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Abstract

HIV virulence, i.e. the time of progression to AIDS, varies greatly among patients. As for other rapidly evolving pathogens of
humans, it is difficult to know if this variance is controlled by the genotype of the host or that of the virus because the
transmission chain is usually unknown. We apply the phylogenetic comparative approach (PCA) to estimate the heritability
of a trait from one infection to the next, which indicates the control of the virus genotype over this trait. The idea is to use
viral RNA sequences obtained from patients infected by HIV-1 subtype B to build a phylogeny, which approximately reflects
the transmission chain. Heritability is measured statistically as the propensity for patients close in the phylogeny to exhibit
similar infection trait values. The approach reveals that up to half of the variance in set-point viral load, a trait associated
with virulence, can be heritable. Our estimate is significant and robust to noise in the phylogeny. We also check for the
consistency of our approach by showing that a trait related to drug resistance is almost entirely heritable. Finally, we show
the importance of taking into account the transmission chain when estimating correlations between infection traits. The
fact that HIV virulence is, at least partially, heritable from one infection to the next has clinical and epidemiological
implications. The difference between earlier studies and ours comes from the quality of our dataset and from the power of
the PCA, which can be applied to large datasets and accounts for within-host evolution. The PCA opens new perspectives
for approaches linking clinical data and evolutionary biology because it can be extended to study other traits or other
infectious diseases.
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Introduction

One of the hallmarks of HIV infection is the enormous variation

in disease progression. While some untreated patients survive for

more than 25 years, others die within a year of infection [1].

Delineating what fraction of this variation is attributable to host

versus virus genotype has important clinical and epidemiological

applications. Whole genome association studies showed that at

least 15% of the variations in traits associated with disease

progression in HIV can be explained by common host genetic

variants [2,3]. In this study, we adopt a new approach to quantify

the contribution of the viral genotype to disease progression.

The natural course of an HIV infection is divided into three

clinical stages: the acute phase, which lasts for several weeks; the

asymptomatic phase, which can last several years; and the AIDS

phase, which can last several months to a few years and ends with

the death of the patient. The effect of the HIV viral genotype on

disease progression is debated. Arguably, this is due to the fact

PLoS Pathogens | www.plospathogens.org 1 September 2010 | Volume 6 | Issue 9 | e1001123



that, as for most infectious diseases of humans, it is difficult to

determine the transmission chain (i.e. ‘Who infected whom?’).

Early studies showed that long times to AIDS are associated with

the receipt of blood from donors who developed AIDS late [4,5].

A study found a strong correlation between maternal and infant

viral load [6], but mother-to-child transmission introduces

confounding factors through host genetic relatedness. In some

cases, transmission pairs are known and one can then measure the

heritability of traits from one infection to the next. This heritability

corresponds to the fraction of the variance among patients that is

explained by the virus genotype [7,8]. Studies found that 21% [9],

23% [8], 25% [10] and 55% [11] of the variance in set-point viral

load (spVL) can be explained by the virus genotype. These studies

suggest that infection traits can be heritable but the accuracy of

their estimates is likely to be limited by the sample size of the data

and the accuracy of their spVL measurement.

The phylogenetic comparative approach (PCA) allows to

estimate the phylogenetic signal for a trait measured in several

species if the species’ phylogeny is known. This signal indicates the

extent to which the phylogeny explains observed trait values (see

the Methods). Several studies show that this signal is very similar to

heritability [12,13], which we also verify in this study. Here, we

use this classical evolutionary biology method [14] to address

epidemiological questions.

We consider the case of HIV infection traits using the data from

the Swiss HIV Cohort Study (SHCS [15]). As the majority of

previous studies [2,3,6,8,9,16,17], we focus on the set-point viral

load (spVL, see the Methods) measured during the asymptomatic

phase of an HIV infection because it has been shown to be

associated with the time to AIDS, i.e. virulence [16,18–20]. The

quality of the SHCS patient data allows us to have a better

estimation of spVL than many studies that often rely on single viral

load measurements to estimate spVL (see the Materials and

Methods). Further, we consider the decline slope of the CD4z T-

cells (dsCD4), which also predicts virulence [21], but to a smaller

extent than spVL [20].

We use sequences of the HIV pol gene isolated from infected

patients to build a phylogenetic tree, where each leaf corresponds

to a patient whose trait values are known (Figure 1). Proximity in

the resulting tree reflects proximity in the transmission chain

[22,23] but we emphasise that the phylogeny is only an

approximation of the true transmission history. As we will show

later on, our approach has the advantage of being robust to this

noise in the phylogeny. We then quantify phylogenetic signal for

each of the traits on the tree [24]. In addition to log(spVL) and

dsCD4, we study a third trait as a control: the probability for

resistance to zidovudine (AZT), denoted prAZT. We expect the

latter trait to be strongly heritable because it is evaluated from the

virus pol sequence. Note that there is no overlap between the

information used to build the phylogeny and that used to evaluate

prAZT (see the Methods).

We split the data into 4 datasets using 2 criteria. First, in

addition to the ‘strict’ definition used in previous studies to define

spVL from multiple viral load measurements [2,3], we also

consider a ‘liberal’ definition (see the Methods). The strict

definition is known to improve the accuracy of the spVL measure

and we want to assess the importance of the quality of this estimate

on our ability to detect heritability. Second, we study one of the

transmission groups (‘men having sex with men’, or MSM)

separately. This group is likely to yield a more accurate phylogeny

because of denser sampling in the SHCS [25]. We show in

Supplementary Results (Text S1) that focusing on these datasets

also removes some of the confounding factors, such as patient sex,

transmission group or age, on infection trait values.

We quantify phylogenetic signal using two estimators (denoted

K [12] and l [26]) that are based on two different methods to

better detect potential artifactual values (see the Methods). A signal

value of 0 implies that the phylogeny does not contain any

information to explain the variance of the trait in the population.

Conversely, a signal value of 1 means that the distance between

tips in the phylogeny used best explains the tip data assuming a

Brownian model of evolution of the trait on the tree.

Results

Trait heritability
We first present the results obtained with the ‘MSM strict’

dataset. This dataset is the smallest we study. It has the advantage

of relying on the criterion for spVL already used by earlier studies

and of minimising noise in the data linked with transmission

groups. The estimator for phylogenetic signal K reveals a

significantly high signal for log(spVL) (K~0:59, Table 1). The

standard deviation estimated from the bootstrapped trees is 0:07.

As explained above, uncertainty is inherent to any HIV

phylogeny. Therefore, one might argue that the value we find is

underestimated because of the noise in the phylogeny. Improving

a phylogeny is a difficult task but making it worse is easy. We thus

check for the robustness of the value of K by introducing errors in

the phylogeny in two ways. The first way consists in measuring K
on the bootstrapped trees, which are by definition less accurate

than the consensus tree. The second way consists in swapping 3,

10 or 20% of the tip values at random. As shown in the

Supplementary Results, on average considering the trees from the

bootstrap or trees with errors does not significantly affect the signal

intensity (i.e. the value of K ): with more noise, the value of K
remains constant but the significance level decreases.

The intensity of the signal strongly decreases when we use the

liberal criterion for spVL (K~0:09 in the ‘MSM liberal’ dataset),

which highlights the importance of the accuracy of the spVL

estimate. The signal even becomes non-significant when we

consider all the transmission groups. This can be explained by the

fact that, in the SHCS, patients from the MSM transmission group

tend to cluster on a phylogeny and are more densely sampled than

patients from other transmission groups (see the Methods). As a

Author Summary

Some untreated patients infected by HIV die within a
couple of years, while others survive more than 25 years.
To date, it is still unclear whether this variance in the
virulence of the infection is due to the host or to the virus
genotype. One of the main difficulties in answering this
question is that, as for most human diseases, we tend not
to know who infected whom. Here, we solve this problem
by adopting a phylogenetic approach, which estimates the
heritability of species traits on a phylogeny. In our case,
species correspond to infected patients and the trait is an
infection trait. The phylogeny is obtained from the HIV
RNA sequences isolated in each patient. We find that more
than half of the variance observed in the set-point viral
load—a trait that predicts virulence—is heritable from one
infection to the next. This implies that set-point viral load is
strongly controlled by the virus genotype. This application
of the phylogenetic comparative approach to infectious
diseases yields major results for the deciphering of HIV
pathogenesis. Future applications to other traits and/or
other pathogens will help us to better understand rapidly
evolving diseases of humans.

Heritability of HIV Infection Traits
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consequence, a phylogeny built only on sequences from MSM

patients is likely to be closer to the transmission chain. Also, using

the liberal criterion or considering all the transmission groups

means that log(spVL) is affected by confounding factors.

Results show no phylogenetic signal for dsCD4 in all datasets

(Table 1). A possibility is that CD4 densities vary strongly within

patients on short time scales. However, even a less variable

estimate, the decline slope of the ratio of CD4z to CD8z T-cells,

did not exhibit significant phylogenetic signal. This suggests that

this trait is not directly affected by the viral genotype or that the

effect is too weak to be detected.

For prAZT in the MSM strict dataset, we find K~0:91 (with a

standard deviation on bootstrapped trees of 0.084). As for the

log(spVL), this result is robust to noise in the phylogeny (see

Supplementary Results). Using the liberal criterion has little effect

on this value (K~0:82 in the MSM lib dataset), which is consistent

with the fact that drug resistance is genetically determined. The

drop in heritability is likely to be a consequence of the increase in
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Figure 1. Combining phylogenies and trait values in the MSM strict dataset. A) A phylogeny based on HIV sequences obtained from
patients with known set-point viral loads, B) Phylogenetic distance between two tips versus difference in trait value between these two tips
(slope~2:2 and p-valuev0:001) and C) Distribution of log(spVL) values in the MSM strict dataset. Panel A shows the maximum likelihood
phylogenetic tree built with the MSM strict dataset. Squares on the tips of the tree correspond to infected patients. The colour of the squares and the
graph on the right indicate the set-point viral load (colours range from blue to red for increasing log(spVL)). The PCA tests the correlation between
proximity in the phylogeny and trait values (log(spVL)). The circles on the tree nodes indicate bootstrap values: black is greater than 90%, grey is
between 50 and 90% and white is lower than 50%.
doi:10.1371/journal.ppat.1001123.g001
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tree size, which decreases the accuracy of K (see Supplementary

Results). When we consider all the transmission groups, we find a

non-significant value for the strict dataset and K~0:71 in the

liberal dataset. This could be due to the fact that average prAZT is

higher in one of the transmission groups (injection drug users) and

to the fact that a phylogeny built with MSM patients better reflects

the transmission chain.

We also perform these measures using a different estimator for

phylogenetic signal, l [26]. Results are similar to those found with

K (Table 1).

Many studies argue that phylogenetic signal can be interpreted

as a phylogenetic heritability [12,13]. At first, this may seem

problematic because phylogenetic signal is measured for different

species, whereas heritability is defined in population genetics as the

ratio between the genetic and the phenotypic variance observed

for a trait in a given population [7]. Working on traits of infectious

diseases bridges phylogenetics and population genetics because it

involves a population of infected individuals instead of a collection

of species. This would also be the case for any phylogenetic

approach based on a phylogeny of individuals.

In order to check that there indeed is an equivalency between

the concepts of heritability and phylogenetic signal, we simulate

phylogenetic trees reflecting the evolution of a trait under an

evolutionary process with known heritability (see the Methods).

The values of K (black) and l (red) estimated on these simulated

trees strongly correlate with known heritability (Figure 2). Note

that K performs better than l when the heritability is low.

Furthermore, the variance in l is much greater, which is why we

only estimate it as a median value over many phylogenies (the

posterior tree distribution). The simulations confirm that estimat-

ing phylogenetic signal for a trait yields useful quantitative

estimates of trait heritability.

Correlation among traits
The phylogenetic comparative approach (PCA) is widely used to

study correlations among traits because taxa are not independent

and comparisons between traits should be weighted according to

the distance between taxa in the phylogeny [12–14,24,26,27].

These ideas can be applied to infection trait values.

In Table 2, we show the difference between a classical

regression between two traits and a regression that incorporates

the non-independence of the data for HIV infection traits. The

slope of the regression between spVL and dsCD4 decreases by

approximately 60% when the phylogeny is taken into account.

Furthermore, spVL does not explain much of the variance in

dsCD4 (a linear model yields an adjusted R2 of 0.047). We also

find that accounting for the non-independence of the data can

alter the significance of a correlation: the dsCD4 varies among

transmission groups with a classical test but not with a test

including the phylogeny. This provides new data to the recent

debate on the link between these two predictors of virulence (see

[28] and the resulting correspondence).

These results can appear as contradictory with our earlier result

that dsCD4 does not exhibit phylogenetic signal. The reason for the

effect of the phylogeny on regressions involving dsCD4 is that when

the PCA is used to study trait correlations, the correction applied to

the phylogeny (i.e. the value of K or l) is calculated using the value

of both traits (the model finds the covariance between trait values of

pairs of tips that best explains the data assuming a Brownian model

of evolution of the trait on the tree [26]).

Discussion

The control of the virus genome on the virulence of an HIV

infection is a controversial issue. HIV-1 is known to be more

virulent than HIV-2. Within HIV-1 group M, there is also

evidence that some subtypes are less virulent than others, e.g.

viruses from subtype A seem to be associated with slower disease

progression than viruses from subtype D [29–31]. Also, there is

experimental evidence for differences in virulence among SIV

viruses [32]. However, there is much less evidence supporting the

existence of a control of the virus genotype over the duration of the

infection within a given subtype of HIV-1. Here, we show that

even within subtype B, the set-point viral load (spVL), which

predicts HIV virulence, can be inherited from one infection to the

next thus indicating that this trait depends strongly on the virus

genotype. The validity of our approach is supported by the fact

that we find heritability values close to 1 for a trait associated with

drug resistance. Our results are statistically significant and robust

to noise in the phylogeny. This robustness is important because

HIV phylogenies tend to be inaccurate [22] due to processes such

as recombination and co-infections.

The heritability value we find is high compared to previous

studies [8–10], especially considering the fact that most (if not all)

of these studies include hosts infected by different subtypes of HIV-

1, which is likely to increase the genetical component of the

variance observed in the population and hence the heritability.

The magnitude of our estimate only compares with that of Hecht

et al. [11]. However, one should be careful with comparing the

two studies. First, they do not use spVL but the earliest measure of

viral load. It is therefore possible that their measure is not linked to

disease progression. Second, it is not clear if all the patients they

consider are infected by the same subtype of HIV, which could

increase the heritability, as explained above. Third, they include

both treated and untreated patients, whereas we only include

untreated patients. Fourth, and perhaps most important, they have

only 49 patients in their largest dataset.

Table 1. Phylogenetic signal in the 4 datasets for the three different traits.

Dataset n K for log(spVL) K for dsCD4 K for prAZT
~
l for log(spVL)

~
l for dsCD4

~
l for prAZT

MSM strict 134 0.59��� n.s. 0.91� 0.51 (0.27) 0 1.07 (0.12)

all strict 230 n.s. n.s. n.s. 0.17 0 0.88 (0.06)

MSM liberal 404 0.09� n.s. 0.82��� 0.13 (0.05) 0 1.07 (0.015)

all liberal 661 n.s. n.s. 0.71��� — — —

We use two estimators (K and l) that lead to similar results. Significance code for the p-value of the randomisation test for K is ‘��� ’ ƒ0:001, ‘�� ’ ƒ0:01, ‘� ’ ƒ0:05, and
‘n.s.’ indicates that the signal does not differ from that found on a random tree. The ~ll are obtained by taking the median value of l over 161 trees (see the Methods). We
also show the standard deviation in brackets. ‘—’ indicates that the largest tree could not be computed with the Bayesian method because of the large number of
patients. n is the sample size of each dataset.
doi:10.1371/journal.ppat.1001123.t001
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Implications of virulence heritability
An increasing number of studies attempt to estimate heritability

of HIV set-point viral load, which is a measure of virulence

[6,8–11]. The magnitude of the heritability value for spVL we find

is of clinical and epidemiological importance.

The clinical importance stems from the fact that for a trait to be

heritable from one infection to the next, there needs to be a

control from the virus genotype over the trait. In the case of HIV,

the course of the natural history of the infection is still largely not

understood. For instance, the exact role of within-host evolution in

the onset of AIDS is still unclear [33]. Here, we show that the

duration of the infection is at least partially controlled by the

genotype of the virus that infects the host. An implication is that

some of the answers to AIDS pathogenesis might be found in the

genome of the virus.

Trait heritability from one infection to the next also has

implications for evolutionary epidemiology. For natural selection

to act on a trait, three conditions must be fulfilled: the trait must be

variable in the population, it must affect the fitness of individuals

bearing it and it must be heritable (at least partially). This

reasoning can be extended to evolutionary epidemiology by

viewing an infection as an individual, and defining fitness as the

number of new infections caused [34]. In the case of HIV, spVL is

known to vary among patients [35] and to affect the infection

fitness, because viral load correlates with the transmission rate

[16,36] and the virulence [16,18,21]. Our finding that spVL is

highly heritable implies that this trait is subject to natural selection

at the between-host level, which supports the possibility that a

trade-off between virulence and transmission rate can drive the

evolution of HIV [16]. This also sheds a new light on the ongoing

debate concerning why studies have failed to provide a clear

picture of how HIV virulence evolved over the last decade (some

find that it decreased [37,38], others find that it increased [17,39–

42] and some find no significant trend [43–49]). These conflicting

trends could be explained by different dates of origin of the

pandemics and different initial values of virulence [17]. Another

possibility is that the host genotype control over virulence is

greater than that of the virus (see next paragraph). Finally, the

structure of sexual transmission networks is likely to have a strong

effect on the fitness of an infection and hence on viral evolution.

Host effects
Set-point viral load and disease progression have been shown to

be affected by host factors, especially human leucocyte antigen

(HLA) alleles [2,3,50,51]. This could introduce a bias in our results if

hosts with similar HLA alleles tend to be close in the transmission

chain. Note that this bias also occurs in studies based on

transmission pairs. Unfortunately, in the subset of the SHCS data

we used, there was not enough information about the patients to

correct for this bias. More generally, we cannot exclude correlations

between the environments in which the patients live but these effects

are likely to be smaller in our study than in studies based on known

couples because the PCA does not require patient couples.

Another potential concern is that other diseases could be

transmitted sexually with HIV that could affect trait values. The

information of the SHCS allows us to show that there is no

correlation between spVL and infection by hepatitis C, hepatitis B

or syphilis (see Supplementary Results).

Furthermore, viruses evolving in similar within-host environ-

ment (either because of similar HLA alleles or drug treatments)

might tend to evolve in a similar fashion. As a result, the proximity

in the phylogeny could indicate proximity in within-host

environment rather than proximity in the transmission chain. In

order to limit the effect of host*virus interactions, we built a

phylogeny using mutations on third codon positions only. As

shown in the Supplementary Results, the outcome of the test is

similar: K is equal to 0.52 for spVL and to 0.82 for prAZT in the

MSM strict dataset. That a phylogeny built on synonymous

Table 2. Regressions between life-history traits with and without correction for phylogenetic signal.

Traits and dataset Test Slope (SE) Y-intercept (SE) ln(likelihood) AIC

log(spVL) vs. dsCD4 (MSM strict) OLS 21.7e-3�(8.1e-4) 4.26���(0.08) 256 119

RegBM 22.7e-3���(6.8e-4) 4.1���(0.34) 257 121

Trait variation among risk groups (all liberal) OLS log(spVL)��� and dsCD4���

RegBM log(spVL)��� and dsCD4n:s:

The first line is a regression between log(spVL) and dsCD4. The second line tests if values for a given trait vary across risk groups. OLS is the ordinary generalised least
square without phylogenetic correction (a generalised linear model yielded similar results); RegBM indicates a correction based on the tree assuming Brownian motion.
SE stands for ‘Standard Error’. For further details, see the Supplementary Methods. Significance code for the p-value of the test is ‘��� ’ ƒ0:001, ‘�� ’ ƒ0:01, ‘� ’ ƒ0:05 and
‘n.s.’ for non sognificant.
doi:10.1371/journal.ppat.1001123.t002

Figure 2. Phylogenetic signal estimated for evolutionary
processes with known heritability. 20 phylogenies are simulated
to model the evolution of an infection trait in a case where heritability is
set to a given value. Phylogenetic signal (K in black and l in red) is then
estimated on each tree using only 128 leaves to account for incomplete
sampling. The box plot shows the median values, the three quartiles
and the outliers. The dashed line shows y~x. The slope is 0:83
(p-valuev0:001 and adjusted R2~0:89) for K and of 0:95 (p-valuev0:01
and adjusted R2~0:88) for l.
doi:10.1371/journal.ppat.1001123.g002

Heritability of HIV Infection Traits
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mutations only leads to similar results allows us to rule out

convergent evolution as a potential bias.

We do not know which proportion of the virus genotype effect is

due to the interaction between virus and host genotypes (i.e. that

some host genotypes are more sensitive to some virus genotypes).

This implies that, in theory, the host control on spVL could also be

high. A way to test this effect so that it could be compared to the

present result would be to conduct a similar approach but with a

host phylogeny instead of a virus phylogeny. The tip data would be

the same and the results would tell us what the host genotype

control over the trait is. This analysis could not be performed with

the subset of the SHCS data we used in this study because we

lacked information for many hosts. However, it might be

achievable with another subset of the SHCS data.

More speculatively, we find that, in agreement with an earlier

study [28], the correlation between spVL and dsCD4 is weak (low

R2). However, both these traits are known to be early predictors of

virulence [18,21]. A way to reconcile these two apparently

contradictory facts would be to show that spVL and dsCD4 are

both correlated with processes that add up to determine virulence.

Another way to write this is that if C~AzB, both A and B are

correlated with C but A needs not to be correlated with B. In our

case, C would be virulence and A and B pathogenic processes

linked with dsCD4 and spVL. We show that the virus has a strong

control over spVL but not over dsCD4. If dsCD4 was shown to be

strongly controlled by the host genotype, the A and B processes

that contribute to virulence could be interpreted as a virus and a

host contribution. Our results suggest that a way to better

understand the progression to AIDS could be to disentangle host

and viral contributions to virulence, which are highlighted here by

the different control of the virus over dsCD4 and spVL.

Advantages of the phylogenetic comparative approach
Some studies have used phylogenies of infections to understand

the epidemiology of infectious diseases (see [52] and references

therein). However, these studies are based on qualitative traits,

usually the presence/absence at a given location (geographically or

within a type of cells). Also, these studies use estimators to link the

phylogeny and the qualitative traits that are different from

phylogenetic signal and thus not directly associable with

heritability.

To our knowledge, our study is the first application of the

phylogenetic comparative approach (PCA) to infection quantita-

tive traits. As such, it makes it relevant to discuss the prospects of

its application to infectious diseases. The main advantage of the

PCA is that it does not require any prior knowledge about the

transmission pairs. First, this greatly increases the amount of data

accessible. Indeed, in many cohort studies, such as the SHCS,

there is no information about transmission pairs. Previous studies

estimating the heritability of spVL have 155 [9], 194 [8], 112 [10]

and 48 patients [11] in their largest dataset. Here, we have 661

patients in our largest dataset and 134 in the smallest. Having

more patient data allows us to improve the phylogeny by focusing

on MSM only. It also allows us to improve the estimation of spVL

by selecting patients for whom we have several measures of viral

load, which could explain why we detect higher signal than earlier

studies in which many spVL had to be estimated from a single

measurement [8]. Second, working without pairs reduces some of

the biases inherent to studies based on known couples (e.g. living in

the same environment). Third, it incorporates within-host

evolution through the branch length. Even though all the genetic

data we use originates from after the acute phase, the sampling

time is indirectly taken into account because a virus sampled

during chronic infection should generate longer branches in the

phylogeny than a virus transmitted early in the infection.

The PCA can also be used to study correlations among infection

traits. To our knowledge, no other study has raised the problem

that, for rapidly evolving diseases, data from different patients are

not independent and that regressions should be weighted by

distance in the transmission chain.

Finally, for most non-human diseases, standard population

genetics settings can be conducted to estimate experimentally trait

heritability. In the case of human diseases, we work with

epidemiological data. The PCA is thus especially suited to study

rapidly evolving diseases of humans.

Limitations
We were unable to detect phylogenetic signal for the log(spVL)

when we used a liberal spVL definition or when we considered all

the transmission groups. This is consistent with earlier studies that

find that restricting the dataset to improve the phylogeny [8] or the

spVL measure [10,11] greatly increases the heritability estimate.

Our interpretation is that the strict criterion we use allows us to

improve the spVL measurement (thus decreasing measurement

error) and that restricting the dataset to MSM patients yields a

more accurate phylogeny (because of a better estimation of the

transmission chain in the SHCS). Moreover, both restrictions

remove the effect of confounding factors, such as patient sex or

age, on trait values.

For completeness, we mention two alternative hypotheses to

account for the low signal value in the ‘MSM liberal’ dataset. First,

it is possible that high within-host variability in viral load

measurements is positively correlated with the amount of within-

host evolution, which itself has been shown to be linked with

disease progression [53]. In short, our strict selection criterion

might be selecting for infections with little within-host evolution.

However, this is unlikely because, as we show in the Supplemen-

tary Results, the log(spVL) is slightly higher in the strict than in the

liberal dataset. If variability in spVL was correlated with within-

host evolution, we would expect patients from the strict dataset to

have a slow disease progression (i.e. a low spVL). A possibility to

test this effect would be to vary the level of strictness of the spVL

definition. Second, it is possible that the method we use is less

efficient at detecting phylogenetic signal in trees that are too large.

In the Supplementary Results, we show that tree size could have a

slight effect on the accuracy of l, but this effect is less important

than the intensity of the signal.

As shown in Figure 2, the correlation between heritability and

phylogenetic signal is not 1 to 1. This means that, even if there is a

strong control of the virus genotype on the spVL, it is not yet

possible to say if this value is closer to 40 or 60%. Further analyses

are required to understand analytically the exact mapping between

heritability and phylogenetic signal in the case of infectious

diseases.

Finally, we built the phylogeny using the pol gene, which is the

gene routinely sequenced in the SHCS. However, using a different

gene is unlikely to affect our results: a recent study shows that

phylogenies built on clonal env sequences were almost identical to

phylogenies built on pol sequences from known transmission pairs

[54].

Perspectives
The PCA argues that HIV set-point viral load is strongly

controlled by the virus genotype. Our study can be extended by

considering other infection life-history traits (e.g. the duration of

the infection) or other infectious diseases that evolve rapidly

enough in their host for a phylogeny to be inferred. Further studies

Heritability of HIV Infection Traits
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are also needed to identify the specificities of the application of the

comparative method to phylogenies of infectious diseases.

Nevertheless, this approach opens new perspectives for evolution-

ary epidemiology by allowing a better understanding of how

natural selection acts on infection traits. It also has the practical

advantage to be applicable to many datasets of infectious diseases

of humans because it does not require any prior knowledge of the

transmission chain.

Materials and Methods

The data
The Swiss HIV Cohort Study (SHCS) is a nationwide

prospective study based on voluntary participation of persons

infected with HIV-1. The rationale, organisation and baseline

characteristics of the study [15,55] and the drug resistance

database [56] we use have been described elsewhere in detail.

Data of 1100 patients could be incorporated in this study. Each

patient is represented only once in the data. We selected SHCS

participants infected by HIV-1 subtype B (which is the majority in

Switzerland) with a genotypic drug resistance test while still ART-

naive and with at least three HIV RNA measurements. We only

included measurements that were collected after the acute phase of

HIV infection (as described in [25]), but prior to start of ART, or

the first CDC C event, or the time when the CD4 count first drops

below 200 cells. Many HIV-infected patients in Switzerland, as in

other countries, receive their HIV diagnosis at a late disease stage

and almost immediately start HIV treatment. However, these late

presenting patients do not differ from other patients infected by

HIV-1 subtype B [57], and this is not likely to introduce a bias on

the 1100 patients we consider.

The three main transmission groups in the SHCS are

heterosexuals (HET), injection drug users (IDU) and men having

sex with men (MSM). We focused on MSM because, on the basis

of all newly reported positive HIV Tests in Switzerland between

2000 and 2006 (Federal Office of Public Health, Switzerland), we

estimate that the liberal dataset includes 25% of all newly

diagnosed MSM, as opposed to 10% for IDU and 4% for HET.

Also, a previous study has shown that patients from this

transmission group tend to cluster in phylogenetic trees [25]. In

our case, it means that the phylogeny we obtain using this

transmission group only is likely to be closer to the actual

transmission chain.

The phylogenies
For each patient, we know the RNA sequence generated by

bulk sequencing of the HIV polymerase (the pol gene). The

sequence isolated from 49 patients infected by HIV-1 subtype C

was used as an outgroup. We removed all major amino acid

positions that are strongly correlated with antiretroviral drug

resistance and built a different tree for each of the four subsets of

the dataset. In all the trees we built, the ingroup and the outgroup

were monophyletic. All phylogenies were built both with a

maximum likelihood approach and with a Bayesian approach.

The spVL
Measuring spVL often generates passionate debates. The notion

of spVL originates from the realisation that during the

asymptomatic phase of an HIV infection, the viral load remains

generally stable. The problem is that fluctuations can occur in

some patients [58]. Also, there seems to be a tendency for the viral

load to increase during the asymptomatic phase [59], which means

that defining spVL as a line (with a slope and an intercept) could

provide us with more information. Overall, the most appropriate

measurement for spVL largely depends on the data available and

on the question asked.

Having multiple viral load measures in each patient allows to

improve the quality of the spVL estimate. Some use the median

value of viral load measurements [20]. Other studies on the host

genetic control over spVL variations define spVL as the mean

log10 virus load per mL in patients and only consider cases where

all the viral load measurement fluctuate within a 0.5-log band

around the patient specific mean [2,3]. Our ‘strict’ definition of

spVL is similar except for the fact that we allow measures to

fluctuate in a 1-log band (n~230). We also consider a ‘liberal’

definition, where spVL is the mean viral load taken over at least

three consecutive viral loads, fluctuating within a 1-log band

(n~661). Note that spVL was a continuous (and normally

distributed) trait in all our datasets so that the variation we

observed are not likely to be linked to a specific allele of a gene.

The effects of patient age, sex and transmission group on the

traits we study (spVL, dsCD4 and prAZT) are described in

Supplementary Results (see also [19] for a review).

The prAZT
This trait is linked to the probability that a virus is resistant to

zidovudine (AZT) without ever having been exposed to this drug.

It is estimated from the pol sequence using the geno2pheno system

[60]. In order to remove potential correlations between this trait

and the phylogeny, we only used the positions associated with drug

resistance that we removed to build the phylogeny to estimate

prAZT. These relevant positions were inserted in a neutral

background sequence (for which there was no drug resistance).

Phylogenetic signal
Phylogenetic signal measures the extent to which the fact that

some species tend to have similar trait values can be explained

statistically by their close evolutionary history (i.e. the fact that they

share a recent common ancestor). Estimators are usually based on

Felsenstein’s method of independent contrasts [14,24]. A contrast

is the difference between two trait values of two tips of the

phylogeny, which is weighted by the distance between the tips in

the phylogeny. Mathematically, the contrast cij between two tips i
and j is given by:

cij~
Dti{tj Dffiffiffiffiffi

dij

p ð1Þ

where ti and tj are the trait values of i and j and dij is the distance

between i and j in the phylogeny.

If the variance in all the independent contrasts of a phylogeny is

low (resp. high), it means that related species tend to have similar

(resp. different) trait values. This simple approach is not entirely

satisfactory because, for instance, it does consider the fact that

specific shapes of the phylogeny can be more prone to exhibit

higher or lower values in variance of contrasts. To solve this

problem, we use two recently developed estimators.

The first estimator, K [12], is based on the mean squared error

(MSE) of the contrasts or of the terms of Pagel’s covariance matrix,

which is described below. The ratio between the MSE obtained

after transformation of the tree by a factor w (denoted MSE0) and

the MSE obtained with the real tree (denoted MSE) indicates how

well the transformed tree fits the data. K is a normalisation of this

quantity. It is obtained by dividing the ratio MSE0/MSE by the

expected ratio MSE0/MSE given the shape and size of the

phylogeny. K has the advantage of being normalised, i.e. that its

value accounts for the fact that phylogenetic signal depends on the
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shape of the phylogeny. The significance of the estimate is assessed

through a randomisation test based on a shuffling of the tip values.

The second estimator, l, was introduced by Pagel [26,61]. The

idea is to formalise the phylogeny using a single variance-

covariance matrix (denoted M), which predicts the covariance

between the traits of two tips based on their distance in the

phylogeny (i.e. how old their most recent common ancestor is) and

assuming Brownian motion. From this covariance matrix M, the

model can generate a predicted distribution of traits (a vector

Tpred) in the population (i.e. tip values). l is used to multiply the

off-diagonal terms of the matrix. It is then possible to generate a

predicted distribution of tip values that depends on l (Tpred(l)).
The phylogenetic signal is the value of l that generates the tip data

(Tpred(l)) the closest to the observed data (Tobs(l)). The fit is

estimated with a Maximum Likelihood approach. l is less robust

than K (see e.g. the variance in Figure 2), which is why we apply it

to the set of trees resulting from a Bayesian estimation of the

phylogeny and present the median value we obtain (~ll). For further

details about these estimators and about their high level of

robustness, see the Supplementary Results.

The model
We simulate an evolutionary process of a trait with known

heritability values (f) on a tree to compare the performance of our

two estimators (Figure 2). We initiate the system with an ancestor

that has a trait value (x0) drawn from the empirical distribution of

traits (spVL) in the population (note however that this model is

more general and can be applied to any trait of any infectious

disease). Every new infection is modelled as a branching in the

tree: one of the new branches corresponds to the infecting

individuals and is given the trait value of the ancestor branch (xa),

whereas the other branch corresponds to the infected individual

and is given a new trait value (xaz1). This new trait is obtained

with the following rule:

xaz1~fxaz(1{f)y ð2Þ

where f is the heritability of the trait and y is a random variable

drawn from the empirical trait distribution in the population (in

the ‘liberal’ dataset). Another possibility would have been to model

explicitly the environmental and the genetical component of the

trait (as in [13]). The problem with such an approach is that it

would require the introduction of a stabilising selection model,

instead of the Brownian motion model, to describe trait evolution.

Here, the y random variable is drawn in a trait distribution, which

allows us to obtain a final set of trait values that has a mean and a

variance close to what is observed empirically.

We introduce host death events as well as incomplete sampling

of the hosts. The probability of dying was taken to be 1/3 of the

probability of transmitting (thus approximating an R0 of 3 for the

disease). We model the evolution over 13 generations and then

sample uniformly at random 128 tips for each tree. There were 20

replicates for each of the heritability values we model. K and l
were estimated for each of the replicates. The resulting trees before

sampling did not have the same size (because of the stochastic

death process) but we found no significant effect of the intensity of

sampling on the value of the estimator.

Further details about the Materials and Methods are available

in the Supplementary Methods (Text S2).
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