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Abstract Thermochemical properties have been ei-

ther measured or estimated for synthetic monazite,

LaPO4, and dissakisite, CaLaMgAl2(SiO4)3OH, the

Mg-equivalent of allanite. A dissakisite formation en-

thalpy of –6,976.5 ± 10.0 kJ mol–1 was derived from

high-temperature drop-solution measurements in lead

borate at 975 K. A third-law entropy value of

104.9 ± 1.6 J mol–1 K–1 was retrieved from low-tem-

perature heat capacity (Cp) measured on synthetic

LaPO4 with an adiabatic calorimeter in the 30–300 K

range. The Cp values of lanthanum phases were mea-

sured in the 143–723 K range by differential scanning

calorimetry. In this study, La(OH)3 appeared as suit-

able for drop solution in lead borate and represents an

attractive alternative to La2O3. Pseudo-sections were

calculated with the THERIAK-DOMINO software

using the thermochemical data retrieved here for a

simplified metapelitic composition (La =
P

REE + Y)

and considering monazite and Fe-free epidotes along

the dissakisite-clinozoı̈site join, as the only REE-bear-

ing minerals. Calculation shows a stability window for

dissakisite-clinozoı̈site epidotes (T between 250 and

550�C and P between 1 and 16 kbar), included in a wide

monazite field. The P–T extension of this stability

window depends on the bulk-rock Ca-content.

Assuming that synthetic LaPO4 and dissakisite-(La) are

good analogues of natural monazite and allanite, these

results are consistent with the REE-mineralogy se-

quence observed in metapelites, where (1) monazite is

found to be stable below 250�C, (2) around 250–450�C,

depending on the pressure, allanite forms at the ex-

pense of monazite and (3) towards amphibolite condi-

tions, monazite reappears at the expense of allanite.

Keywords Monazite � Allanite � Calorimetry �
Thermodynamic properties � Phase diagrams �
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Introduction

Although it is an accessory mineral, monazite, the light

rare earth element (LREE) phosphate (LREEPO4), is

one of the main hosts for lanthanides and actinides in

sedimentary, magmatic and metamorphic rocks. Its

ubiquity as well as its chemical durability and its

apparent resistance to radiation-induced amorphization

confer to monazite the qualities of a robust U–Th–Pb
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chronometer (e.g. Spear and Pyle 2002). Amongst the

thermodynamic properties of REE-phases available,

those of monazite are now relatively well constrained.

Solubility products data (log K) have been measured for

La, Nd and Sm monazite end-members (Rai et al. 2003;

Poitrasson et al. 2004; Cetiner et al. 2005). Monazite

formation enthalpy has been measured by high-tem-

perature drop-solution calorimetry (Ushakov et al.

2001, 2004). Entropies of monazite have been derived

only recently for Ce and La and Gd compositions by

Thiriet et al. (2004) and Thiriet et al. (2005), respec-

tively. The heat capacities (Cp) at high temperature

(from 298 K to 1,600 K) were retrieved by Tsagareish-

vili et al. (1972). However, there is a lack of thermo-

chemical properties for REE-minerals, which are likely

to share phase relationships with monazite in meta-

morphic rocks. Consequently, the stability relations

between monazite and allanite, the REE-epidote, have

been mostly inferred indirectly from in situ U–Pb and

Th–Pb geochronology data and mineral assemblages

evolution along metamorphic transects (e.g. Wing et al.

2003; Janots et al. 2006). In metapelitic rocks, monazite

stability (and geochronology) has long been thought to

be restricted to medium and high-grade metamorphism

typically above the greenschist facies conditions where

allanite is the dominant REE-mineral (see Spear and

Pyle 2002, for a review). At lower grade (including dia-

genesis), monazite is mostly considered as unstable (e.g.

Harrison et al. 2002) or as detrital when present. How-

ever, recent studies show that monazite could crystallize

under subgreenschist and low-temperature blueschist

conditions (Rasmussen et al. 2001; Janots et al. 2006,

respectively) or even during diagenesis (Evans and

Zalasiewicz 1996; Evans et al. 2002).

We propose here to address monazite and allanite

stability in metapelites by measuring or estimating the

thermochemical data required to model their phase

relationships. We have collected calorimetric data on

synthetic analogues of LREE-minerals: LaPO4 and

dissakisite, CaLaMgAl2(SiO4)3OH, the Mg-equivalent

of allanite, which is the main LREE-bearing silicate in

metamorphic rocks. Dissakisite was chosen in prefer-

ence to allanite, although less relevant to metapelites,

to avoid the difficulty of controlling and characterizing

iron oxidation states in synthetic epidotes. Formation

enthalpy, third-law entropy and Cp function have been

derived from high-temperature solution calorimetry,

low-temperature adiabatic calorimetry and differential

scanning calorimetry, respectively. Then the measured

data have been used to calculate pseudo-sections with

the THERIAK-DOMINO program (Decapitani and

Brown 1987) for a metapelitic bulk-rock composition.

For the convenience of the reader, all mineral formulae

and abbreviations encountered in this study have been

recapitulated in the Appendix.

Experimental

Sample synthesis and characterization

Dissakisite, CaLaMgAl2(SiO4)3OH, has been synthe-

sized from stoichiometric tetraethylorthosilicate-based

gels calcinated, beforehand, at 1,073 K (ambient pres-

sure). This starting material was then run in a piston-

cylinder apparatus at 1,023 K and 2.3 GPa for 6 days.

La(OH)3 was synthesized hydrothermally from La2O3

(99.99%) and deionized water at 773 K and 140 MPa

for 8 days and then stored in air. Synthetic monazite,

LaPO4, was prepared by J.M. Montel (LMTG, Tou-

louse, France) according to the following procedure: in

a first stage, a precipitate is obtained by adding phos-

phoric acid to a lanthanum nitrate solution. The pre-

cipitate, which, after drying was identified as

rhabdophane-(La), LaPO4�H2O, was baked at 1,525 K

overnight, which then produces monazite. In a last

stage, monazite crystals are grown in a Li2MoO4–

MoO3 flux for 1 week at 1,273 K; the flux is removed

by dissolution in hot water. The monazite sample used

for calorimetric measurements consists of homoge-

neous grains with sizes of about 50 lm.

All experimental products are single-phased as

checked using X-ray diffraction data collected with a

Siemens D5000 diffractometer at the Institute of

Geosciences (Kiel University, Germany). In particular,

the La(OH)3 diffraction pattern did not show any

detectable hydroxicarbonate or carbonate which can

form in the course of the synthesis or during storage in

air (Diakonov et al. 1998; Wood et al. 2002). Homo-

geneity, composition and grain size of the synthetic

products were controlled using scanning electron

microscopy (Hitachi S-2500 with EDS detector),

Raman microspectroscopy (Renishaw spectrometer,

k = 532 nm, ENS-Paris, France) and electron micro-

probe analysis (SX-50, Jussieu, France). In addition,

heat capacities measured with DSC have been com-

pared to those derived from an oxide summation

method (Berman and Brown 1985).

In order to achieve the reaction cycles required to

retrieve formation-enthalpy data, additional sample

powders were used for drop-solution measurements:

a-Al2O3 (Merck, reagent grade) annealed at 1,300�C

and stored under dry conditions, CaCO3 (Aesar,

99.99%) and spinel MgAl2O4 (Kanto Chemicals,

99.9%). In addition, gem-quality specimens (mineral

collection of the Ruhr-University, Bochum, Germany)
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were used: Brazilian quartz (99.9% purity) and wol-

lastonite, Ca2.98–3.00Si3.00–3.03O9, from Kropfmuhl

(Germany).

Calorimetric methods

Heat capacity (Cp) of synthetic monazite, LaPO4, was

measured between 30 and 300 K on 10.6 g of sample

using the low-temperature adiabatic calorimeter de-

scribed in Brunet et al. (2004). The calorimeter is

equipped with two adiabatic shields and the sample

temperature is measured with a platinum resistance

thermometer. The powder sample is loaded under a He

stream in a copper cell. Each experiment consists of a

continuous temperature scan using 2 to 4 K steps and

heating cycles of 300 to 600 s under a pressure of

~10–7 mbar. Heat capacity of the sample is obtained

after subtracting the copper-cell contribution (see

Brunet et al. 2004 for the heat capacity of the empty

cell). The accuracy of Cp measurement is estimated to

±0.8 J mol–1 K–1 based on measurements on a refer-

ence compound (a-Al2O3, Furukawa et al. 1956). This

accuracy can be converted into an entropy uncertainty

(r) of around 1.5% (Brunet et al. 2004).

Heat capacities were measured in the 143–323 K

and 341–923 K ranges with an automated Perkin-El-

mer DSC 7 (Institute of Geosciences, Kiel University,

Germany). Temperature calibration, purge gas and

other technical details are found in Bosenick et al.

(1996) and Bertoldi et al. (2001) for the measure-

ments in the high-temperature and low-temperature

regions, respectively. Measurements are performed on

20–55 mg of sample placed in a gold pan (6-mm

diameter) and covered with a thin gold lid. The heat-

capacity data are obtained by measuring alternatively,

a blank (empty pan), a standard for calibration (pan

loaded with corundum) and the sample of interest

(pan with sample). Heat capacities were collected in

step-scanning mode as described in Bosenick et al.

(1996), with a heating rate of 10 K min–1. The

Cp-calibration factor is obtained from synthetic

corundum measurements, using the Cp function by

Ditmars and Douglas (1971). Correction for Au-pan

weight differences is calculated using the gold Cp

polynomial by Robie et al. (1979).

Formation enthalpies were derived from high-tem-

perature drop-solution calorimetry (Navrotsky 1997) in

the Tian–Calvet twin calorimeter described by Kahl and

Maresch (2001) and located at the Institute for Geology,

Mineralogy and Geophysics (Ruhr University, Bochum,

Germany). Sample pellets of 5–8 mg are dropped from

room temperature (290–293 K) into a lead-borate sol-

vent (2PbO�B2O3) held at the calorimeter temperature

(975 K). Measurements are performed under dynamic

conditions (Navrotsky et al. 1994), i.e. under an argon

stream (flow rate of 1.5 cm3 s–1), since volatile-bearing

phases are investigated (e.g. carbonates and hydrox-

ides). Before each set of measurements (typically, five

measurements on both calorimeter sides), platinum

scraps (30 mg) are dropped into the solvent in order to

determine the calorimeter calibration factor. This con-

tinuous calibration reduces measurement error caused

by changes of the temperature and electronic environ-

ment. Since samples are equilibrated, before being

dropped, at a temperature between 290 and 293 K in-

stead of 298.15 K (reference temperature), measured

drop-solution enthalpy (DHds) are corrected using the

Cp function of the sample, either tabulated (CaCO3,

Al2O3, SiO2, MgAl2O4 and CaSiO3) in Robie and

Hemingway (1995) or measured here by DSC (dissaki-

site, La(OH)3 and monazite).

Results

Heat-capacity data

The molar heat capacity of the following lanthanum

phases monazite, dissakisite and lanthanum hydroxide

was measured by DSC; temperature range, sample

weight and Cp functions (Berman and Brown 1985;

Maier and Kelley 1932) are recapitulated in Table 1.

In addition, monazite molar heat capacity was

measured from 30 to 300 K using adiabatic calorim-

etry (electronic supplementary data). A ninth-order

polynomial equation was fitted to the Cp data from 30

to 300 K and extrapolated down to absolute temper-

ature using a cubic temperature approximation

(Cp = aT3). Integration of these Cp(T)/T functions

between 40 to 298.15 K, and 0 to 40 K, respectively,

yields a third-law entropy (S�298) of 104.9 (1.6)

J mol–1 K–1 for LaPO4. Recently, Thiriet et al. (2005)

proposed a LaPO4 entropy of 108.24 J mol–1 K–1 from

adiabatic data collected in the 2–380 K range. This

entropy value is consistent with ours according to the

uncertainty range (1–3%) proposed by Thiriet et al.

(2005) for their Cp measurements. Accordingly, we

will consider the mean third-law entropy value of

106.6 J mol–1 K–1 for LaPO4, hereafter. Combining

adiabatic and DSC data, the Cp function of monazite

could be determined in the 30–723 K range with

around 150 K overlap between the two independent

datasets acquired on the same sample. These Cp data

are plotted as a function of temperature in Fig. 1

along with data from previous studies (i.e. Thiriet

et al. 2005; Tsagareishvili et al. 1972).

Contrib Mineral Petrol (2007) 154:1–14 3

123



Since low-temperature Cp data have only been

measured for monazite, the entropy of dissakisite has

been approximated with the oxide summation method

proposed by Holland (1989). This summation method

includes a molar volume correction (S–V) to the en-

tropy and can predict entropy within a few percents

when the coordination of the oxide components is

taken into account. In order to derive the dissakisite

entropy, (S–V) P2O5 is taken from Brunet et al.

(2004) and the other (S–V) values are taken from

Holland (1989) apart from (S–V) La2O3 which was

not available in the literature. A mean (S–V) value

for La2O3 of 86.5 has been extracted from LaPO4

monazite (this study), La2O3 (Cordfunke and Konings

2001a), La(OH)3 (Chirico and Westrum 1980), La-

AlO3 (Schnelle et al. 2001) and La2Si2O7 (Bolech

et al. 1996). This mean value of 86.5 (irrespective the

La coordination) permits to re-calculate the entropy

of the five La-bearing phases used for the extraction

within 5% (R2 = 0.961) as shown in Fig. 2. Taking a

dissakisite molar volume of 137.8 cm3 mol–1, the

predicted entropy of dissakisite is found to be equal

to 309.9 J mol–1 K–1.

Heat-capacity data for dissakisite could not be

measured above 623 K due to thermal decomposition

(dehydration) in the vicinity of that temperature. For

the same reason, La(OH)3 heat capacity could be

measured up to 323 K only. Mean Cp value averaged

over three to five DSC temperature scans are listed

with their two standard deviations of the mean in

electronic supplementary data. The precision for

low-temperature (143–323 K) and superambient

(341–723 K) DSC data is estimated to around 2–7%

and 1–3%, respectively (Figs. 1, 3a, b). The low-tem-

perature heat-capacity data for La(OH)3 are consistent

(within ±3%) with previous adiabatic measurements

(Chirico and Westrum 1980, Fig. 3a). For further

thermochemical calculations, equations were fitted to

Table 1 Summary of the DSC data for synthetic monazite-(La), dissakisite-(La) and La(OH)3

Sample Weight (mg) T range (K) N (Tlow) N (Tsup) Heat capacity polynomial

Monazite-(La) 38.7 143–723 5 5 198.08 – 1,645T–0.5 – 1.323 · 105T–2

+ 1.9276 · 107T–3 a

102.96 + 0.053T – 14.322 · 105T–2 b

Dissakisite-(La) 43.96 143–623 4 4 743.18 – 6,116T–0.5 – 41.841 · 105T–2

+ 44.4052 · 107T–3 a

421.91 + 0.142T – 93.838 · 105T–2 b

La(OH)3 51.48 143–323 4 0 207.97–1,401T–0.5 – 15.417 · 105T–2

+ 15.0260 · 107T–3 a

95.26 + 0.101T – 9.720 · 105 T–2 b

N number of DSC scans on (Tlow) = (143–323 K) and (Tsup) = (341–923 K)
a Berman and Brown (1985)
b Maier and Kelley (1932)
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the heat-capacity data of all phases measured by dif-

ferential scanning calorimetry using

1. the Cp polynomial proposed by Berman and

Brown (1985) in order to be input in the database

of Berman (1988):

Cp ¼ k0 þ k1T�0:5 þ k2T�2 þ k3T�3

(Table 1, Fig. 3).

2. the Cp polynomial proposed by Maier and Kelley

(1932) in order to be added to the SUPCRT92

database (Johnson et al. 1992):

Cp ¼ aþ bT þ cT�2

(Table 1).

Formation-enthalpy data

Drop-solution enthalpies (DHds) for monazite and

dissakisite and their reactant phases were measured in

lead borate solvent at 975 K (Table 2). The reaction

cycle used to derive dissakisite formation enthalpy

DH�f,298 is given as an example in Table 3. Volatile

components (H2O and CO2) are assumed to be totally

released by the lead borate melt (Navrotsky et al.

1994) and flushed by the argon stream (i.e. under dy-

namic conditions). The dissolution enthalpy of CaCO3

(Table 2) is consistent with published data obtained

under similar dynamic conditions (Navrotsky et al.

1994; Kahl and Maresch 2001).

The La(OH)3 formation enthalpy has been recal-

culated using our drop-solution value for La(OH)3

(Table 2) combined to the drop-solution value for

La2O3 (Bularzik et al. 1991; Robie et al. 1979) and

La2O3 formation enthalpy (Cordfunke and Konings

2001a). We obtained a formation enthalpy of La(OH)3

equal to –1,411.9 ± 4.6 kJ mol–1, which compares well

with the –1,416.1 ± 1.0 kJ mol–1 proposed by Diako-

nov et al. (1998). In addition, examination of lead bo-

rate solvent after dissolution reveals no evidence of

undissolved particles or reaction products of La(OH)3.

Therefore, La(OH)3 appears to be suitable for high-

temperature dissolution experiments in lead borate

solvent and, actually, it offers an interesting alternative

to La2O3 which shows a sluggish dissolution rate and

an exothermic enthalpy of solution in lead borate at

975 K (Helean and Navrotsky 2002).

The reaction cycle presented for dissakisite (Ta-

ble 3) involves CaCO3 and yields a formation enthalpy

of –6,976.5 ± 10.0 kJ mol–1 (selected value for further

thermochemical calculations, Table 4). A second

cycle built up with CaSiO3 instead of CaCO3 yields

DH�f,298 = –6,978.4 ± 9.9 kJ mol–1 for dissakisite. The

good consistency between the formation enthalpy de-

rived from these two reaction cycles validates the

assumption of CO2 degassing out of the solvent.

Monazite formation enthalpy was derived using the

DHds value for P2O5 taken from Ushakov et al. (2001).

Reaction cycle with La(OH)3, considering white phos-

phorus as reference state, yields a value of –1,985.7 ±

3.0 kJ mol–1, which compares well with the new disso-

lution data in 3Na2O�4MoO3 and in 2PbO�B2O3

solvents (–1,987.9 ± 2.0 kJ mol–1) obtained by Ushakov

et al. (2004).

Phase diagrams

The stability of monazite and dissakisite has been

evaluated for a real metapelite composition expressed

in the SiO2–Al2O3–FeO–Fe2O3–MgO–CaO–Na2O–

K2O–P2O5–La2O3–CO2–H2O system using the THE-

RIAK-DOMINO software (Decapitani and Brown

1987). This software calculates equilibrium mineral

assemblages for a specific bulk-rock composition

(pseudo-sections). The thermochemical data derived in

this study (Table 4) have been added to the updated

database of Berman (1988), JUN92.bs, supplied with
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the THERIAK-DOMINO software (http://www.titan.

minpet.unibas.ch/minpet/theriak/theruser.html).

The consideration of P2O5, a main monazite constit-

uent, led us to incorporate hydroxylapatite, Ca5

(PO4)3OH (Robie and Hemingway 1995) to the data-

base, as well. The solid solution between clinozoı̈site

and dissakisite was assumed to be ideal (REE in the

A2 site, Rouse and Peacor 1993). Pseudo-sections have

been calculated for a Ca-poor and Al-rich composition

metapelite (Table 5, Fig. 4a) from the Central Alps,

called MF131, described in Frey (1969). This sample is

mainly constituted of quartz, chloritoid, white mica and

chlorite assemblages which record sub-greenschist

facies conditions (temperature around 350–400�C).

In terms of REE-mineralogy, allanite (Ca1.2Fe0.8

Al2.2(SiO4)3OH) is found associated with chloritoid,

Table 2 Corrected drop-solution enthalpies (DHds) obtained in this study along with literature data for comparison

Sample DHds measured (kJ mol–1) DHds literature (kJ mol–1)

Dissakisite, CaLaMgAl2(SiO4)3OH 542.1 ± 7.3 (8)
La(OH)3 170.1 ± 3.8 (11)
Monazite, LaPO4 148.5 ± 2.2 (16) 154.6 ± 1.6 a

Calcite, CaCO3 190.9 ± 0.8 (17) 191.1 ± 1.1 (7)b; 194.1 ± 0.9 c; 193.4 ± 0.7 (10)d; 189.6 ± 1.1 (9)e

Corundum, Al2O3 107.8 ± 1.9 (7) 107.4 ± 1.2 (22)b; 108.0 ± 1.0 c; 107.9 ± 1.0 (8)d

Quartz, SiO2 38.8 ± 1.1 (8) 38.8 ± 0.8 (9)b; 38.4 ± 0.8 c; 39.1 ± 0.3 (9)d; 40.0 ± 0.2 (6)f

Spinel, MgAl2O4 164.8 ± 1.9 (7) 165.2 ± 1.0 g

Wollastonite, CaSiO3 105.8 ± 3.1 (8) 105.4 ± 0.7 (8)f

Numbers in parentheses correspond to the number of measurements used to derive the drop-solution values

Reported uncertainties are two standard deviation of the mean
a Ushakov et al. (2004)
b Kahl and Maresch (2001)
c Grevel et al. (2001)
d Kisevela et al. (1996)
e Navrotsky et al. (1994)
f Chai and Navrotsky (1993)
g McHale et al. (1998)

Table 3 Thermochemical cycle used to derive the standard enthalpy of formation from the elements, DHf,el (298), for dissakisite,
CaLaMgAl2(SiO4)3OH

Reaction DH (kJ mol–1)

CaLaMgAl2(SiO4)3OH (298) fi CaLaMgAl2(SiO4)3OH (975) (1) DHds CaLaMgAl2(SiO4)3OH 542.1 ± 7.3
CO2 (298) fi CO2 (975) (2) DH[298–975]CO2 32.2
CaCO3 (298) fi CaCO3 (975) (3) DHds CaCO3 190.9 ± 0.8
La(OH)3 (298) fi La(OH)3 (975) (4) DHds La(OH)3 170.1 ± 3.8
SiO2 (298) fi SiO2 (975) (5) DHds SiO2 38.8 ± 1.1
MgAl2O4 (298) fi MgAl2O4 (975) (6) DHds MgAl2O4 164.8 ± 1.9
H2O (298) fi H2O (975) (7) DH[298–975]H2O 25.1
CaCO3+ La(OH)3 + 3 SiO2 + MgAl2O4 fi

CaLaMgAl2(SiO4)3OH + CO2 + H2O DH(8) = –DH(1) –
DH(2) – DH(7) + DH(3) + DH(4) + 3DH(5) + DH(6)

(8) DH�
ox, 298 CaLaMgAl2(SiO4)3OH 42.9

C (298) + ½O2 (298) fi CO2 (298) (9) DH�
f CO2

a –393.5 ± 0.1
Ca (298) + C (298) + 3/2O2 (298) fi CaCO3 (298) (10) DH�

f CaCO3
a –1,207.4 ± 1.3

La (298) + 3/2O2 (298) + 3/2 H2 (298) fi La(OH)3 (298) (11) DH�
f La(OH)3

b –1,416.1 ± 1.0
Si (298) + O2 (298) fi SiO2 (298) (12) DH�

f SiO2
a –910.7 ± 1.0

Mg (298) + 2 Al (298) + 2 O2 (298) fi MgAl2O4 (298) (13) DHf MgAl2O4
a –2,299.1 ± 2.0

H2 (298) + ½O2 (298) fi H2O(298) (14) DH�
f H2Oa –241.8 ± 0.0

Ca + La (298) + 3Si (298) + Mg + 2 Al + 0.5H2 + 6.5O2 fi
CaLaMgAl2(SiO4)3OHDH(15) = DH(8) – DH(9) –
DH(14) + 2DH(10) + DH(11) + 3DH(12) + DH(13)

(15) DHf, 298 CaLaMgAl2(SiO4)3OH –6976.5 ± 10.0

a Robie and Hemingway (1995)
b Diakonov et al. (1998)
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whereas monazite is absent. Trace elements in MF131

were analysed by ICP mass spectrometry following a

LiBO2 fusion and nitric acid digestion of 0.2 g of sample

(ACME lab, Canada). This metapelite is REE rich

(
P

REE = 825 ppm) with a content of each REE

around five times higher than that of the NASC refer-

ence (Haskin et al. 1968; Fig. 4b). For simplifications,

lanthanum content was taken for the calculation as equal

to the sum of REE and Y.

The pseudo-section obtained with the THERIAK-

DOMINO program is represented in Fig. 5 for

pressures and temperatures ranging from 1 to

16 kbar and 200 to 600�C, respectively. For MF131,

the stability field of the clinozoı̈site-dissakisite series

(called REE-epidote hereafter) is found to be com-

prised between 250 and 550�C for pressures between

2 and 16 kbar. Monazite is basically stable in the rest

of the P–T field displayed in Fig. 5. From 250�C

(P = 2 kbar) to 450�C (P = 16 kbar), the monazite

breakdown into REE-epidote (dissakisite component

XDsk = 0.6 – 0.8) and apatite involves several silicates

(reactions 1 to 9 in Fig. 5). In these reactions, the

calcium is supplied by different minerals according to

the P–T conditions: laumontite, lawsonite, wairakite

(a low pressure phase) or omphacite. In most of the

reactions (1 to 5; 6 and 7), dissakisite and apatite are

associated with chloritoid. Above temperatures of

400–550�C, REE-epidotes (XDsk = 0.5 to 0.8) are no

longer stable and monazite forms instead. Calcium is

then taken up in anorthite and/or garnet, whereas

Table 4 Thermochemical data measured or estimated (bold) for monazite and dissakisite

Phase DHf� (kJ mol–1) S� (J K–1 mol–1) DGf� (kJ mol–1) Heat-capacity polynomials

Monazite-(La) –1,985.7 ± 3.0 106.6 –1,865.9 198.08 – 1,645T–0.5 – 1.323 · 105T–2 + 1.9276 · 107T–3 a

102.96 + 0.053T – 14.322 · 105T–2 b

Dissakisite-(La) –6,976.5 ± 10.0 309.9 –6,578.7 743.18 – 6,116 · T–0.5 – 41.841 · 105T–2 + 44.4052 · 107T–3 a

421.91 + 0.142T – 93.838 · 105T–2 b

a Berman and Brown (1985)
b Maier and Kelley (1932)

Table 5 Bulk rock composition (REE, oxides and elements) of
an alpine metapelite (MF131) used as input for calculations with
THERIAK-DOMINO software

REE ppm Oxide wt.% Element mol%

Y 136.2 SiO2 58.3 Si 19.01
La 146.8 TiO2 0.84
Ce 274.4 Al2O3 19.7 Al 7.57
Pr 31.3 Fe2O3 1.9 Fetot 2.32
Nd 122.3 FeO 6.8
Sm 23.4 MnO 0.08 Mg 0.16
Eu 5.7 MgO 2.6 Ca 0.31
Gd 21.5 CaO 0.88 Na 0.46
Tb 3.9 Na2O 0.73 K 1.08
Dy 24.8 K2O 2.6 P 0.008
Ho 5.0 P2O5 0.06 La 0.006
Er 14.8 La2O3 0.01 C 0.35
Tm 2.2 CO2 0.8 H 9.8
Yb 12.0 H2O 4.6 O 58.50
Lu 2.0
Sum 826.1 Sum 99.89

The elemental composition (in mol%) has been normalized to
100% ignoring minor Ti and Mn

CaO+Na2O K2O

Al2O3
Kaolinite

Illite

K-sparPlagioclase

Calcite

recent shales

pelite MF131

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

1

10

L
o

g
 R

E
E

/N
A

S
C

a)

b)

Fig. 4 a Bulk rock
composition of the MF131
pelite plotted in an Al2O3–
(CaO + Na2O)–K2O ternary
diagram with Common
Cretaceous shales
composition (Hutcheon et al.
1998); b NASC-normalized
REE-pattern of the MF131
pelite (normalization data in
Haskin et al. 1968)
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magnesium and aluminum are mainly incorporated

into mica (white mica or biotite). All the reactions

from 1 to 14 correspond to water-producing reactions

(with increasing temperature).

The respective stability of monazite and REE-

epidote is expected to depend on the bulk compo-

sition of the hosting rock. In order to investigate the

role of variable rock chemistry, additional calcula-

tions were performed using the THERIAK-DOM-

INO software on the MF131 composition with the

concentration of a single element taken as variable.

The influence of magnesium and iron variations

cannot be reasonably considered as long as thermo-

chemical data for allanite, CaREEFeAl2(SiO4)3OH,

are unknown. The effect of changing the bulk-rock

calcium content between 0 and 5 mol% is displayed

in Fig. 6. Whereas the temperature of the REE-epi-

dote appearance (monazite breakdown) is unaf-

fected, the breakdown temperature of REE-epidote

increases with increasing calcium content (0 to

5 mol%): from 500 to 570�C at 5 kbar, from 570 to

810�C at 10 kbar and from 490 to more than 850�C

at 15 kbar. This can be related to the epidote

decomposition towards high temperatures, which in-

volves the formation of garnet and plagioclase. For

high Ca concentrations, the formation of these

Ca-bearing alumino-silicates does not require the

breakdown of REE-epidotes, abundant clinozoı̈site

acts as the calcium supply. Lanthanum and phos-

phorus concentrations will control the abundance of

dissakisite, monazite and apatite but, unlike Ca

concentration, they will have little effect on the

temperature ranges of occurrences of these phases.

Discussion

Evaluation of the thermochemical data derived

In order to evaluate the accuracy of the formation

enthalpy of LaPO4 obtained by dissolution in lead

borate, the solubility product (log K) of LaPO4 was
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calculated using the SUPCRT92 code (Johnson et al.

1992) and compared with literature data. In SUP-

CRT92, the thermochemical data for REE aqueous

species are from Haas et al. (1995) and white phos-

phorus is used as reference state. The calculated solu-

bility products have been determined using the

following dissolution reaction:

LaPO4 ! La3þ þ PO3�
4

While the experimental solubilities of hydrous

La-phosphate are well documented (references in

Poitrasson et al. 2004; Cetiner et al. 2005), those of

monazite-(La) have only been determined by Cetiner

et al. (2005) at 296.15 and 323.15 K, at atmospheric

pressure. Figure 7 shows the calculated solubility

products of LaPO4 between 273.15 and 573.15 K at

saturated vapour pressure compared to the experi-

mental values of –24.7 ± 0.15 and –25.4 at 296.15

and 323.15 K, respectively (Cetiner et al. 2005). Cal-

culations predict well the solubility decrease with

temperature already documented by Poitrasson et al.

(2004) and Cetiner et al. (2005). Even though, there is a

general agreement between experimental solubility

products measured on different monazite end-mem-

bers, the calculated solubility products are three to four

orders of magnitude lower than the experimental ones.

The log K value of monazite-(La) compare well with

those derived for Nd-, Sm- and Gd-composition, which

are equal to –25.93 ± 0.07 and –25.8 ± 0.05 (Poitras-

son et al. 2004; Cetiner et al. 2005, respectively),

–24.55 ± 0.19 (Cetiner et al. 2005) and –25.84 (Poitras-

son et al. 2004), respectively.

Assuming that the LaPO4 third-law entropy is

well constrained by low temperature adiabatic

calorimetry, we can retrieve the formation enthalpy

consistent with the experimental solubility data, as

follows:

DH�f ;TðLaPO4Þ ¼ 2:306 RT log K þ TDS�d;TðLaPO4Þ

þ DH�f ;TðLa3þÞ þ DH�f ;TðPO3�
4 Þ

where

DS�d;TðLaPO4Þ ¼ DS�f ;TðLaPO4Þ � DS�f ;TðLa3þÞ

� DS�f ;TðPO3�
4 Þ

Considering that DS�f,T (LaPO4) = 106.9 kJ mol–1

K–1 as determined in this study and using the data of

aqueous species from the database of SUPCRT92, the

experimental solubility product at standard conditions

(log K = –24.7) yields a formation enthalpy of

–1,963.2 kJ mol–1. This value differs by around 20 kJ

from those obtained by high temperature drop

solution. It is important to note that a relatively small

difference in term of enthalpy (around 1% of the

value) influences remarkably the solubility product

(three to four orders of magnitude). It remains difficult

to interpret this discrepancy, which exceeds the

uncertainty range of drop-solution data or solubility

experiments. The revaluation of the standard proper-

ties of the La3+ (Cordfunke and Konings 2001b) shows

that the source of error related to the lanthanum

aqueous species is limited. Inconsistency between data

using different reference states for phosphorus (e.g. red

or white) has been looked for. The data in SUPCRT92

use the database of Wagman et al. (1982) for aqueous

phosphorus species, where reference state for phos-

phorus is consistently taken as white phosphorus. In a

similar way, the P2O5 thermochemical data, imple-

mented in the high-temperature dissolution cycle

(Robie and Hemingway 1995), are obtained using

white phosphorus as reference state. The consistency
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between drop-solution data obtained using different

reactants for lanthanum (La2O3 and La(OH)3) as well

as different solvents (lead borate and sodium molyb-

date) demonstrates that high-temperature calorimetry

is suitable to derive the formation enthalpy of mona-

zite. Assuming that the source of the discrepancy lies in

the solubility products derived experimentally, then

the precipitation of a secondary metastable phase

during monazite dissolution in acidic solution appears

as a conceivable candidate. Although such secondary

products have never been observed (Poitrasson et al.

2004; Cetiner et al. 2005), their formation cannot be

excluded since it would explain the similarities be-

tween the solubility products measured for monazite

and rhabdophane and, eventually, the apparent

incongruent dissolution of monazite in acidic solution

(Poitrasson et al. 2004; Cetiner et al. 2005). It must

however be noted that such secondary precipitate, if

any, is likely to involve Ostwald step processes

(metastable intermediate phases) since the experi-

mental solubility products are higher than the calcu-

lated ones (Fig. 7).

Without additional data, we propose to consider the

value obtained in this study (–1,985.7 kJ mol–1), keep-

ing in mind that it does not fully account for experi-

mental solubility products. We have tested the effect of

changing the monazite enthalpy value from –1,985.7 to

–1,963.2 kJ mol–1 on the calculated pseudo-section for

the MF131 composition. Phase relations between

monazite and REE-epidotes remain unchanged. How-

ever, the stability window of REE-epidote is extended

towards larger temperature and pressure intervals of

(200–700�C) and (0–20 kbar), respectively. Further-

more, epidote compositions closer to dissakisite end-

member are stabilized.

Stability of monazite and allanite in metapelites

In order to evaluate the relevance of the thermo-

chemical data derived here and to gain understand-

ing on monazite- and allanite-forming reactions in

metapelites, phase diagrams derived for MF131

have been compared to natural occurrences in

metapelites.

The increasing use of monazite as a U–Th–Pb

chronometer has led to a large number of descriptions

of REE-assemblages in metapelites in order to better

constrain and relate monazite ages to its P–T condi-

tions of formation (e.g. Spear and Pyle 2002 and ref-

erences therein). For example, Giere and Sorensen

(2004) proposed that during prograde metamorphism,

REE-mineralogy follows the general sequence:

detrital or igneous monazite ) metamorphic allanite

) metamorphic monazite.

Under low-grade conditions, monazite is usually

considered to be metastable (detrital or igneous

origin) although rare occurrences of newly formed

monazite grains have been reported under diagenetic

and subgreenschist facies conditions (Evans and

Zalasiewicz 1996; Rasmussen et al. 2001; Evans et al.

2002; Wing et al. 2003; Bollinger and Janots 2006). In

metapelites, monazite is often found to disappear to

form prograde allanite at temperatures around 400�C

(Smith and Barreiro 1990; Wing et al. 2003) and,

eventually, to reappear at around 450 to 525�C

(Smith and Barreiro 1990; Kingsbury et al. 1993;

Franz et al. 1996; Wing et al. 2003). Nevertheless,

recent studies point out that the temperature at

which allanite decomposes to form monazite can be

variable from one occurrence to another. Whole-rock

composition and particularly Ca-content (Foster and

Parrish 2003; Wing et al. 2003) may control this

breakdown temperature.

The pseudo-section (Fig. 5) derived from our ther-

mochemical data in a simplified system (La =P
REE + Y) using dissakisite instead of allanite shows

that, on the low-temperature side (Fig. 5), monazite has

indeed a stability field. Under sub-greenschist facies

conditions, dissakisite is stable consistently with the

occurrence of allanite in the MF131 sample. In agree-

ment with the crystallization sequence proposed by

Giere and Sorensen (2004), monazite breaks down

above 250�C to produce a La-rich epidote (XDsk = 0.6 to

0.8), the lanthanum content of which decreases with

increasing temperature. This is in good agreement with

the prograde allanite zoning patterns in metapelites

(Fig. 8), which are characterized by REE-rich cores and

Ca-rich rims, i.e. with a high clinozoı̈site content (e.g.

Oberli et al. 2004; Janots et al. 2006).

The calculated breakdown reactions of monazite can

be compared to those reported from the literature. The

REE-epidote forming reactions calculated here (reac-

tions 1–9, Fig. 5) involve white mica, chlorite or biotite

as reactants and white mica, biotite or chloritoid as

products as already reported from natural occurrences

(Broska and Siman 1998; Wing et al. 2003). In metap-

elites and metagranites, the calcium source to form

REE-epidote along with apatite has been proposed to

be plagioclase and/or carbonates (Broska and Siman

1998; Wing et al. 2003). However, according to our

calculations calcium is rather supplied by different

Ca-bearing phases as laumontite, lawsonite, wairakite
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or omphacite. This discrepancy may be explained by the

preservation of detrital plagioclase in natural occur-

rences. This metastable plagioclase can then react, di-

rectly or not, to form allanite and apatite. With respect

to carbonates, decarbonation to supply calcium is pre-

dicted only in reaction 2 around 280�C (Fig. 5)

There is a general agreement that along the allanite

breakdown reactions, calcium is stored in plagioclase

and garnet (e.g. Pyle and Spear 2003; Wing et al.

2003). This is consistent with all the prograde mona-

zite-forming reactions calculated here (reactions

10–14, Fig. 5). The diagram in Fig. 6 shows that the

increase of Ca concentration in the rock extends the

allanite stability domain towards higher pressure and

temperature. This is in good agreement with the

REE-mineralogy in high-pressure rocks: while allanite

is found in Ca-rich metabasite (e.g. Hermann 2002)

monazite occurs in rocks with low CaO content (e.g.

Krenn and Finger 2004 where CaO is below

0.8 wt.%).

Under retrograde metamorphic conditions, both

REE-epidote and monazite can potentially form

according to the phase diagram displayed in Fig. 5.

Interestingly, the corresponding formation reactions

are all water-consuming reactions. Therefore, the

crystallization of retrograde monazite (or allanite) re-

quires an aqueous fluid phase as already suggested

from natural samples (Lanzirotti and Hanson 1996;

Pan 1997; Broska and Siman 1998; Finger et al. 1998;

Bollinger and Janots 2006).

In conclusion, we are aware that the generalization

of the phase relations derived here to natural cases

should be made with caution because (i) synthetic

monazite-(La) and dissakisite-(La) are taken as

analogues of natural monazite and allanite, (ii) the

lack of consideration of other lanthanum or phos-

phate bearing-phases as florencite (Sawka et al. 1986;

Rasmussen 1996; Nagy et al. 2002; Janots et al. 2006)

or rhabodphane (Nagy et al. 2002), especially under

low-grade conditions (iii) calorimetric data have

been incorporated in an internally consistent data-

base with optimized thermodynamic properties

(Berman 1988). But despite these limitations, the

phase relations in La-bearing systems derived in this

study are broadly consistent with petrological obser-

vations and offer therefore new perspectives to

interpret the occurrences of the two main

REE-minerals in metamorphic rocks, monazite and

allanite.
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