
s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
2
6
5
3
4

|

d
o
w
n
l
o
a
d
e
d
:

9
.
4
.
2
0
2
4

A Smart TCP Acknowledgment Approach
for Multihop Wireless Networks

Ruy de Oliveira and Torsten Braun, Member, IEEE

Abstract—Reliable data transfer is one of the most difficult tasks to be accomplished in multihop wireless networks. Traditional

transport protocols like TCP face severe performance degradation over multihop networks given the noisy nature of wireless media as

well as unstable connectivity conditions in place. The success of TCP in wired networks motivates its extension to wireless networks. A

crucial challenge faced by TCP over these networks is how to operate smoothly with the 802.11 wireless MAC protocol which also

implements a retransmission mechanism at link level in addition to short RTS/CTS control frames for avoiding collisions. These

features render TCP acknowledgments (ACK) transmission quite costly. Data and ACK packets cause similar medium access

overheads despite the much smaller size of the ACKs. In this paper, we further evaluate our dynamic adaptive strategy for reducing

ACK-induced overhead and consequent collisions. Our approach resembles the sender side’s congestion control. The receiver is self-

adaptive by delaying more ACKs under nonconstrained channels and less otherwise. This improves not only throughput but also power

consumption. Simulation evaluations exhibit significant improvement in several scenarios.

Index Terms—Wireless multihop networks, transport control protocol, delayed acknowledgments.

Ç

1 INTRODUCTION

THE phenomenal growth experienced by the Internet over
the last decade has been supported by a wide variety of

evolving mechanisms to meet the requirements of emer-
ging, demanding applications. The basic TCP/IP protocol
suite has been instrumental in developing today’s Internet.
In particular, TCP has been successful due to its robustness
in reacting dynamically to changing network traffic condi-
tions and providing reliability on an end-to-end basis. This
wide acceptance has driven the development of many TCP
applications, motivating the extension of this protocol to
wireless networks. These networks pose some critical
challenges to TCP since it was not originally designed to
work in such complex environments, where the level of bit
error rate (BER) is not negligible due to the physical
medium. High mobility may further degrade the end-to-
end performance because TCP reduces its transmission rate
whenever it perceives a dropped packet. We target
scenarios in which the level of mobility is relatively low
(pedestrian movement) and, so, the focus of this paper is the
interaction between TCP and the MAC layer.

IEEE 802.11 [1] is the standard Medium Access Control

(MAC) protocol for ad hoc networks, consisting of both link

and physical layer specifications. 802.11 implements a

robust link layer retransmission strategy along with the

RTS/CTS (request-to-send/clear-to-send) control frames

for recovering most of the potentially lost frames locally

on link level. There is also a virtual carrier sense mechanism

that is used by every node to announce to all other nodes

within a given area when the medium is busy. This
mechanism aims at preventing the well-known hidden
node problem. 802.11 works efficiently for topologies of at
most three hops between sender and receiver, which is
commonly called a 3-hop scenario (Fig. 1) [2].

For larger scenarios in terms of number of hops, the
hidden node problem still exists due to the spatial reuse
property inherent in the propagation model of such
wireless networks. Basically, the spatial reuse imposes that,
within a certain geographical area, only one node can
transmit at a time [3], [4], [5]. This causes an adverse impact
on traditional TCP since it is always probing the network
for bandwidth by increasing its transmission rate until a lost
packet is detected. Hence, unless an efficient coordination
between MAC and transport protocols is in place, the end-
to-end performance can be severely impaired.

There has been a belief in the research community that
TCP can improve its performance by simply ignoring
medium-induced losses and not slowing down when
reacting to those. However, recent research developments
on this subject [3], [4], [5] have indicated that this procedure
may not be really effective. Rather, this aggressive behavior
can degrade the protocol performance by inducing more
losses. Actually, the main problem of TCP over 802.11 is the
excessive number of medium accesses carried out by TCP.
This is caused not only by ACK packets that compete with
data packets for the medium, but also by the TCP
retransmissions when reacting to losses.

We present in this paper a dynamic adaptive strategy for
decreasing medium contention as much as possible. This
paper is an extension of our previous publication [6], where
our proposal was introduced. Our approach generalizes the
concept of delayed acknowledgments first recommended
by RFC 1122 [7] and later refined in RFC 2581 [8], in which
the receiver should only send ACK packets for every other
data packet received. In our proposal, the receiver may

192 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 2, FEBRUARY 2007

. R. de Oliveira is with CEFET-MT, Rua Prof. Aline Tocantins 140, 78030-
370, Cuiaba-MT, Brazil. E-mail: roliveira@cefetmt.br.

. T. Braun is with the University of Bern, Neubrueckstrasse 10, CH-3012,
Bern, Switzerland. E-mail: braun@iam.unibe.ch.

Manuscript received 10 Aug. 2005; revised 14 Mar. 2006; accepted 27 June
2006; published online 14 Dec. 2006.
For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number TMC-0238-0805.

1536-1233/07/$20.00 � 2007 IEEE Published by the IEEE CS, CASS, ComSoc, IES, & SPS

combine up to four ACK packets when the wireless channel
is in good condition and less for lossy channels. The limit of
four packets is imposed by the sender’s congestion window
ðcwndÞ limit that is also fixed at four packets. This low limit
for the sender’s cwnd is proper for minimizing collisions
and more than enough for scenarios having up to 10 hops,
which are the target of this paper. These concepts lead our
mechanism to outperform a regular TCP whenever the
channel is able to provide higher bandwidth. Our mechan-
ism should perform as effectively as a traditional TCP does
when the wireless channel is facing losses.

These simple changes considerably diminish the number
of transmissions and retransmissions over the wireless
medium. As a consequence, the overall energy consump-
tion is significantly reduced, which is a key issue for
battery-powered devices. We focus our discussions on short
chains of nodes of at most eight hops because this is a
reasonable size for today’s networks. Nevertheless, the
concepts presented here are general and expected to be
effective in larger scenarios as well.

The key optimization in this paper concerns robustness
against highly noisy environments since the initial mechan-
ism in [6] is tailored to moderate loss rates. This paper
proposes a more conservative strategy for the TCP receiver
in terms of reaction and recovery associated to frequent
packet losses.

The remainder of this paper is organized as follows: The
next section describes the main related work on TCP
acknowledgment strategies. In Section 3, we introduce our
proposal, where the design decisions are explained and the
main features are discussed in detail. Section 4 presents and
discusses the simulation results. Section 5 concludes the
paper, pointing out the main achievements.

2 RELATED WORK

Several proposals for improving TCP performance, or
replacing its mechanisms, over multihop wireless networks
have emerged in recent years [9], [10], [11], [12], [13], [14],
[15]. The strategy of these proposals is to enhance the TCP
sender to react properly to lost packets caused by reasons
other than congestion [6]. We focus here on proposals that
aim to minimize traffic overhead caused by redundant
ACKs because this is a primary goal of our proposed
mechanism as well. We also discuss important research
work (under standardization through RFCs) on TCP
spurious retransmissions as this issue may play a crucial
role in supporting our proposed mechanism.

Jimenez and Altman [16] investigated the impact of
delaying more than two ACKs on TCP performance in
multihop wireless networks. They concluded that, in a
chain topology of nodes, substantial improvement may be
achieved by delaying three to four ACKs. In their
approach, unless the sender’s retransmission timer expires,

the receiver always delays four packets, except at session
startup. During startup, the receiver begins delaying one
ACK only and increases it until four based on the sequence
number of the received data packets. The receiver uses a
fixed interval of 100 ms for timing out and does not react to
packets that are out-of-order or filling in a gap in the
receiver’s buffer, as opposed to the recommendation of
RFC 2581. The main weakness of this mechanism, hereafter
called LDA (Large Delayed ACK), regards the lack of
adaptability to the medium changing conditions. Our
proposed algorithm addresses this issue by computing
the timeout interval at the receiver “on the fly” and
reacting immediately to out-of-order packets, as we will see
later. This renders our approach more general. In addition,
while the LDA scheme is evaluated under a single flow
only, our mechanism is assessed under a varying number
of flows, giving encouraging results.

Johnson [17] investigated the impact of using extended
delayed acknowledgments intervals on TCP performance.
He has performed various experiments in a testbed
implemented on a SunOS 4.1.2 workstation. In the experi-
ments, he has changed the kernel’s TCP algorithm to allow
different numbers of combined ACKs by the receiver
instead of only two as proposed in the specification of
RFC 1122. In this way, the receiver was adjusted to delay a
higher number of ACKs, ranging from one to 20 ACKs. The
main outcome is that delaying ACKs in large numbers is
always beneficial in short-range networks but may be
inappropriate for long-distance networks, especially if
congestion is present. This is a consequence of the high
interference on RTT estimation caused by the delayed
ACKs. The longer the end-to-end connection, the longer the
time for the TCP sender to detect lost packets, which may
jeopardize the gains obtained by delaying more ACKs. The
evaluations were restricted to wired networks and no
timeout control at the receiver was implemented. Con-
versely, our proposed approach targets multihop wireless
environments, where typical packet loss rates are much
higher than in the wired world. Yet, it relies on an adaptive
timeout control at the receiver side.

Allman [18] conducted an extensive simulation evalua-
tion on Delayed Acknowledgment (DA) strategies. This
work showed that TCP performance may be hurt by
delayed ACKs mainly during the slow start phase. One
reason is that the exponential growth of TCP cwnd in that
phase may produce data bursts in the network, inducing
packet drops in the routers buffer. Another problem lies in
the ACK-clocked behavior of TCP, in which the sender only
increases its cwnd by one upon each received ACK. This
limits the sender data rate in scenarios where slow start is
often invoked. The author proposes two mechanisms to
handle the side effects of delayed ACKs: delayed ACKs after
slow start and byte counting. The former requires signaling
between sender and receiver to keep the receiver informed
about whether slow start is active or not at the sender, so
the receiver only delays ACKs when slow start is over. This
speeds up data rate recovery during slow start. Byte
counting allows the sender to increase its cwnd on the basis
of the number of bytes acknowledged by each ACK instead
of the number of ACKs. This procedure can lead to

DE OLIVEIRA AND BRAUN: A SMART TCP ACKNOWLEDGMENT APPROACH FOR MULTIHOP WIRELESS NETWORKS 193

Fig. 1. Typical 3-hop scenario.

prohibitive bursty traffic conditions and, so, the author also
suggested limiting the number of packets sent in response
to each incoming ACK to a value of 2. The results showed
that both mechanisms can improve performance for
implementations using delayed ACKs, but the main
concern is the potential increase in packet drops that may
happen. The simulation scenario here was also limited to
wired networks. We argue that the first proposed mechan-
ism (delayed ACKs after slow start) is not relevant for current
ad hoc networks were the cwnd limit is usually low. Besides,
as the media in place is inherently noisy, the signaling from
the receiver to the sender is quite unstable. In our proposed
mechanism, which is tailored to short-range ad hoc net-
works, the receiver manages adaptively the acknowledg-
ment rate on the basis of the channel condition. As a result,
no explicit signaling is needed. The second mechanism
proposed by Allman (Byte counting) is a sender-side
improvement that may be incorporated into our approach,
which is, at this time, a receiver-side mechanism only.

In [6], we published an earlier version of the mechanism
proposed in this paper. In that reference, we confirmed
important results of previous work [4], [5] in the sense that
TCP should limit its congestion window as a function of the
number of hops in place to achieve optimal performance. In
particular, we showed that a short chain of nodes of up to
10 hops should have a congestion window limit of
approximately three packets. This was shown to be caused
by the limited spatial reuse property inherent in multihop
networks relying on the IEEE 802.11 standard as the MAC
protocol. In fact, this limitation is imposed by the hidden
node problem present in such environments. The simula-
tion results in [6] were quite encouraging by showing
substantial improvements over various scenarios. As men-
tioned above, this paper proposes an enhancement to the
initial mechanism that was not intended to highly noisy
environments. The enhancement is described in Section 3.4.

Concerning the approaches that propose to improve TCP
performance against spurious retransmissions typical in
wireless environments, we discuss here two mechanisms:
the Eifel [19], [20], [21] and the F-RTO [22], [23]. Note that
these mechanisms do not use delayed acknowledgments
strategies, but only improve the sender response to
misdetected lost packets. In other words, these approaches
are reactive ones while our scheme is proactive by
minimizing losses instead of only reacting to them.

The Eifel algorithm aims to eliminate the TCP retrans-
mission ambiguity in order to solve the problems caused by
spurious timeouts and spurious fast retransmits. This
algorithm uses the TCP timestamp option, so the sender
may effectively determine whether a given packet is
transmitted for the first time or it is a retransmission. By
checking the timestamp in the ACKs, the sender is able to
infer spurious retransmissions. In case a retransmission is
found to be spurious, the sender restores the parameters of
the congestion control that were in place just before the
unnecessary retransmission has occurred. As a conse-
quence, the cwnd returns to its previous value and the
transmission rate is not reduced wrongly. In its latest
version, the algorithm encompasses specific techniques for
noisy networks, including a more appropriate way of

updating the retransmission timer and a better policy for
the cwnd restoration.

F-RTO is an algorithm implemented at the sender side
only and does not require any TCP options. In fact, it aims
at detecting spurious TCP retransmission timeouts only. A
sender using this algorithm keeps track of the incoming
acknowledgments (sequence number) after it has trans-
mitted the first unacknowledged packet triggered by a
timeout. In this way, it can decide whether to send new
packets or retransmit unacknowledged ones. As stated by
the authors, F-RTO can be seen as a sort of “Limited
Transmit” algorithm [24], but applied to the RTO recovery.
Both Eifel and F-RTO are potential algorithms to be used in
conjunction with our mechanism for robustness against the
usual unnecessary retransmissions in ad hoc networks.

3 DYNAMIC ADAPTIVE ACKNOWLEDGMENT

We call our mechanism TCP-DAA (DAA: Dynamic Adap-
tive Acknowledgment), which targets feasible scenarios
where the IEEE 802.11 standard may provide acceptable
performance. TCP-DAA was first introduced in our prior
publication in [6]. Recent investigations on 802.11 have
shown that such an ACK delaying protocol is effective in
recovering many of the wireless induced losses in typical
scenarios, but it does not scale as the number of wireless
hops increase. This happens because the well-known
hidden node problem imposes a limited spatial reuse
property in these networks as discussed in detail in [6].
There are a number of important applications and scenarios
in which the number of hops involved will be far below
10 hops, and the number of nodes will normally not exceed
100 nodes. Typical examples include ad hoc networks in
classrooms, meeting and workshop spots, small working
offices, Wi-Fi in home buildings, wireless mesh networks,
and many others.

3.1 Design Issues

TCP-DAA design is based on the following observations:
TCP reliability requires that transmitted packets are
acknowledged by the receiver side. However, if the
receiver acknowledges every incoming data packet, then
the probability of collisions between data and ACK
packets increases considerably. Moreover, since the re-
ceiver must also contend for the medium by using RTS/
CTS control frames, the overall overhead at the MAC
layer, for transmitting ACKs, is not negligible.

The problems associated to ACK overhead can be
mitigated if the receiver merges several acknowledgments
into a single ACK, which is possible due to the cumulative
ACK scheme used in TCP. This scheme uses later acknowl-
edgments as a confirmation that all previous acknowl-
edgments were successfully received. We showed in [6] that
the action of delaying ACKs is really effective in scenarios
without the classical hidden node problem, i.e., scenarios of
at most three hops. We emphasize here that such an
observation is valid for scenarios facing the hidden node
problem as well.

Table 1 illustrates how significant an ACK transmission
might be in such environments. These results are the
outcome of simulation runs in a chain topology of one hop

194 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 2, FEBRUARY 2007

(no intermediate nodes) for a single flow that lasts
10 seconds. Throughout this paper, we use the TCP
NewReno flavor [25] as the regular TCP. The values in
Table 1 represent the total time the medium is busy
transmitting either data or ACK packets. From this table, it
is evident that techniques for delaying ACKs can be indeed
efficient in multihop environments. The last column of the
table, which exhibits the ACK/DATA ratio in percent,
shows that the standard delayed acknowledgment (DA)
provides significant enhancements. Likewise, Table 1 high-
lights the remarkable performance of TCP-DAA for this
scenario by bringing down the ACK overhead, relative to
data packets, from approximately 8.9 percent to about
2.2 percent. Note that the time values in Table 1 do not
include all the delays involved in the transmission, but only
the data and ACK transmission delay.

The lower number of ACKs for the sender might lead
TCP to low performance in typical wired scenarios where
the congestion window ðcwndÞ limit is usually high. This
might happen because a TCP sender may only enlarge its
congestion window toward the limit upon receipt of ACKs.
So, the fewer ACKs per data, the longer the sender takes to
enlarge its congestion window fully. This problem is not so
critical in our technique, however, as the cwnd limit in place
(four packets) is rather low. This means that, after a
reduction of cwnd due to a lost packet, it will quickly reach
the limit again upon receiving a few ACKs, as discussed in
Section 3.4. One question that may arise here is how to notify
the TCP algorithm to use DAA or not. We do not address
this problem specifically here, but a mechanism monitoring
the channel condition would serve this purpose [26].

By delaying the acknowledgment notification to the
sender, the receiver may trigger a retransmission by
timeout at the sender if the receiver delays excessively.
Thus, the receiver has to be well adjusted in order to avoid
such spurious retransmissions. We believe that solutions
like the ones proposed by the F-RTO [22] or the Eifel
algorithms [21] (Section 2) might be useful here. This
evaluation is left for future work, though. The standard
delayed acknowledgment (DA) proposed in RFC 2581
recommends that a receiver should send one ACK for
every other data packet received (combine two ACKs into a
single one) and should not delay an ACK when either an
out-of-order packet or a packet filling a gap in the receiver’s
buffer is received. Besides, the maximum delay should not
exceed a given time interval (typically 100 ms).

Table 1 confirms the findings in [27] in that the
standard DA improves performance in wireless environ-
ments. Nevertheless, higher enhancements are possible by
combining more than two ACKs, as shown in the LDA
approach described in Section 2.

The main problem with both the standard DA and the
LDA scheme is the fixed timeout interval (100 ms) for
generating ACKs, since the packet interarrival at the
receiver changes not only with the channel data rate, but
also with the intensity of the traffic going through the
network.

TCP-DAA combines the idea of a higher number of
delayed ACKs with the dynamic reaction proposed in RFC
2581, i.e., reaction to packets that are either out-of-order or
filling in a gap. Furthermore, our protocol adjusts itself to
the channel conditions in that it adaptively computes the
timeout interval for the receiver on the basis of the
incoming packet interarrival time. In this way, the receiver
delays just enough to avoid spurious retransmissions by the
sender and is able to adapt itself to different levels of delays
imposed by the wireless channel, thereby being indepen-
dent of both channel data rate and number of concurrent
flows crossing the network. As we showed in [6], TCP-DAA
outperforms the standard DA and LDA in several scenarios.

3.2 Algorithm

The current development of TCP-DAA is focused on the
receiver side, while a comprehensive investigation on the
sender side is still to be done. The technique we used for
minimizing unnecessary retransmissions by timeout con-
sists of two adjustments: 1) The number of duplicate ACKs
for triggering a retransmission by the fast retransmit
mechanism is decreased from three to two packets, which
is in line with [24] in the sense that we work with a small
cwnd limit, and 2) the regular retransmission timeout
interval RTO is increased fivefold for compensating the
maximum of four combined ACKs. These are the only two
changes performed on the regular TCP sender, which
proved to be effective in most of our evaluations.

The dynamic behavior of TCP-DAA is depicted in Fig. 2.
After startup and having no losses, the receiver always
merges four ACKs. This means that, for every four received
data packets, the receiver replies with a single ACK. The
delay management is performed through a delaying
window ðdwinÞ at the receiver that limits the maximum
number of ACKs to be delayed. Under normal conditions,

DE OLIVEIRA AND BRAUN: A SMART TCP ACKNOWLEDGMENT APPROACH FOR MULTIHOP WIRELESS NETWORKS 195

TABLE 1
Time Medium Is Busy for Data and ACK

Transmissions in a 1-Hop Scenario (in msec)

Fig. 2. TCP-DAA approach.

dwin is initialized to one and increases gradually for each
received data packet until it reaches four. The limit of four is
imposed by the sender cwnd limit that is also set to four.
Higher dwin would not work because the sender would not
have enough data packets to transmit to meet the dwin

value, which would lead the sender permanently to
timeout. It is important to note that, despite the influence
of the sender setup on the dwin size, this is an exclusive
variable of the receiver. In other words, there is no transfer
of the dwin value to the sender.

As long as the wireless channel is unconstrained, it is
advantageous to keep dwin ¼ 4. When facing losses,
however, dwin should be reduced in order to avoid further
performance degradation. Thus, if dwin is kept set to four, it
may inappropriately trigger retransmissions by timeout at
the sender due to lack of ACKs. To detect a constrained
channel, the receiver keeps a timer that is reset whenever it
receives a data packet that is going to have its ACK delayed.
Additionally, the receiver keeps track of the sequence
numbers of incoming data packets. So, it may detect a poor
channel when receiving out-of-order packets.

Whenever the receiver gets a packet that is either out-of-
order or filling a gap in the receiver’s buffer, or when its
timer expires, it immediately sends an ACK to the sender
and reduces dwin to the size of two packets. We chose to
resume dwin growth from two instead of one because we
aimed in such situations to go back to a behavior similar to
that of the standard DA, which performs better than
configurations without it. Cutting dwin down to one is
more conservative and may be proper for highly noisy
environments where considerable improvements are hard
to achieve, as discussed in Section 3.4. Fig. 2 illustrates a
situation in which the receiver timer expires due to a
dropped packet. Note that dwin is first decreased to two,
then increased to three and, subsequently, to four as new
data packets arrive.

Fig. 3 illustrates in more detail how the receiver keeps
track of the packet interarrival interval and handles the
ACK delay. Under normal conditions, i.e., after startup and
without any loss, for every four data packets received
ðPi; Piþ1; Piþ2; Piþ3Þ, the receiver replies with an acknowl-
edgment ðACKi;...;iþ3Þ. Whenever a given acknowledgment
ðACKi;ACKiþ1; ACKiþ2; . . .Þ is to be delayed, an associated
timer is started ðtiÞ or restarted ðtiþ1; tiþ2Þ if there is one
already running. This timer is used to prevent ACKs from

being excessively delayed at the receiver when the network
is facing packet losses.

The receiver also measures the data packet interarrival
time between the packets for which the ACK is to be
delayed ð�i; �iþ1; �iþ2; . . .Þ. The receiver keeps track of the
number of ACKs delayed by maintaining an ack count
variable which increases from one to the current value of
its delaying window ðdwinÞ. By checking the value of
ack count, the receiver is able to determine whether the
received packet is the first one from the group of packets
that is going to have the acknowledgments delayed. In case
a packet is the first one, the interarrival interval between
the last received packet and the current one is not taken.
This is needed to avoid that improper intervals, such as the
one between �iþ3 and �iþ4 in Fig. 3, are considered for the
timeout interval computation. By using this strategy, we
assure that, in normal conditions, the interarrival measure-
ments will reflect very closely the gap between the received
data packets triggering delayed ACKs. Note that, under
packet loss, the receiver will not need such measurements
as it will not delay out-of-order packets. Rather, it will
await until it receives in-order packets again.

Similarly to the TCP sender, the receiver uses a low-pass
filter to smooth the packet interarrival intervals. Upon
arrival of a given data packet piþ1, it calculates the
smoothed packet interarrival interval as indicated in (1),
where �i refers to the last calculated value, �iþ1 is the packet
interarrival interval sampled, and � is the interarrival
smoothing factor with 0 < � < 1.

�iþ1 ¼ � � �i þ ð1� �Þ � �iþ1: ð1Þ

The value computed from (1) is used to set the timeout
interval at the receiver. After the receipt of a data packet
that causes an ACK to be delayed, it is reasonable to wait
for at least the time the second next packet is expected.
The rationale here is that the delay variations are relatively
high in such environments and, in case of a single
dropped packet, the next data packet will arrive out-of-
order, which will trigger immediate transmission of an
ACK, as recommended in RFC 2581. However, if it was
only a delay variation and the data packet arrives before
the expected time for the subsequent packet, no timeout is
triggered and the receiver avoids sending an extra and
unnecessary ACK packet into the network.

Hence, we use a timeout interval Ti as shown in (2).
Notice that the factor 2 in (2) refers to the estimated time for

196 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 2, FEBRUARY 2007

Fig. 3. TCP-DAA receiver mechanisms.

the second expected data packet to arrive. This equation
also includes a timeout tolerance factor �, with � > 0,
defining how tolerant the receiver may be in deferring its
transmission beyond the second expected data packet. In
short, the effective timeout interval Ti is at least twice the
smoothed value �i and may be higher depending on the
value of �. This equation only provides an upper bound (for
robustness) to the delay imposed on the ACKs deferred at
the receiver. Further investigations to optimize this variable
are surely needed.

Ti ¼ ð2þ �Þ � �i: ð2Þ

After a reduction in dwin, subsequent timely data
packets trigger dwin growth toward the maximum size
again. Timely data packets here refer to the incoming data
packets that are neither out-of-order nor filling a gap in the
receiver’s buffer. Using this dynamic behavior, associated to
the timer-based monitoring, the receiver prevents the
sender from missing ACKs when packet losses occur. As
mentioned above, the LDA proposal [16] works with a fixed
dwin size of four packets (except at startup) and uses a large
cwnd limit at the sender to keep the channel full of data
packets in flight. While this procedure may prevent the
sender from missing ACKs, it may also induce an excessive
number of retransmissions at the sender [6].

The dwin growth is governed by (3), which shows that
such an increase may be fixed at one (packet) or determined
by the startup speed factor �, with 0 < � < 1. The reason for
this factor is that, during the startup phase (beginning of
the session), the sender starts with a window size of
two packets and then increases it by one at every ACK
received. Although dwin is initialized to one, if it started
from startup being increased at the rate of one packet per
incoming data packet, there might happen a shortage of
ACKs at the sender. As a result, either receiver or sender
would only be able to transmit by timeout (i.e., after their
respective timers expiration). Thus, the threshold maxdwin
is used to define the instant the startup phase is over, which
occurs when maxdwin first reaches its maximum value and
becomes true. From our evaluations, we noticed that, by

properly setting the � parameter, our algorithm achieved
better performance for short-lived flows [6].

dwin ¼ dwinþ �; if maxdwin ¼ false
dwinþ 1; otherwise:

�
ð3Þ

The mechanisms explained above make TCP-DAA
effective because they actively monitor the channel condi-
tion to use the scarce channel bandwidth efficiently. When
the channel is facing really poor conditions, TCP-DAA
should perform in general as effective as a standard TCP.
Using its dynamic adaptive window, TCP-DAA somehow
probes the network for resource availability, since it will
always combine more ACKs (up to four) when the network
condition permits. The sender’s transmission rate is limited
by the MAC layer that manages the contentions in the
wireless medium.

3.3 Packet Loss Handling

In order to better understand the concepts explained above,
we show here a typical response of our mechanism when
reacting to lost packets. We include the response of the LDA
scheme to highlight the difference between our proposal
and LDA. Fig. 4 exhibits a part of a simulation run in which
both strategies faced a lost packet in a chain topology of five
hops.

Let packetn be the data packet of sequence number ðnÞ.
Fig. 4a shows that the sender transmits four packets (320-
323) at time 12.6 seconds. In this run, packet322 and
packet323 are dropped. The receiver times out and
acknowledges only two packets (320, 321) instead of four.
The receiver also updates its dwin size to two. Upon receipt
of the ACK for packet321, the sender sends two new
packets (324, 325) because two packets were acknowledged.
At this moment, there are only two packets in flight
(324, 325). Since packet324 and packet325 are detected by
the receiver as out-of-order packets, they trigger immediate
acknowledgments at the receiver (first and second dupli-
cate ACKs for packet321Þ. By receiving the first duplicate
ACK, the sender transmits a new packet (326) which will
also be out-of-order.

DE OLIVEIRA AND BRAUN: A SMART TCP ACKNOWLEDGMENT APPROACH FOR MULTIHOP WIRELESS NETWORKS 197

Fig. 4. Delayed acknowledgment strategies. (a) TCP-DAA. (b) LDA.

When the sender receives the second duplicate ACK at
instant 12.9 seconds, it retransmits the first lost packet (322)
and halves its cwnd size to two packets (fast retransmit/fast
recovery). The cwnd will be expanded gradually after the
sender exits the fast recovery phase. When the sender
receives the third duplicate ACK, at time 12.96 seconds, it
does nothing because it is in the fast recovery phase. At
instant 12.97 seconds, the sender gets the acknowledgment
for packet322, allowing it to retransmit the missing packet323,
and then exits the fast recovery procedure. Packet323 fills in
the gap at the receiver’s buffer, which triggers the ACK of
packet326 due to the cumulative property of the TCP
acknowledgment strategy.

At instant 13.01 seconds, the sender receives the
acknowledgment for packet326, and so transmits two new
packets (327, 328). These two packets cause the receiver to
send one ACK only as its dwin is set to two packets at this
point. After that, dwin increases and, as a consequence, the
number of delayed ACKs increases toward 4. Fig. 4a shows
two spurious retransmissions caused by timeout at the
receiver. Packet334 and packet338 are unnecessarily ack-
nowledged at the instants 13.62 s and 13.79 s, respectively.
This means that the timeout interval computation may still
be improved. Notice that the problem here is not the same
as the one addressed in [19], [23], where the spurious
retransmissions take place at the sender.

Fig. 4b shows the response of LDA to a packet loss. In
this simulation run, packet241 is lost at about 10.55 seconds.
Differently from our technique, in which the number of
packets in flight is limited to four packets, the proposed
LDA works with a large limit for the cwnd (10 packets), so it
has more packets in flight than TCP-DAA. One can notice in
Fig. 4b that, although only one packet has been dropped,
various acknowledgments triggered the transmission of less
than the optimal four packets at the sender. This shows that
the retransmission timer expired in several situations
unnecessarily. Additionally, the sender waits for the default
three duplicate ACKs for retransmitting the dropped
packet, and so it takes a longer time to take action. In short,
by comparing Fig. 4a with Fig. 4b, one can clearly see that
TCP-DAA provides more stability regarding the number of
delayed ACKs. As a result, less packet delay variation is
perceived by the sender, which, in turn, tends to minimize
the inaccuracy in the timeout interval computation at the
sender.

3.4 An Improved Delaying Window Strategy for
High Loss Scenarios

The basic delaying window strategy in Section 3.2 may be
inefficient in scenarios facing considerable loss rates. In this
section, we investigate improvements to such scenarios. We
first observe that, if the channel is facing constant losses,
then it seems to be more appropriate to reduce the delaying
window ðdwinÞ to one in order to avoid timeout at the
receiver. Additionally, the dwin should be enlarged by less
than one for every data packet received. This is more
conservative than the initial strategy above, which is
needed to ensure robustness for the mentioned scenarios.
Hence, we propose adjusting the receiver side as illustrated
in Fig. 5.

Upon loss detection by either timeouts or out-of-order
packets, the receiver transmits an acknowledgment imme-
diately and shrinks dwin to one. By receiving new, in-order
packets ðPi; Piþ1; Piþ2; Piþ3Þ, the receiver gradually expands
dwin by steps smaller than one. The operator bxc represents
the mathematical floor function which is defined as follows:
For a real number x, bxc results in the largest integer less
than or equal to x. In other words, bdwinc represents the
integer part of dwin.

Fig. 5 illustrates that only the integer part of dwin is
needed in the comparison with ack count. This establishes
three ranges in which dwin increases without causing any
impact on the number of packets to be delayed. These
ranges are between the successive bdwinc values in Fig. 5,
i.e., between 1-2, 2-3, and 3-4. It is obvious that, the smaller
the steps by which dwin increases, the more points in each
of these ranges and, consequently, the longer the interval to
dwin fully enlarges until four.

It is not trivial to determine the exact amount by which
dwin should be increased when an ACK is transmitted as
many factors influence dwin growth. For example, when the
wireless channel is unconstrained, dwin should increase as
fast as possible, and under high loss rates, it should grow
more slowly. We estimate here the worst case scenario as an
upper bound only rather than a rigorous specification.

A TCP receiver should provide enough ACKs to its
corresponding sender in order to prevent retransmission by
timeout at the sender and also to trigger the sender cwnd
growth properly until its limit. Assume that the sender has
just timed out while in steady state. Its cwnd is reset to one
and the slow start threshold ssthresh is set to one half of the
current cwnd ¼ 4, i.e., ssthresh is set to two. In this case, the
sender increases its cwnd by one when the next ACK arrives
because it is in slow start phase ðcwnd < ssthreshÞ and,
then, it enters the congestion avoidance phase. The cwnd
increase (in packets) for the ith received ACK during
congestion avoidance is given by (4), where cwndi�1 refers
to the previous value of cwnd.

cwndi ¼ cwndi�1 þ
1

cwndi�1
: ð4Þ

Although cwnd grows exponentially in slow start and
linearly in congestion avoidance, we can use the equation
above for both phases because of our small window limit of
four packets. In fact, since ssthresh is set to two upon loss

198 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 2, FEBRUARY 2007

Fig. 5. An alternative delaying window strategy for robustness against

losses. dwin is reduced fully to one, and then increased slowly by steps

defined by the �0 parameter

detection, only one ACK is enough to lead the sender to
congestion avoidance. Moreover, replacing cwndi�1 in (4)
with one (the reset value), the left-hand side of the equation
results in two, which is exactly the same that is obtained
with slow start. Hence, assuming that cwnd increases
continuously from one to four governed by (4), the
accumulated window increase W is given by (5), where
cwnd0 is the value to which cwnd is set just after a
slowdown and cwndi is the value of cwnd at the ith increase
step, which ranges from one to n and is given by (4). If a loss
is detected by timeout, cwnd0 is reset to one. A loss detected
by the fast retransmit mechanism causes cwnd0 to be reset to
a value between 1 and 2, depending on the current cwnd
value. For simplicity, we assume cwnd0 ¼ 1 in the modeling
below.

W ¼ cwnd0 þ
Xn
i¼1

1

cwndi

� �
: ð5Þ

Solving (5) for W ¼ 4, the cwnd limit in our mechanism
results in n ¼ 7. This means that the window expansion
process takes seven steps to reach the maximum size of four
packets. Therefore, the receiver should take this value into
consideration when enlarging its dwin. Fig. 6 illustrates how
many steps the dwin should follow to satisfy the sender
demand for ACKs to avoid timeout at the sender. While
dwin is less than two (first range), each data packet received
triggers the transmission of one ACK and dwin increases by
1=m. So, the receiver transmits m ACKs in response to
m data packets received. When dwin is between 2 and 3
(second range), every other data packet generates an ACK,
which results in approximately m=2 ACKs being trans-
mitted in this range. Likewise, for dwin between 3 and 4
(third range), an ACK is sent for every three data packets
and, so, about m=3 ACKs are transmitted in this range.

To meet the sender needs in terms of acknowledgments
during the interval, the sender congestion window is
growing toward four and the number of ACKs in the same
period should be equal to the amount of expected cwnd
increases n that are necessary to expand cwnd to the limit,
i.e., seven ACKs. Thus, the sum of the ACKs generated in
each range of Fig. 6 should result in seven. In other words,
mþ m

2 þ m
3 ¼ 7, which results in m ¼ 3:8. The inverse of m

gives us the �0 ¼ 0:26 parameter, which determines how
much dwin should increase per correct data packet
received. Thus, the equation governing dwin growth is

changed from (3) above to (6). The switching between (3)
and (6) has to be conducted by a proper mechanism
monitoring the channel condition, such as the ones
proposed in [14], [26].

dwin ¼ dwinþ �; if in startup
dwinþ �0; otherwise:

�
ð6Þ

Section 4.4 shows the performance evaluation of this
improved algorithm, called TCP-DAAp (TCP-DAA plus).
As addressed in that section, with TCP-DAAp, the
algorithm at the sender side should react more promptly
to losses. The reason is that the number of retransmissions
caused by timeouts is assumed to be significantly higher
in such cases. Hence, TCP-DAAp uses a regular RTO
increased twofold only to speed up the sender reaction to
losses.

4 PERFORMANCE EVALUATIONS

This section presents the evaluation of TCP-DAA consider-
ing many aspects, such as throughput, energy consumption,
and friendliness behavior. We compare the performance of
TCP-DAA with the main TCP versions and with LDA [16].
The reason for the comparison with LDA is that this scheme
also investigates a delayed acknowledgments strategy for
improving TCP performance in multihop networks. We also
compare our results with other TCP versions in their
theoretical best conditions to make sure that our proposal is
indeed efficient among a wide range of options. Hence, we
simulate the other TCP flavors with two improvements: the
standard delayed acknowledgment (DA) and a low limit of
three packets for their cwnd. In this way, the other TCP
flavors should provide their optimal performance.

4.1 Simulation Scenario

We used the ns2 [28], [29] simulator in our evaluations of
the two scenarios depicted in Fig. 7, in which we have a
single chain topology and a grid topology. The grid
topology has 25 nodes and the chain topology has a varying

DE OLIVEIRA AND BRAUN: A SMART TCP ACKNOWLEDGMENT APPROACH FOR MULTIHOP WIRELESS NETWORKS 199

Fig. 6. Estimated number of ACKs necessary to support the sender to
smoothly enlarge its congestion window fully in environments facing high
loss rates. Each dwin interval receives m data packets and transmits a
different number of ACKs toward the minimum of one ACK per four data
packets.

Fig. 7. Simulated scenarios. (a) Chain topology. (b) Grid topology.

number of nodes with up to nine nodes. In both topologies,
each node is 200 meters away from its closest neighbors.
When applicable, the throughput r is calculated as r ¼ seq�8

stime ,
where seq is the maximum sequence number (in bytes)
transmitted and acknowledged and stime is the simulated
time. Unless otherwise stated, the other parameter settings
are the ones shown in Table 2.

4.2 Performance in the Chain Topology

4.2.1 Throughput

The end-to-end throughput over a chain topology as
depicted in Fig. 7a, but with five hops only, is investigated
here. The simulations include varying levels of congestion
and comparison with the key existing TCP versions. The
regular TCP is simulated with and without DA for a better
comparison with related work.

Fig. 8 exhibits a remarkable achievement of TCP-DAA.
These results are obtained by taking the average of five
runs. TCP-DAA outperforms all the other algorithms. We
believe that TCP-DAA will be further improved if the
default sender’s RTO calculation is fine tuned to its strategy.

It is interesting to note that, in general, the more flows,
the better the improvement of our algorithm over the other

protocols. One reason for that is the high level of queuing
delays due to the higher number of flows in the network.
Under such high delays, the packet delay variance becomes
less significant in the RTO calculation and, so, less
interference of the delayed ACKs is perceived by the
sender. Another reason lies in the sender’s high tolerance
to invoke the timeout procedure, which renders the TCP-
DAA’s sender less aggressive than a regular sender. As
shown in [6], this behavior is advantageous with regard to
spurious retransmissions, resulting in more bandwidth to
the concurrent flows. In case there is no concurrent flow to
exploit the bandwidth left while the sender is waiting for
the timeout, then that bandwidth is simply wasted.

Overall, the observed improvements here are higher than
40 percent over regular TCP. Compared to LDA, improve-
ments of up to about 17 percent are obtained. We also
conducted simulations for 1, 2, 3, 4, and 6-hop scenarios and
the results are similar; in some cases, less improvement is
observed, but in most cases, our algorithm performs
significantly better than all the others [6].

4.2.2 Fairness

In order to assess the ability of our mechanism in allowing a
fair distribution of bandwidth, we simulate here another
scenario for the chain topology in Fig. 7a. We include
scenarios with one, three, and five hops (number of wireless
links between sender and receiver). In these simulations, a
single run is conducted for each TCP version evaluated. In
the first run, 10 flows of the standard TCP without any
adjustment share the medium, and the next run simulates
10 flows of TCP-DAA. The well-known fairness index

Xn
i¼1

xi

 !2,
n
Xn
i¼1

x2
i

 !

as defined in [30] is presented in Table 3. By this index, a
perfect share of the medium is given by one. That is, the
fairer the protocol, the closer to one is the fairness index.

Table 3 suggests that, for short number of hops in this
scenario, our mechanism can be as fair as the standard TCP.
As the number of hops increases, TCP-DAA tends to
perform slightly unfairer than its counterpart. We believe
that this behavior might be improved by a more aggressive
mechanism at the sender to retransmit packets in due time.

4.2.3 Energy Efficiency

TCP-DAA is expected to be energy saving as it minimizes
spurious retransmissions. In this section, we evaluate the
performance benefits of TCP-DAA in terms of energy
consumption, as depicted in Fig. 9. We used the simple
energy model implemented in the ns2 simulator that has
been presented in [31]. By this model, a node starts with an
initial energy level that is reduced whenever the node

200 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 2, FEBRUARY 2007

TABLE 2
General Simulation Parameters

Fig. 8. Aggregate throughput in the chain topology.

TABLE 3
Fairness for 10 Flows Sharing the Medium (Chain Topology)

transmits, receives, or overhears a packet. Thus, the total
amount of energy, EðniÞ, consumed at a given node ni, is
given by (7).

EðniÞ ¼ EtxðniÞ þ ErxðniÞ þ ðN � 1Þ � EoðniÞ: ð7Þ

In (7), Etx, Erx, and Eo denote the amount of energy
expenditure by transmission, reception, and overhearing of
a packet, respectively. N represents the average number of
neighbor nodes affected by a transmission from node ni [32].

In order to account only for the reception and transmis-

sion expenditure, we have discarded the energy spent by

overhearing ðE0Þ. This is appropriate to highlight the

energy due to TCP transmissions and receptions. Fig. 9a

shows the result of a simulation run in which 10 flows share

the medium in the chain topology of Fig. 7a for different

number of hops. The figure exhibits the energy consump-

tion per bit at the TCP sender. This is computed as

e ¼ pkt�pkt size�8
e spent , where e is the energy/bit ratio, pkt is the

amount of packet transmitted by the sender, pkt size is the

packet size in bytes, and e spent is the energy in joules spent

by the sending node.
One can see in Fig. 9a that TCP-DAA provides the best

result over all situations. The performance enhancement is
more noticeable at a large number of hops, where the
probability of collisions is higher. This happens because our
algorithm reduces the number of packets in transit. As a
result, fewer collisions occur leading to fewer retransmis-
sions and, consequently, higher energy savings. In these
simulations, the regular TCP spent about 26 percent more
energy than our scheme.

We also evaluated the impact of the packet size on TCP
energy consumption as shown in Fig. 9b. In this simulation,
four different packet sizes are evaluated, namely, packets
256, 512, 1,000, and 1,460 bytes long. The sender and
receiver are connected through four intermediate hops. The
results show that the smaller the packet, the higher the
energy consumption. This is intuitive because, with small
packets, TCP needs to process more packets to transmit the
same amount of data than it does when using larger packet
sizes. Fig. 9b also shows that, in most cases, but for packet

size of 256 bytes, TCP-DAA spends less energy than all the
other configurations. The difference is not very significant,
though. In this scenario, packet size does not seem to impact
energy consumption significantly.

4.3 Performance in the Grid Topology

4.3.1 Throughput

We reproduce here the results shown in [6] regarding the
investigation in a more complex scenario, the grid topology
illustrated in Fig. 7b. In these evaluations, we firstly have
only three flows crossing the topology horizontally (flows 1,
2, and 3 in Fig. 7b). In the next step, six flows (three
horizontal and three vertical) are injected into the network
concurrently. The results, averaged over five runs, are
depicted in Fig. 10.

This is a critical scenario, given the various interactions
among the nodes in place. The level of dropped packets is
high, and so is the degradation of our mechanism. As the
scheduling strategy of 802.11 is inherently unfair, it may
happen that, in some circumstances, TCP-DAA outper-
forms the other implementations [33], but its overall
performance is expected to be similar to that of a regular
TCP, as illustrated in Fig. 10.

In these simulations, our mechanism performs roughly
the same as the other implementations for the run with only

DE OLIVEIRA AND BRAUN: A SMART TCP ACKNOWLEDGMENT APPROACH FOR MULTIHOP WIRELESS NETWORKS 201

Fig. 9. Energy consumption at the TCP sender. (a) Effect of number of hops. (b) Effect of packet size.

Fig. 10. Aggregate throughput in the grid topology with cross traffic.

horizontal flows (three flows). Its efficiency deteriorates for
the case with six flows, going down to the level of the
regular TCP with DA ðTCPþDAÞ. Notice that, while TCP-
DAA uses a window limit of four packets, the configuration
TCPþDAþWL has a window limit set to three packets.
This may explain why TCP-DAA does not reach the
performance of the TCPþDAþWL configuration. As
shown in [6], the limit of three packets was expected to
render better performance for the regular TCP since larger
values induce higher collisions. For TCP-DAA, however, a
limit of three packets is not appropriate because it does not
provide full improvement under moderate loss rates. A
trade-off between performance under moderate and high
loss rates clearly exists here. TCP SACK and Vegas perform
best in these evaluations. Our algorithm would most likely
follow SACK and Vegas’s performance closely if it had been
implemented over these versions, but it was implemented
over TCP NewReno, which performs well in a variety of
scenarios.

4.3.2 Fairness

To look more closely at the performance of our mechanism
in the complex scenario made of the grid topology, we
compare here the fairness of TCP and TCP-DAA. Table 4
depicts the fairness index of such algorithms for both three
flows and six flows. One can see by these values that, in
general, none of these algorithms can achieve high fairness.
In fact, these results highlight that strategies based on
delayed ACKs, like ours, are inherently more unfair than
the regular TCP in constrained channels. This happens
because the regular TCP increases its cwnd faster than
approaches relying on delayed ACKs. While the former
increases its cwnd for each packet received at the receiver,
the latter receive roughly half of that. This lack of ACKs at
the sender is not a problem in steady state conditions, but it
may play a crucial role in this overloaded scenario.

4.4 Optimization for Highly Noisy Environments

In this section, we investigate the optimization proposed in
Section 3.4, in which the strategy of the receiver is supposed
to be more robust to environments facing nonnegligible
losses. Upon losses, the receiver reduces dwin to one and
slowly increases it again to prevent the receiver timer from
expiring by lack of data packets. The analytical evaluation
in Section 3.4 showed that, following a very conservative
procedure, ack count should increase by about 0.28 for each
in-order data packet received. The simulation results
illustrated in Fig. 11 conform closely to the analytical
prediction.

These evaluations were conducted over the chain
topology and each run lasted 1,000 seconds. Each curve
indicates the throughput of a single flow competing with
nineteen other flows in a 5-hop scenario. Since the scenario

is quite constrained in this case, the sender retransmission

timeout (RTO) must not be too tolerant as in the previous

case. Hence, its tolerance was decreased from fivefold to

twofold to conform with the concept in Section 3.4. Various

values for the �0 parameter were simulated. Despite the

varying behavior of the curves, one can see in Fig. 11 that

�0 ¼ 0:2 and �0 ¼ 0:3 tend to provide highest performance.
It is expected that TCP-DAAp does not provide the same

improvements of TCP-DAA shown in Fig. 8. This happens

because TCP-DAAp transmits more ACKs than the basic

version and also because its sender is more aggressive as far

as retransmissions are concerned. Fig. 12 exhibits the

comparisons between the two TCP versions for the same

conditions described in Section 4.2.1. The robustness to

losses comes at the cost of throughput under moderate

conditions. Nevertheless, the changed algorithm performs

as effectively as the regular TCP in Fig. 8.
The justification for the TCP-DAAp strategy is to render

our strategy as robust as the regular TCP mechanism under

heavily constrained environments. TCP-DAA is not opti-

mized to such environments and, because of that, it

degrades substantially under high loss rates. Fig. 13 high-

lights the importance of TCP-DAAp in a scenario where just

202 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 2, FEBRUARY 2007

TABLE 4
Fairness in the Grid Topology

Fig. 11. Optimal �0 parameter for TCP-DAAp.

Fig. 12. Comparison between the two TCP-DAA versions.

a single flow crosses a 5-hop chain of nodes under varying
packet error rates. This is a very noisy scenario where not
only are losses due to MAC collisions in place but also
losses induced by a permanent external disturbance. The
error model used follows a uniform distribution function.
The results in Fig. 13 shows that, indeed, our strategy can
handle losses in an effective way since it performs as
effectively as the TCPþDAþWL version. Although it is
not shown here, we emphasize that these results are even
better over the regular TCP without any further adjustment.

The discussions in the two paragraphs above suggest
that it is helpful to have an additional monitoring mech-
anism at the receiver to adjust the TCP-DAA strategy on
the basis of the channel condition. This procedure, along
with an improved TCP sender, regarding the RTO
computation, can surely render our proposal very robust
in a wide range of scenarios. Using such a mechanism, the
basic TCP-DAA would be invoked under moderate loss
rate and TCP-DAAp would take over when the channel
condition deteriorated.

4.5 TCP Friendliness

Gradual deployment requires acceptable friendliness beha-
vior when TCP-DAA is sharing the medium with other
flows. This means that our mechanism ideally should not
suppress regular flows, but allow them to achieve at least
the same throughput they would obtain without any
improved flow in parallel. We show here how friendly
our mechanism can be when competing with regular flows
in a multihop channel facing a moderate loss rate.

Fig. 14 depicts the result of a simulation run in which
two flows of distinct versions share the medium. Namely, a
TCP-DAA flow competes with a regular TCP that uses
DA and window limit (WL). For simplicity, we will
hereafter call the configuration TCPþDAþWL “adjusted
TCP.” It is clear that our mechanism outperforms the
adjusted TCP in the range of one to eight hops. The
difference between both protocols is noticeable for one to
three hops, where the hidden node problem does not
happen. After that, more collisions take place and both
mechanisms perform similarly. One can say that TCP-DAA
performs very aggressively against the adjusted TCP’s flow
for the cases of 1, 2, and 3 hops.

To measure the degradation imposed by our mechanism
over the other flow, we include the “reference curve” in
Fig. 14. This curve represents the performance of the
adjusted TCP flows without any of our mechanisms in
place. Thus, the reference curve is obtained when two
adjusted TCPs are sharing the medium. In Fig. 14, the
throughput of the adjusted TCP for the 1-hop scenario in
Fig. 14 is 469 Kbps. The corresponding throughput for the
reference curve is 681 Kbps. This shows an unfairness of our
mechanism for this scenario, which leads the adjusted TCP
to a decrease in throughput of up to 31 percent.

Another experiment is shown in Fig. 15, where the
number of hops are fixed at three and a distinct number of
flows are simulated. Since this is a scenario without the
hidden node problem, the number of collisions is not very
high. Note that, as the number of flows rises, our
mechanism degrades performance, leaving more band-
width to the regular flow. As in the previous case, TCP-
DAA induces performance degradation to the adjusted
TCP. In this case, the adjusted TCP would achieve about
223 Kbps of throughput if only adjusted TCP flows were
being transmitted, but it obtains only 175 Kbps. This means
a reduction in throughput of approximately 23 percent.

DE OLIVEIRA AND BRAUN: A SMART TCP ACKNOWLEDGMENT APPROACH FOR MULTIHOP WIRELESS NETWORKS 203

Fig. 13. TCP-DAAp provides robustness for highly noisy scenarios. Fig. 14. TCP-DAA friendliness.

Fig. 15. Aggregate throughput for two distinct TCP versions in parallel

under no hidden node problem effects.

The results above suggest that the basic TCP-DAA needs
a sort of pacing for controlling its sending rate in mixed
scenarios involving non-TCP-DAA flows. A possible
mechanism for that is proposed in [18], in which the
authors propose to limit (to two packets) the number of
packets sent at once by the sender. This comes at the cost of
the end-to-end bandwidth utilization, though.

4.6 Discussions

The general perception is that our mechanism is definitely
valuable to multihop networks. The results presented here
in addition to the ones published in [6] support our claim
that a dynamic and adaptive mechanism is effective in such
constrained environments. The results in Section 4.4 in-
dicate that the mechanism can be refined to handle highly
constrained conditions. Distinct parameter settings for
moderate and elevated constraints are needed, though.
The key remark here is that our mechanism automatically
prevents waste of bandwidth under favorable conditions
and performs as effectively as a conventional TCP when
traffic conditions deteriorate.

As far as friendly behavior is concerned, our basic
mechanism does not seem to be very friendly in scenarios
without the hidden node problem. In these scenarios, the
number of packet losses is quite negligible, leading our
mechanism to use the typically wasted bandwidth effi-
ciently. As a result, it is difficult to adjust TCP-DAA
parameters toward very friendly behavior under such
conditions. This indicates that a rate limitation at the sender
may be beneficial to address this problem. On the other
side, TCP-DAA parameters may be optimized under
hidden node problem effects to make the protocol friendly
[34]. This optimization includes the sender side, which has
to be fully investigated in future work.

We believe that solutions like the one proposed in [35], in
which the receiver controls the sender’s cwnd, may be
integrated into our final algorithm. Likewise, the work in
[36] could be useful for improving the fairness of our
mechanism by including the congestion window in the
timeout computation at the sender.

It is important to emphasize that our proposal does not
change the semantics of TCP, including its Additive-
Increase/Multiplicative-Decrease (AIMD) congestion con-
trol algorithm. Our mechanism keeps the principles of the
AIMD recommended in [37], in that a simple AIMD
algorithm satisfies the sufficient conditions for convergence
to an efficient and fair state. The unfairness detected in our
proposed algorithm is essentially caused by the timeout
mechanism rather than by the AIMD mechanism.

5 CONCLUSIONS

We have extended and further evaluated our algorithm for
improving TCP performance over multihop wireless net-
works. Our dynamic adaptive acknowledgment strategy
aims to minimize collisions resulting from mutual inter-
ference between data and ACK packets by transmitting as
few ACKs as possible. The mechanism is self-adaptive and
tailored to networks comprising at most 10 hops and facing
moderate bit error rates.

The simulation evaluations showed that our algorithm

can outperform not only conventional TCP, including the

main TCP flavors, but also similar techniques that have

been proposed in the literature in a variety of conditions.

Our scheme improves throughput and energy consump-

tion, which are two key issues in such networks. Yet, it is

easy to deploy as the changes are limited to the end nodes

only. Future work includes the development of a custo-

mized sender algorithm toward an effective balance

between throughput and fairness, an adaptive receiver

mechanism to switch between DAA and DAAp strategies in

scenarios susceptible to high bit error rates, and a more

elaborate timeout strategy at the receiver.

ACKNOWLEDGMENTS

The work presented in this paper was supported (in part) by

the National Competence Center in Research on Mobile

Information and Communication Systems (NCCR-MICS), a

center supported by the Swiss National Science Foundation

under grant number 5005-67322. The authors are thankful to

Bharat Bhargava, from Purdue University, for his collabora-

tion on this paper.

REFERENCES

[1] Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications, IEEE Standard 802.11, 1999.

[2] R. Oliveira and T. Braun, “TCP in Wireless Mobile Ad Hoc
Networks,” Technical Report IAM-02-003, Univ. of Bern, July
2001.

[3] J. Li, C. Blake, D.S.J. De Couto, H.I. Lee, and R. Morris, “Capacity
of Ad Hoc Wireless Networks,” Proc. ACM MobiCom ’01, July
2001.

[4] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and M. Gerla, “The
Impact of Multihop Wireless Channel on TCP Throughput and
Loss,” Proc. INFOCOM ’03, Apr. 2003.

[5] K. Chen, Y. Xue, and K. Nahrstedt, “On Setting TCP’s Congestion
Window Limit in Mobile Ad Hoc Networks,” Proc. IEEE Int’l Conf.
Comm. (ICC ’03), May 2003.

[6] R. Oliveira and T. Braun, “A Dynamic Adaptive Acknowledgment
Strategy for TCP over Multihop Wireless Networks,” Proc. IEEE
INFOCOM, Mar. 2005.

[7] R. Braden, “Requirements for Internet Hosts—Communication
Layers,” RFC 1122, IETF Network Working Group, Oct. 1989.

[8] M. Allman, V. Paxson, and W. Stevens, “Transmission Control
Protocol,” RFC 2581, IETF Network Working Group, Apr. 1999.

[9] K. Chandran, S. Raghunathan, S. Venkatesan, and R. Prakash, “A
Feedback Based Scheme for Improving TCP Performance in Ad-
Hoc Wireless Networks,” Proc. 18th Int’l Conf. Distributed Comput-
ing Systems (ICDCS ’98), May 1998.

[10] G. Holland and N.H. Vaidya, “Analysis of TCP Performance over
Mobile Ad Hoc Networks,” Proc. MobiCom ’99, Aug. 1999.

[11] S. Biaz and N.H. Vaidya, “Distinguishing Congestion Losses from
Wireless Transmission Losses: A Negative Result,” Proc. IEEE
Seventh Int’l Conf. Computer Comm. and Networks, Oct. 1998.

[12] J. Liu and S. Singh, “ATCP: TCP for Mobile Ad Hoc Networks,”
IEEE J. Selected Areas in Comm., vol. 19, pp. 1300-1315, July 2001.

[13] Z. Fu, B. Greenstein, X. Meng, and S. Lu, “Design and
Implementation of a TCP-Friendly Transport Protocol for
Ad Hoc Wireless Networks,” Proc. 10th IEEE Int’l Conf. Network
Protocosls (ICNP ’02), Nov. 2002.

[14] J. Liu, I. Matta, and M. Crovella, “End-to-End Inference of Loss
Nature in a Hybrid Wired/Wireless Environment,” Proc. Symp.
Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks
(WiOpt ’03), Mar. 2003.

[15] K. Sundaresan, V. Anantharaman, H.-Y. Hsieh, and R. Sivakumar,
“ATP: A Reliable Transport Protocol for Ad-Hoc Networks,” IEEE
Trans. Mobile Computing, vol. 4, no. 6, Nov./Dec. 2005.

204 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 2, FEBRUARY 2007

[16] T. Jimenez and E. Altman, “Novel Delayed ACK Techniques for
Improving TCP Performance in Multihop Wireless Networks,”
Proc. Personal Wireless Comm. (PWC ’03), Sept. 2003.

[17] S.R. Johnson, “Increasing TCP Throughput by Using an Extended
Acknowledgment Interval,” master’s thesis, Ohio Univ., June
1995.

[18] M. Allman, “On the Generation and Use of TCP Acknowl-
edgements,” ACM Computer Comm. Rev., vol. 28, pp. 1114-1118,
1998.

[19] A. Gurtov and R. Ludwig, “Responding to Spurious Timeouts in
TCP,” Proc. INFOCOM ’03, Mar. 2003

[20] R. Ludwig and M. Meyer, “The Eifel Detection Algorithm for
TCP,” RFC 3522, IETF Network Working Group, Apr. 2003.

[21] R. Ludwig and A. Gurtov, “The Eifel Response Algorithm for
TCP,” RFC 4014, IETF Network Working Group, Feb. 2005.

[22] P. Sarolahti and M. Kojo, “Forward RTO-Recovery (F-RTO): An
Algorithm for Detecting Spurious Retransmission Timeouts with
TCP and the Stream Control Transmission Protocol (SCTP),” RFC
4138, IETF Network Working Group, Aug. 2005.

[23] P. Sarolahti, M. Kojo, and K. Raatikainen, “F-RTO: An Enhanced
Recovery Algorithm for TCP Retransmission Timeouts,” Computer
Comm. Rev., vol. 33, no. 2, 2003.

[24] M. Allman, H. Balakrishman, and S. Floyd, “Enhancing TCP’s
Loss Recovery Using Limited Transmit,” RFC 3042, IETF Network
Working Group, Jan. 2001.

[25] S. Floyd, T. Henderson, and A. Gurtov, “The NewReno
Modification to TCP’s Fast Recovery Algorithm,” RFC 3782, IETF
Network Working Group, Apr. 2004.

[26] R. Oliveira and T. Braun, “A Delay-Based Approach Using Fuzzy
Logic to Improve TCP Error Detection in Ad Hoc Networks,” Proc.
IEEE Wireless Comm. and Networking Conf. (WCNC ’04), Mar. 2004.

[27] S. Xu and T. Saadawi, “Does the IEEE 802.11 MAC Protocol Work
Well in Multihop Wireless Ad Hoc Networks?” IEEE Comm.
Magazine, vol. 39, pp. 130-137, June 2001.

[28] D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy, P. Huang, S.
McCanne, K. Varadhan, Y. Ya, and H. Yu, “Advances in Network
Simulation,” Computer, vol. 33, no. 5, pp. 59-67, May 2000.

[29] D. Estrin, M. Handley, J. Heidemann, S.S. McCanne, X. Ya, and H.
Yu, “Network Visualization with Nam, the VINT Network
Animator,” Computer, vol. 33, no. 11, pp. 63-68, Nov. 2000.

[30] R. Jain, The Art of Computer Systems Performance Analysis:
Techniques for Experimental Design, Measurement, Simulation, and
Modeling. Wiley-Interscience, 1991.

[31] Y. Xu, J. Heidemann, and D. Estrin, “Adaptive Energy Conserving
Routing for Multihop Ad Hoc Networks,” Research Report 527,
Information Sciences Inst., Univ. of Southern California, Oct. 2000.

[32] D. Kim, J.J. Garcia-Luna-Aceves, K. Obraczka, J. Cano, and P.
Manzoni, “Power-Aware Routing Based on the Energy Drain Rate
for Mobile Ad Hoc Networks,” Proc. IEEE Int’l Conf. Computer
Comm. and Networks (ICCCN ’02), Oct. 2002.

[33] R. Oliveira and T. Braun, “A Dynamic Adaptive Acknowledgment
Strategy for TCP over Multihop Networks,” Technical Report
IAM-04-005, Univ. of Bern, July 2004.

[34] R. de Oliveira, “Addressing the Challenges for TCP over Multihop
Wireless Networks,” doctoral thesis, Inst. of Computer Science
and Applied Math., Univ. of Bern, 2005.

[35] V. Tsaoussidis and C. Zhang, “TCP-Real: Receiver-Oriented
Congestion Control,” Computer Networks J., vol. 40, no. 4, Nov.
2002.

[36] I. Psaras, V. Tsaoussidis, and L. Mamatas, “CA-RTO: A Conten-
tion-Adaptive Retransmission Timeout,” Proc. Int’l Conf. Computer
Comm. and Networks (ICCCN ’03), Oct. 2005

[37] D.M. Chiu and R. Jain, “Analysis of the Increase and Decrease
Algorithms for Congestion Avoidance in Computer Networks,”
Computer Networks and ISDN Systems, vol. 17, no. 1, 1989.

Ruy de Oliveira received the MS degree from
the University of Uberlandia, Brazil, in 2001, and
the PhD degree from the University of Bern,
Switzerland, in 2005. From 2001 to 2002, he
was involved in the European Union research
project SEQUIN for QoS across multiple man-
agement domains. From 2002 to 2005, he was a
research fellow in the long-term Swiss research
project NCCR-MICS on self-organizing wireless
networks. He served as the local organizing

committee chair for the Third International Workshop on Applications
and Services in Wireless Networks (ASWN ’03). Currently, he is a full
professor in the Department of Computer Science at CEFET-MT, Brazil.
His research interests are in data communication protocols and security
in wireless networks.

Torsten Braun received the diploma and the
PhD degrees from the University of Karlsruhe,
Germany, in 1990 and 1993, respectively. From
1994 to 1995, he was a guest scientist with
INRIA Sophia Antipolis. From 1995 to 1997, he
worked as a project leader and senior consultant
at the IBM European Networking Center, Heidel-
berg, Germany. Since 1998, he has been a full
professor of computer science at the Institute of
Computer Science and Applied Mathematics

(University of Bern, Switzerland), heading the Computer Networks and
Distributed Systems research group. He has been a board member of
SWITCH (Swiss Education and Research network) since 2000. During
his sabbatical in 2004, hewas a visiting scientist at INRIA Sophia-
Antipolis and the Swedish Institute of Computer Science at Kista. He is a
member of the IEEE and the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

DE OLIVEIRA AND BRAUN: A SMART TCP ACKNOWLEDGMENT APPROACH FOR MULTIHOP WIRELESS NETWORKS 205

	1

