
s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
2
6
4
5
3

|

d
o
w
n
l
o
a
d
e
d
:

9
.
4
.
2
0
2
4

Improving semantic query answering

Norbert Kottmann and Thomas Studer

Institut für Informatik und angewandte Mathematik,
Universität Bern, Neubrückstrasse 10, CH-3012 Bern, Switzerland,

{kottmann,tstuder}@iam.unibe.ch

Abstract. The retrieval problem is one of the main reasoning tasks for
knowledge base systems. Given a knowledge base K and a concept C, the
retrieval problem consists of finding all individuals a for which K logically
entails C(a). We present an approach to answer retrieval queries over
(a restriction of) OWL ontologies. Our solution is based on reducing
the retrieval problem to a problem of evaluating an SQL query over
a database constructed from the original knowledge base. We provide
complete answers to retrieval problems. Still, our system performs very
well as is shown by a standard benchmark.

1 Introduction

Over the last decade, ontologies left the realm of academia and became
an important technology in many domains. However, in order to be of
practical use for full-fledged applications, tools and techniques that can
deal with huge amounts of (ontological) information are needed.

Relational databases are one of the well-established cornerstones for
systems managing large data loads. In this paper, we present a method
to solve the ontological retrieval problem based on a relational database
system. Our implementation shows that this provides an efficient and
scalable solution for the retrieval problem.

An ontology defines the terms used to describe and represent an area
of knowledge [7]. It consists of the definitions for the basic concepts of
a domain and their relationships. These definitions and relations are for-
mulated in a so-called ontology language which should be not only under-
standable for humans but also machine readable, hence supporting au-
tomatic knowledge processing. The W3C defined the ontology language
OWL for applications in the semantic web. However, OWL also became
the language of choice for many other applications in the area of knowl-
edge representation and reasoning.

One of the main reasoning tasks for knowledge base systems is the so-
called retrieval problem [2]. Let us illustrate this problem by an example.

Assume a zoological ontology defines the following:

(1) A carnivore is an animal that eats only animals.
(2) A lion is a carnivore.
(3) A lion eats gnus.

Further, assume that this ontology has been loaded into a knowledge
base system. This system will answer the query show me all animals as
follows:

1. A lion is an animal since a lion is a carnivore (2) and every carnivore
is an animal (1).

2. A gnu is an animal since a lion is a carnivore (2), everything that is
eaten by a carnivore is an animal (1), and gnus are eaten by lions (3).

The abstract definition of the retrieval problem reads as follows: given
a knowledge base K and a concept description C, find all individuals a
such that K logically entails C(a). That is given K and C, look for all
individuals a such C(a) is a logical consequence of K. There is a trivial
algorithm for this problem, namely to test for each individual occurring
in K whether it satisfies the concept C or not. This approach has the ad-
vantage that it provides (almost) complete reasoning for quite expressive
knowledge representation languages. However, if large data sets have to
be treated, then for efficiency reasons, one may need to turn to another
approach.

It is possible to extend relational database systems to support stor-
ing and querying OWL [4] data as follows: when data is loaded into the
database, the system precomputes the subsumption hierarchy and stores
also the statements inferred from this hierarchy. Prominent projects fol-
lowing this approach are DLDB [10] and its successor HAWK1. Queries to
the knowledge base can then be translated to standard SQL queries that
are evaluated over the relational representation of the knowledge base.
This has the advantage that all the query optimization techniques pro-
vided by relational database systems can be used and it becomes possible
to work with huge datasets.

However, DLDB and HAWK often do not give complete answers to
queries. We overcome this problem by identifying the description logic
pos-ALE which is the positive fragment of ALE with transitive and in-
verse roles. Based on pos-ALE , we present an extension of relational
database systems to support OWL retrieval queries which is sound and
complete with respect to pos-ALE .

1 http://swat.cse.lehigh.edu/downloads/

The language of pos-ALE provides enough expressive power for many
applications. It also suffices for the LUBM benchmark for OWL knowl-
edge base systems [5]. We evaluate our system with this standard bench-
mark and compare our results with HAWK. The main observation is that
our systems performs very well although we provide complete pos-ALE
reasoning. For many queries we are even faster that HAWK (which is
often not complete).

Another approach for querying ontologies with the use of an SQL en-
gine has been presented in [1, 3]. There, the DL-Lite family of description
logics is introduced. These languages are also well suited for the trans-
lation of description logic queries into SQL queries. However, DL-Lite
languages are quite different from pos-ALE . On one hand, pos-ALE fea-
tures value restrictions and transitive roles which are both not included
in DL-Lite. DL-Lite, on the other hand, supports functional restrictions
and conjunctive queries which cannot be treated in pos-ALE . Because of
all these differences, we could not compare our approach with a DL-Lite
system.

2 DL to DB Mapping

The concepts of pos-ALE are given as follows, where A is used for an
atomic concept, S is an atomic role, R, T denote roles, and C,D stand for
concept descriptions:

C,D → A | (atomic concept)
> | (top)
C uD | (conjunction)
∀R.C | (value restriction)
∃R.C (full existential quantification)

R → S | (atomic role)
S− (inverse role).

Additionally, we consider a set R+ of transitive roles. A TBox T contains
concept inclusions C v D as well as role inclusions R v T . An ABox A
contains concept assertions C(a) and role assertions R(a, b). A knowledge
base K is the union of a TBox and an ABox.

We make use of the standard semantics for description logics [2]. Ac-
cordingly, we write K |= C(a) if every model of K is a model of C(a).

Our aim is to build a completion A∗ of the ABox A such that is
possible to answer arbitrary pos-ALE retrieval queries by only querying
atomic concept and roles in A∗. Assume DBK is the subset of all atomic

concept and role assertion of such a completed ABox (stemming from
an initial knowledge base K). Then we write DBK |=DB C(a) if a is in
the answer to the retrieval query C when it is evaluated over DBK. This
evaluation is inductively defined as follows.

1. DBK |=DB A(a) if A(a) ∈ DBK

2. DBK |=DB R(a, b) if R(a, b) ∈ DBK

3. DBK |=DB C uD(a) if DBK |=DB C(a) and DBK |=DB D(a)
4. DBK |=DB ∀R.C(a) if DBK |=DB C(∀R,a)
5. DBK |=DB ∃R.C(a) if there exists a constant b with DBK |=DB C(b)

and DBK |=DB R(a, b)

The constants ∀R,a are special individual terms introduced in the com-
pletion process in order to correctly answer queries which involve value
restrictions.

Remark 1. The above definition makes it possible to formulate retrieval
queries over DBK using standard SQL.

Before we can perform the completion algorithm which computes the
relational representation of a knowledge base K, we have to normalize K,
that is replace every occurrence of ∀R.(C uD) with ∀R.C u ∀R.D.

Then, the precompletion A′ of A is built by applying the following
rules to an ABox A until a fixed point is reached. Of course, these rule
are reminiscent of the tableau construction for description logics with
transitive and inverse roles, see for instance [8].

1. >(a) ∈ X if a occurs in X

2. C(a) ∈ X and D(a) ∈ X if C uD(a) ∈ X

3. C(x) ∈ X and R(a, x) ∈ X for a new x if ∃R.C(a) ∈ X and no such x
exists yet

4. C(a) ∈ X if ∀R.C(b) ∈ X and R(b, a) ∈ X for some b

5. C(∀R,a) ∈ X if ∀R.C(a) ∈ X

6. C(∀R,a) ∈ X if ∀R.C(b) ∈ X, R(b, a) ∈ X, and R ∈ R+

7. R(a, b) ∈ X if T (a, b) ∈ X and T v R ∈ T

8. R−(a, b) ∈ X if R(b, a) ∈ X where we set (R−)− := R

9. R(a, c) ∈ X if R ∈ R+, R(a, b) ∈ X, and R(b, c) ∈ X for some b

The only part of K that is not taken into account in the build up of the
precompletion are the concept inclusions present in the TBox. In order
to treat them properly, we have to apply the following algorithm.

Algorithm 1 Procedure for building the completion of an ABox
Input: ABox X and TBox T
Output: Completion of the ABox

Y ←− ∅
repeat

X←− X ∪ Y
X←− precompletion of X
Y ←− {C(a) : there exists a concept D such that DBX |= D(a) and D v C ∈ T}

until Y = ∅
return X

That is starting from an initial ABox A1 we build the precompletion
A′

1. Then we add all assertions implied by inclusion axioms yielding an
ABox A2. We have to precomplete this ABox resulting in A′

2. Again, the
inclusion axioms may imply new assertions which gives us an ABox A3.
This process eventually stops which provides the completion A∗ of A1

Example 1. Consider the zoological ontology given in the introduction.
We have

T := {Carnivore v Animal u ∀Eats.Animal}

and
A := {Carnivore(lion),Eats(lion, gnu)}.

Let A1 := A. Building the precompletion of A1 does not give any new
assertions. The second step deals with the concept hierarchy. That yields

A2 = A1 ∪ {Animal u ∀Eats.Animal(lion)}.

Building the precompletion of A2 gives us

Animal(lion),∀Eats.Animal(lion),Animal(gnu) ∈ A′
2.

Since no new individuals have been added to Carnivore, the second step
dealing with the concept hierarchy does not result in additional assertions.
Thus, we reached a fixed point and we have A′

2 = A∗.

If we start from a finite knowledge base K, then by a cardinality
argument we easily can see that a fixed point is reached after finitely
many steps.

Theorem 1. If K is a finite knowledge base, then also its completion K∗

is finite.

Proof. First observe, that only finitely many new individual constants are
needed in the course of the inductive built up of K∗. Consider the case for
value restrictions. There, it may be that a constant of the form ∀R,∀···,∀T,a

is introduced. However the role depth of such a new constant can at
most be the role depth of the original knowledge base K. The same goes
for the case of existential quantification. Therefore, only finitely many
new constants have to be introduced. Moreover, individual constants are
only added to subconcepts of concepts occurring in K and there are only
finitely many such subconcepts. Hence, the fixed point will be reached
after finitely many stages. ut

The database instance DBK of a knowledge base K consists of all atomic
concept assertions A(a) and role assertions R(a, b) of the completion K∗.

Due to the interplay of ∀ and ∃, the size of DBK can be exponential
in the size of K [2]. However, in many practical applications this blow-up
does not happen. For instance, our evaluation shows that in the LUBM
benchmark the database size grows only linearly in the size of the original
knowledge base.

In the sequel we show that query evaluation over DBK is sound and
complete.

Theorem 2 (Completeness). Let K be a knowledge base, C be a con-
cept description, and a be an individual constant. We have that

K |= C(a) =⇒ DBK |=DB C(a).

Proof. Assume DBK 6|=DB C(a). Completeness is easily established by
constructing a canonical counter model M with M |= K and M 6|= C(a).
The only point that needs a bit of attention is the case when C is a value
restriction ∀R.D. In this case we have to observe that it is always possible
in pos-ALE to extend a given interpretation of R to falsify ∀R.D(a). ut

In order to prove soundness we need some auxiliary definitions.

Definition 1. The ∗ unfolding of a concept assertion is given by:

1. C(a)∗ := C(a) if a is not of the form ∀R,b,
2. C(a)∗ := (∀R.C(b))∗ if a = ∀R,b.

Definition 2. The basis of an individual constant is given by:

1. basis(a) := basis(b) if a = ∀R,b,
2. basis(a) := a otherwise.

Theorem 3. Let K be a knowledge base, C be a concept description, and
a be an individual constant such that basis(a) occurs in K. We have that

DBK |=DB C(a) =⇒ K |= C(a)∗.

Proof. By induction on the structure of C. We show only the case when
C is ∀R.D. Then DBK |=DB D(∀R,a). By the induction hypothesis we get
K |= D(∀R,a)∗. That is K |= ∀R.D(a)∗ by the previous definition. ut

As a corollary we obtain:

Corollary 1 (Soundness). Let K be a knowledge base, C be a concept
description, and a be an individual constant. We have that

DBK |=DB C(a) =⇒ K |= C(a).

3 Evaluation

To show the applicability of our approach, we developed a system called
REAL based on pos-ALE and the completion procedure presented above,
see [9]. We evaluated our implementation with the Lehigh University
Benchmark [5]. This is a standard benchmark for expressive semantic
web knowledge base systems. We compared the performance of our sys-
tem with that of HAWK which also follows a completion approach. We
used a 3 GHz Pentium 4, 2 GB RAM, and a PostgreSQL DB to run the
tests.

The overall setup of the benchmark is shown in Figure 3. The bench-
mark system contains

1. an OWL ontology modeling a university domain,
2. a data generator (UBA) creating datasets (ABoxes) of different size,
3. a performance test application (UBT) which runs the benchmark, and
4. a set of test queries.

The system under consideration have to provide a benchmark interface
(BM) which is called by the test application. Note that HAWK uses an
external reasoner (RacerPro, see [6]) for some initial computations in the
loading process of an ontology. The detailed settings and all results of the
evaluation can be found in [9].

We tested four different datasets called 01, 05, 10, and 20. The smallest
dataset (01) contains about 100’000 triples which equals a file size of 8
MB whereas the largest dataset (20) counts more than 2’700’000 triples
with a total size of 234 MB.

Test Queries

@
@R

UBA

?
OWL Ontology

�
�	

UBT Performance Results-

�
�

�	�
�
��

REAL

BM Interface

Completion

@
@
@R@

@
@I

HAWK

BM Interface

Racer-�

PostgreSQL
?
6

PostgreSQL
?
6

Fig. 1. Benchmark setup.

The benchmark consists of 14 queries which we issued against the four
datasets in both systems. First note that our system provides complete
answers to all queries whereas HAWK only provides complete answers
to the queries 1,2,3,4, and 14. For all datasets, the answer times to the
queries are shown in Figure 2. We find that although we provide complete
answers to all queries, our system often perform even better than HAWK.

Our system also scales up very well. For many queries we have linear
(sometimes almost constant) behavior of the answering time with respect
to the number of triples. See Figure 3 for two typical examples.

For the queries 2, 9, and 12 we need much more time than HAWK and
our system does not show a good scaling behavior. These queries need a
lot of joins and we have not yet found an optimal database configuration
to better support such queries in our approach. However note that HAWK
does not provide complete answers to 9 and 12. Still query 2 shows that
there is room for improvement.

4 Concluding Remarks

We identified pos-ALE , a description logic which can easily be represented
in a relational setting. This leads to an extension of relational databases

100’000

10’000

1’000

100

10

1
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ti
m

e
[m

s]
 (l

og
ar

ith
m

ic
sc

al
e)

Query [#]

Query Answering of Dataset 01

real
hawk

100’000

10’000

1’000

100

10

1
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ti
m

e
[m

s]
 (l

og
ar

ith
m

ic
sc

al
e)

Query [#]

Query Answering of Dataset 05

real
hawk

100’000

10’000

1’000

100

10

1
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ti
m

e
[m

s]
 (l

og
ar

ith
m

ic
sc

al
e)

Query [#]

Query Answering of Dataset 10

real
hawk

100’000

10’000

1’000

100

10

1
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ti
m

e
[m

s]
 (l

og
ar

ith
m

ic
sc

al
e)

Query [#]

Query Answering of Dataset 20

real
hawk

Fig. 2. All datasets with the response time of each query.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

210

Ti
m

e
[m

s]

Triples [#] Millions

Query 1

real
hawk

 0

 500

 1000

 1500

 2000

 2500

 3000

210

Ti
m

e
[m

s]

Triples [#] Millions

Query 6

real
hawk

Fig. 3. Response time of queries 1 and 6 in relation to the number of triples in the
database.

which supports semantic web queries. So far, such extensions often did
not provide complete answers to retrieval problems. Our relational repre-
sentation provides sound and complete query answering with respect to
pos-ALE . The evaluation of our implementation with the LUBM bench-
mark showed that our approach is suitable for practical applications. In
particular, it exhibits good scaling properties. However, the tests also
showed that we still need better support for queries that involve many
join operations.

Scalability is not the only feature which makes our approach valuable
for practical applications. The use of a classical database system has the
additional advantage that all the features provided by the database may
be employed. For example, access control for the ontological system can
be implemented based on the privileges and rights system the database
provides.

Acknowledgments

We would like to thank Yuanbo Guo for his support on LUBM.

References

1. A. Acciarri, D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, M. Palmieri,
and R. Rosati. Quonto: Querying ontologies. In Proc. of the 20th Nat. Conf. on
Artificial Intelligence (AAAI 2005), pages 1670–1671, 2005.

2. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider. The
Description Logic Handbook. Cambridge, 2003.

3. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. DL-Lite:
Tractable description logics for ontologies. In Proc. of the 20th Nat. Conf. on
Artificial Intelligence (AAAI 2005), pages 602–607, 2005.

4. M. Dean and G. Schreiber. OWL web ontology language reference, 2004.
5. Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for OWL knowledge base

systems. Journal of Web Semantics, 3:158–182, 2005.
6. V. Haarslev and R. Möller. Racer system description. In R. Goré, A. Leitsch,

and T. Nipkow, editors, International Joint Conference on Automated Reasoning,
IJCAR’2001, June 18-23, Siena, Italy, pages 701–705. Springer-Verlag, 2001.

7. J. Heflin. OWL web ontology language use cases and requirements, 2004. Available
at http://www.w3c.org/TR/webont-req/.

8. I. Horrocks and U. Sattler. A description logic with transitive and inverse roles
and role hierarchies. Journal of Logic and Computation, 9(3):385–410, 1999.

9. N. Kottmann. Description logic query answering with relational databases. Mas-
ter’s thesis, University of Bern, 2006.

10. Z. Pan and J. Heflin. DLDB: Extending relational databases to support semantic
web queries. In Workshop on Practical and Scaleable Semantic Web Systems,
ISWC 2003, pages 109–113, 2003.

	1

