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Franc Forstnerič · Björn Ivarsson ·
Frank Kutzschebauch · Jasna Prezelj

Received: 1 November 2005 / Published online: 13 February 2007
© Springer-Verlag 2007

Abstract Given a Stein manifold x of dimension n > 1, a discrete sequence

{aj} ⊂ X, and a discrete sequence {bj} ⊂ C
m where m ≥ N =

[
3n
2

]
+ 1, there

exists a proper holomorphic embedding f : X ↪→ C
m satisfying f (aj) = bj for

every j = 1, 2, . . .
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1 Introduction

It is known that every Stein manifold of dimension n > 1 admits a proper

holomorphic embedding in C
N with N =

[
3n
2

]
+ 1, and this N is the smallest

possible by the examples of Forster [9]. The corresponding embedding theorem
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with N replaced by N′ =
[

3n+1
2

]
+ 1 was proved by Eliashberg and Gromov in

[6] following an earlier announcement in [18]. For even values of n ∈ N we have
N = N′ and hence their result is the best possible; for odd values of n the opti-
mal result was obtained by Schürmann [25], also for Stein spaces with bounded
embedding dimension. A key ingredient in the known proofs of these results is
the homotopy principle for holomorphic sections of elliptic submersions over
Stein manifolds [14,17].

In this paper we prove the following embedding theorem with interpolation
on discrete sequences; for Stein spaces see Theorem 3.1.

Theorem 1.1 Let X be a Stein manifold of dimension n > 1, and let {aj}j∈N ⊂ X

and {bj}j∈N ⊂ C
m be discrete sequences without repetitions. If m ≥ N =

[
3n
2

]
+ 1

then there exists a proper holomorphic embedding f : X ↪→ C
m satisfying

f (aj) = bj (j = 1, 2, . . .). (1.1)

This result is optimal in all dimensions n > 1 in view of Forster’s examples
[9]. For even values of n ∈ N Theorem 1.1 coincides with a result of Prezelj

to the effect that the conclusion holds with N replaced by N′ =
[

3n+1
2

]
+ 1

(Theorem 1.1 (a) in [23]). Our methods also give a different proof of Pre-
zelj’s result to the effect that, under the assumptions of Theorem 1.1 and with

m ≥
[

3n+1
2

]
, there exists a proper holomorphic immersion f : X → C

m satisfy-

ing (1.1); see Theorem 1.1 (b) in [23].
Prezelj obtained her results by carefully elaborating the constructions of

Eliashberg and Gromov [6] and Schürmann [25]. It is not clear whether the
method from [23] could be improved so as to give the optimal result also for
odd values of n. We prove Theorem 1.1 by combining the known embedding the-
orems with methods of the theory of holomorphic automorphisms of Euclidean
spaces.

If we increase the target dimension to N ≥ 2 dim X + 1 then it is possible to
extend any proper holomorphic embedding Y ↪→ C

N from an arbitrary closed
complex submanifold Y ⊂ X (not only a discrete set!) to a proper holomorphic
embedding X ↪→ C

N [1,3,22].
Before proceeding, we recall that a discrete sequence {aj}j∈N in C

N is said
to be tame in the sense of Rosay and Rudin [24] if there exists a holomorphic
automorphism of C

N which maps aj to the point ej = (j, 0, . . . , 0) for j = 1, 2, . . .
Several criteria for tameness can be found in [24]; for example, a sequence
contained in a proper affine complex subspace of C

N is tame.
Theorem 1.1 follows directly from the following two results. The first one

is seen by an inspection of the proofs in [6] and [25] (see Sect. 3 below). The
second one is the main new result of this paper; it has been proposed in [4], and
it improves the result of [21].

All sequences are assumed to be without repetition.
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Theorem 1.2 (Eliashberg–Gromov–Schürmann) Given a Stein manifold X of
dimension n > 1 and a discrete sequence {aj}j∈N ⊂ X, there exists a proper

holomorphic embedding f : X ↪→ C
N with N =

[
3n
2

]
+ 1 such that the sequence

{f (aj)}j∈N is tame in C
N. There also exists a proper holomorphic immersion

f : X → C
[(3n+1)/2] with the same property.

Theorem 1.3 Let N > 1, let X be a closed, proper complex subvariety of C
N,

and let {aj}j∈N ⊂ X be a discrete sequence which is tame in C
N. For every dis-

crete sequence {bj}j∈N ⊂ C
N there exist a domain � ⊂ C

N containing X and a
biholomorphic map � : � → C

N onto C
N such that �(aj) = bj for j = 1, 2, . . .

Thus X → �(X) ⊂ C
N is another embedding of X into C

N which interpo-
lates the given sequences. In addition one can prescribe finite order jets of�(X)
at all points of the sequence which belong to the regular locus of the subvariety
(Sect. 2). Note that � in Theorem 1.3 is a Fatou-Bieberbach domain. The fact
that �(X) can be made to contain a given discrete sequence {bj} ⊂ C

N , but
without matching points, had been proved (for complex lines C ↪→ C

2) in [12],
and in general in [10]. Not surprisingly, the interpolation is considerably more
difficult to achieve.

Since any discrete sequence contained in a proper algebraic subvariety of C
N

is tame [24], Theorem 1.3 applies to all discrete sequences {aj} ⊂ X, {bj} ⊂ C
N

when X is contained in a proper algebraic subvariety of C
N .

Example 2.4 below shows that Theorem 1.3 fails in general for non-tame
sequences {aj}. The following problem of embedding with interpolation for a
given Stein manifold whose embedding dimension is lower than the general
dimension N from Theorem 1.2 therefore remains open.

Problem 1.4 Let X be a Stein manifold (or a Stein space) which admits a proper
holomorphic embedding into C

m for some m ∈ N. Given discrete sequences
{aj}j∈N ⊂ X and {bj}j∈N ⊂ C

m without repetitions, does there exist a proper
holomorphic embedding f : X ↪→ C

m satisfying the interpolation condition
(1.1)?

Since any discrete sequence in C
N = C

N × {0} ⊂ C
N+1 is tame in C

N+1 [24],
Theorem 1.3 implies the following improvement of Proposition 2.7 from [21]
(adding only one extra dimension instead of two).

Corollary 1.5 Let X be a Stein space which admits a proper holomorphic embed-
ding into C

N. If m ≥ N + 1 then for any two discrete sequences {aj}j∈N ⊂ X and
{bj}j∈N ⊂ C

m without repetitions there exists a proper holomorphic embedding
f : X ↪→ C

m satisfying (1.1).

The case dim X = 1, i.e., when X is an open Riemann surface, is absent from
the statement and discussion of Theorem 1.1. The standard method fails when
trying to embed such X into C

2 (it embeds into C
3, also with interpolation

on discrete sets [1,3,21]). For results in this direction see the survey [11] and
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the recent papers of Fornæss Wold [7,8] who showed in particular that every
finitely connected planar domain embeds in C

2, thereby extending the result of
Globevnik and Stensønes [16].

Problem 1.6 For which open Riemann surfaces X is Problem 1.4 solvable with
m = 2? Is it solvable for every finitely connected planar domain?

Only two examples come to mind: X an algebraic curve in C
2 when the result

follows by applying Theorem 1.3, and X the unit disc when the interpolation
theorem is due to Globevnik [15].

2 Proof of Theorem 1.3

We shall use the theory of holomorphic automorphisms of C
N . The precise

result which we shall need is the following.

Theorem 2.1 ([5], Theorems 1.1 and 1.2) Assume that N > 1, {aj} and {a′
j}

are tame sequences in C
N, K ⊂ C

N is a compact, polynomially convex set
contained in C

N\{aj}, and g is a holomorphic automorphism of C
N such that

g(K) ⊂ C
N\{a′

j}. Then for every ε > 0 there exists a holomorphic automor-

phism φ of C
N satisfying φ(aj) = a′

j (j = 1, 2, . . .), supz∈K |φ(z)− g(z)| < ε, and

supw∈g(K) |φ−1(w) − g−1(w)| < ε. In addition one can prescribe finite order jets
of φ at the points {aj}, and one can choose φ to exactly match g up to a prescribed
finite order at finitely many points of K.

The statement concerning the approximation of g−1 on g(K) is a consequence
of the approximation of g on a slightly larger polynomially convex set containing
K in its interior, provided that ε > 0 is sufficiently small.

The proof of Theorem 2.1 in [5] relies upon the developments in [2,13] and
especially [10]. We shall use the special case of Theorem 2.1 when g is the
identity map and the sequence {a′

j} differs from {aj} only in finitely many terms.
(Any modification of a tame sequence on finitely many terms is again tame.)
The following lemma will provide the key step.

Lemma 2.2 Let {aj} ⊂ X ⊂ C
N and {bj} ⊂ C

N satisfy the hypotheses of
Theorem 1.3. Let B ⊂ B′ ⊂ C

N be closed balls and L = X ∩ B′. Assume
that all points of the {bj} sequence which belong to B ∪ L coincide with the
corresponding points of the {aj} sequence, and all remaining points of the {aj}
sequence are contained in X\L. Given ε > 0 and a compact set K ⊂ X, there
exist a ball B′′ ⊂ C

N containing B′ (B′′ may be chosen as large as desired), a
compact polynomially convex set M ⊂ X with L ∪ K ⊂ M, and a holomorphic
automorphism θ of C

N satisfying the following properties:

(i) |θ(z)− z| < ε for all z ∈ B ∪ L,
(ii) if aj ∈ M for some index j then θ(aj) = bj ∈ B′′,

(iii) if bj ∈ B′\(B ∪ L) for some j then aj ∈ M and θ(aj) = bj,



An interpolation theorem for proper holomorphic embeddings 549

(iv) θ(M) ⊂ IntB′′, and
(v) if aj ∈ X\M for some j then θ(aj) ∈ C

N\B′′.

Remark 2.3 If θ satisfies the conclusion of Lemma 2.2 then the set

L′ = {z ∈ X : θ(z) ∈ B′′}

contains M (and hence K ∪L), and L′\M does not contain any points of the {aj}
sequence (since the θ -image of any point aj ∈ X\M lies outside of B′′ according
to (v)).

Proof An automorphism θ of C
N with the required properties will be con-

structed in two steps, θ = ψ ◦ φ.
Since X ∩ B ⊂ L ⊂ X and the sets B and L are polynomially convex, B ∪ L

is also polynomially convex (see e.g., Lemma 6.5 in [10], p. 111).
By applying a preliminary automorphism of C

N which is very close to the
identity map on B ∪ L we may assume that X does not contain any points of
the {bj} sequence, except those which coincide with the corresponding points
aj ∈ X. The same procedure will be repeated whenever necessary during later
stages of the construction without mentioning it again.

Choose a pair of compact, polynomially convex neighborhoods D0 ⊂ D ⊂
C

N of B ∪ L, with D0 ⊂ IntD, such that D does not contain any additional
points of the {aj} or the {bj} sequence. Choose ε0 > 0 so small that

dist(B ∪ L, CN\D0) > ε0, dist(D0, CN\D) > ε0.

By decreasing ε > 0 if necessary we may assume 0 < ε < ε0.
Choose a compact polynomially convex set M ⊂ X containing K ∪ (X ∩ D)

(and hence the set L), and also containing all those points of the {aj} sequence
for which the corresponding point bj is contained in the ball B′. (Of course
M may also contain some additional points of the {aj} sequence for which
bj ∈ C

N\B′.) Theorem 2.1 furnishes an automorphism φ of C
N satisfying the

following:

(a) supz∈D |φ(z)− z| < ε
2 and supz∈D |φ−1(z)− z| < ε

2 ,
(b) φ(aj) = bj for all aj ∈ M, and
(c) φ(aj) = aj for all aj ∈ X\M.

Condition (a) and the choice of ε imply φ(D0) ⊂ D and φ(CN\D)∩ D0 = ∅,
and the latter condition also implies φ(X) ∩ D0 ⊂ φ(M). Since the sets φ(M)

and D0 are polynomially convex, their union φ(M) ∪ D0 is also polynomially
convex (Lemma 6.5 in [10]).

Choose a large ball B′′ ⊂ C
N containing φ(M) ∪ B′. Theorem 2.1 furnishes

an automorphism ψ of C
N satisfying the following:

(a′) |ψ(z)− z| < ε
2 when z ∈ φ(M) ∪ D0,

(b′) ψ(φ(aj)) = φ(aj) = bj for all aj ∈ M, and
(c′) ψ(aj) ∈ C

N\B′′ for all aj ∈ X\M.
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Fig. 1 The proof of
Lemma 2.2

We may also require that ψ fixes all points φ(aj) ∈ φ(X)\B′′. It is immediate
that θ = ψ ◦ φ satisfies the conclusion of Lemma 2.2. 
�

The scheme of proof of Lemma 2.2 is illustrated in Fig. 1. The first drawing
shows the initial situation; the thick dots on X indicate the points bj ∈ B ∪ L
which agree with the corresponding points aj, while the crosses indicate the
remaining points bj ∈ B′ which will be matched with the images of aj by applying
the automorphism φ. The second drawing shows the situation after the applica-
tion of φ: The large black dots in φ(X) ∩ B′ indicate the points bj = φ(aj) ∈ B′,
while the crossed dots on the subvariety φ(X) inside the set B′′\B′ will be
expelled from the ball B′′ by the next automorphism ψ .

Proof of Theorem 1.3 Choose an exhaustion K1 ⊂ K2 ⊂ · · · ⊂ ⋃∞
j=1 Kj = X

by compact sets. Fix a number ε with 0 < ε < 1. We shall inductively construct
the following:

(a) A sequence of holomorphic automorphisms �k of C
N (k ∈ N),

(b) An exhaustion L1 ⊂ L2 ⊂ · · · ⊂ ⋃∞
j=1 Lj = X by compact, polynomially

convex sets,
(c) A sequence of balls B1 ⊂ B2 ⊂ · · · ⊂ ⋃∞

j=1 Bj = C
N centered at 0 ∈ C

N

whose radii satisfy rk+1 > rk + 1 for k = 1, 2, . . .,
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such that the following hold for all k = 1, 2, . . . (conditions (iv) and (v) are
vacuous for k = 1):

(i) �k(Lk) = �k(X) ∩ Bk+1,
(ii) if aj ∈ Lk for some j then �k(aj) = bj,

(iii) if bj ∈ �k(Lk) ∪ Bk for some j then aj ∈ Lk and �k(aj) = bj,
(iv) Lk−1 ∪ Kk−1 ⊂ IntLk,
(v) |�k(z)−�k−1(z)| < ε 2−k for all z ∈ Bk−1 ∪ Lk−1.

To begin we set B0 = ∅ and choose a pair of balls B1 ⊂ B2 ⊂ C
N whose

radii satisfy r2 ≥ r1 +1. Theorem 2.1 furnishes an automorphism�1 of C
N such

that �1(aj) = bj for all those (finitely many) indices j for which bj ∈ B2, and
�1(aj) ∈ C

N\B2 for the remaining indices j. (Of course we only need to move
finitely many points of the {aj} sequence.) Setting L1 = {z ∈ X : �1(z) ∈ B2},
the properties (i), (ii) and (iii) are satisfied for k = 1 and the remaining two
properties (iv), (v) are void.

Assume inductively that we have already found sets L1, . . . , Lk ⊂ X, balls
B1, . . . , Bk+1 ⊂ C

N and automorphisms �1, . . . ,�k such that (i)–(v) hold up to
index k. We now apply Lemma 2.2 with B = Bk, B′ = Bk+1, X replaced by
Xk = �k(X) ⊂ C

N , and L = �k(Lk) ⊂ Xk. This gives us a compact polyno-
mially convex set M = Mk ⊂ Xk containing �k(Kk ∪ Lk), an automorphism
θ = θk of C

N , and a ball B′′ = Bk+2 ⊂ C
N of radius rk+2 ≥ rk+1 +1 such that the

conclusion of Lemma 2.2 holds. In particular, θk(Mk) ⊂ Bk+2, the interpolation
condition is satisfied for all points bj ∈ θk(Mk)∪Bk+1, and the remaining points
in the sequence {�k(aj)}j∈N are sent by θk out of the ball Bk+2. Setting

�k+1 = θk ◦�k, Lk+1 = {z ∈ X : �k+1(z) ∈ Bk+2}

one easily checks that the properties (i)–(v) hold for the index k + 1 as well.
(Note that Lk+1 corresponds to the set L′ in Remark 2.3). The induction may
now continue.

Let� consist of all points z ∈ C
N for which the sequence {�k(z)}k∈N remains

bounded. Proposition 5.2 in [10] (p. 108) implies that limk→∞�k = � exists
on �, the convergence is uniform on compacts in �, and � : � → C

N is a
biholomorphic map of � onto C

N (a Fatou-Bieberbach map). In fact, � =⋃∞
k=1�

−1
k (Bk) (Proposition 5.1 in [10]). From (v) we see that X ⊂ �, and prop-

erties (ii), (iii) imply that�(aj) = bj for all j = 1, 2, . . . This completes the proof
of Theorem 1.3.

Example 2.4 We show that Theorem 1.3 is not valid in general if {aj} is a non-
tame sequence in C

N . Choose a sequence {aj}j∈N ⊂ C
N whose complement

C
N\{aj}j∈N is Eisenman N-hyperbolic [20,24]. As already mentioned in the

introduction, any complex subvariety X ⊂ C
N can be embedded in C

N so
that its image contains a given sequence [10], and hence we may assume that
{aj}j∈N ⊂ X. Assume that Theorem 1.3 holds, i.e., there is a biholomorphic map
� : � → C

N from a domain� ⊂ C
N containing X onto C

N satisfying�(aj) = bj

for all j = 1, 2, . . . The set�\{aj}j∈N, being contained in C
N\{aj}j∈N, is Eisenman



552 F. Forstnerič et al.

N-hyperbolic, and hence its �-image C
N\{bj}j∈N is Eisenman N-hyperbolic as

well. But this is not true in general, for instance if the sequence {bj}j∈N is tame
in C

N .

3 Embedding Stein spaces with interpolation

We begin by indicating how Theorem 1.2 is obtained from Schürmann’s proof
in [25].

One begins by choosing a sufficiently generic almost proper holomorphic
map b : X → C

n with n = dim X; this means that there are sequences of com-
pact special analytic polyhedra K1 ⊂ K2 ⊂ · · · ⊂ ⋃

j∈N
Kj = X and polydiscs

P1 ⊂ P2 ⊂ · · · ⊂ ⋃
j∈N

Pj = C
n such that b|Kj : Kj → Pj is a proper map sending

the boundary ∂Kj to ∂Pj for every j = 1, 2, . . . Such maps were first constructed
by Bishop [3] where the reader can find more details; another source is Chapter
VII in [19].

For a fixed b as above one then constructs a holomorphic map g : X → C
N−n

such that f = (b, g) : X ↪→ C
N is a proper holomorphic embedding. The map g

is obtained as the limit g = limk→∞ gk where the map gk : X → C
N−n accom-

plishes the job on Kk and it approximates gk−1 uniformly on Kk−1. The map g
has three tasks: to insure properness (this is done by choosing |gk| sufficiently
large on Kk\Kk−1), to eliminate the kernel of the differential of b, and to sep-
arate pairs of points which are not separated by b. Such map can be found by
the ‘elimination of singularities’ method, due to Eliashberg and Gromov [6],
which proceeds by a finite induction over strata in a suitable stratification of X.
When extending the map from one stratum to the next one uses the h-principle
for sections of elliptic submersions [14,17]. For the present purposes it is not
necessary to understand this method completely, and we refer the reader to [6]
and [25] for further details.

Suppose now that {aj} is a discrete sequence in X. It is possible to choose the
exhaustion of X by special analytic polyhedra Kk as above such that Kk\Kk−1
contains at most one point of the sequence for each k. Call this point ak.
When constructing the map gk (which fulfills the relevant conditions on Kk)
it now suffices to require that the modulus of the last component of the point
gk(ak) is sufficiently large; it was already observed in [23,25] that this condition
is easily built into the construction. In this way we can achieve that the last
components of the sequence {g(aj)}j∈N form a discrete sequence (without repe-
titions) in C. It follows from standard methods (see e.g., [24]) that the sequence
f (aj) = (b(aj), g(aj)) ∈ C

N is then tame. This proves Theorem 1.2.
Essentially the same proof applies if X is a (reduced) Stein space with singu-

larities and with bounded embedding dimension [25]. Let EmbdimxX denote
the local embedding dimension of X at x, that is, the smallest integer such that
the germ of X at x embeds as a local closed complex subvariety of the Euclidean
space of that dimension. Assume that

q = Embdim X := sup
x∈X

EmbdimxX < +∞.
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Let n(k) denote the dimension of the analytic set of points in X at which X has
embedding dimension at least k. Set

b ′(X) = max{k + [
n(k)/2

]
: k = 0, . . . , q}.

With this notation we have the following result, extending Theorem 1.1.

Theorem 3.1 Let n > 1 and let X be an n-dimensional Stein space of finite

embedding dimension. Let m ≥ N = max{
[

3n
2

]
+ 1, b ′(X)}. Given discrete

sequences {aj} ⊂ X and {bj} ⊂ C
m without repetitions, there exists a proper

holomorphic embedding f : X ↪→ C
m satisfying f (aj) = bj for j = 1, 2, . . .

Theorem 3.1 is proved in the same way as Theorem 1.1 by first embedding X
into C

m so that {aj} is mapped to a tame sequence in C
m (this is accomplished

by the modification of the proof in [25] described above), and subsequently
applying Theorem 1.3.
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