the optimal dosing
interval and duration of therapy for bacterial meningitis which are of immense
practical importance in developing countries.

Another important variable, the CSF half-life or area under the CSF concentration-
time curve for various antibiotics, deserves further emphasis. The persistence of drugs
in the CSF is variable and dependent on multiple factors. For example, following a
single injection, the time interval during which drug concentrations in CSF exceeded
the MBC for 90% of relevant Enterobactenaceae was 462, 312, and 55 min for

D
ow

nloaded from
 https://academ

ic.oup.com
/jac/article/15/suppl_A/303/742312 by U

niversitaetsbibliothek Bern user on 21 February 2023



310 W. M. ScfaeM et al.

cefoperazone, latamoxef (moxalactam), and cefotaxime, respectively, in animals with
experimental H. influenzae meningitis (Perfect & Durack, 1981). This type of analysis,
together with the studies outlined in this review, may place the antimicrobial therapy
of bacterial meningitis on a more scientific and rational foundation.
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