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Cardiovascular risk factors impair native collateral
development and may impair efficacy of therapeutic
interventions

Tim Kinnaird1*, Eugenio Stabile2, Stephan Zbinden3, Mary-Susan Burnett3, and Stephen E. Epstein3

1University Hospital of Wales, Cardiff CF14 4XW, UK; 2University of Chieti, Chieti, Italy; and 3Cardiovascular Research
Institute, Washington Hospital Center, Washington, DC, USA

Received 21 August 2007; revised 19 December 2007; accepted 20 December 2007; online publish-ahead-of-print 4 January 2008

Time for primary review: 27 days

Animal and early clinical studies of gene therapy for tissue ischaemia suggested that this approach might
provide benefit to patients with coronary artery disease not amenable to traditional revascularization.
This enthusiasm was then tempered by the subsequent disappointing results of randomized clinical trials
and led researchers to develop strategies using progenitor cells as an alternative to improve collateral
function. However, the recent publication of several randomized clinical trials reporting either negative
or weakly positive results using this approach have led to questions regarding its effectiveness. There
are several factors that need to be considered in explaining the discordance between the positive
studies of such treatments in animals and the disappointing results seen in randomized patient trials.
Aside from the practical issues of arteriogenic therapies, such as effective delivery, vascular remodel-
ling is an extraordinarily complex process, and the administration of a single agent or cell in the hope
that it would lead to lasting physiological effects may be far too simplistic an approach. In addition,
however, evidence now suggests that many of the traditional cardiovascular risk factors—such as age
and hypercholesterolemia—may impair the host response not only to ischaemia but, critically, also to
treatment as well. This review discusses the evidence and mechanisms for these observations and high-
lights future directions that might be taken in an effort to provide more effective therapies.
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1. Introduction

Animal and early clinical studies of single angiogenic agents—
such as VEGF and bFGF—generated enthusiasm that these
agents might enhance collateral development (collaterogen-
esis) and thereby provide alternative therapies for patients
with coronary artery disease not amenable to traditional
revascularization. The enthusiasm, apparently justified by
the subsequent results of small non-randomized phase-I clini-
cal trials,was then tempered by the subsequent disappointing
results of randomized clinical trials, which included the
administration of single angiogenic agents either as the
protein or as the gene encoding the protein.1–9 Similar enthu-
siasm generated by animal and small clinical trials for strat-
egies using progenitor cells to improve collateral function
has also been tempered following the publication of larger
randomized clinical trials that reported either negative
results or, if positive, lacked robust biologic relevance.10–12

There are several factors that might explain the discor-
dance between the positive studies in animals and the disap-
pointing results seen in randomized patient trials. First,
collaterogenesis involves extraordinarily complex processes
leading to the balanced and coordinated expression of
many growth factors.13–15 An example of its complexity is
the result of our study in which DNA expression profiling
was employed to determine the course of differential
expression of 12 000 genes after femoral artery ligation in
C57BL/6 mice.16 Tissue was harvested from the non-
ischaemic adductor muscle that lies proximal to the site of
ligation but which contains developing collaterals. Ligation
caused the differential expression (greater than two-fold)
of 783 genes at one or multiple time points: 518 were
induced and 265 were repressed.

In addition, collateral remodelling is triggered in part by
an increase in shear stress, which occurs in the small, high
resistance, low flow arterioles that run parallel to the
occluded main arterial channel. The increase in shear
stress has multiple effects, among which is the expression
of various adhesion molecules and chemoattractant mol-
ecules—these contribute to the homing of multiple cellular
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elements with collaterogenic activities. For example, CD8þ

T cells are one of the first responders in the processes
required for collaterogenesis.17 When these cells infiltrate
the region of developing collaterals, they express IL-16,
which contributes to the recruitment of CD4þ T cells and
ultimately to the recruitment of macrophages.18 These
cells, including CD3þCD31þCXCR4þ T cells (3, below), in
turn secrete many of the numerous cytokines that play a
critical role in collaterogenesis, such as VEGF, nitric oxide,
and monocyte chemoattractant protein 1 (MCP-1).19 These
events lead to endothelial and smooth muscle cell prolifer-
ation, migration, vessel remodelling, and synthesis of extra-
cellular matrix (Figure 1).

The signalling pathways induced by increased shear stress
involve, as noted, the activation of eNOS with the accompa-
nying expression of NO. Mice with impaired NO expression
(eNOS2/2 mice) exhibit a reduced capacity to develop col-
laterals in response to acute femoral artery ligation,20 an
observation that early studies showed was not improved by
VEGF administration. This suggested that NO acts down-
stream from VEGF and is critical for this molecule’s collat-
eral enhancing activity. Subsequent studies identified AKT
phosphorylation of eNOS as a key step in VEGF-induced
endothelial cell migration, and in itself leads to NO

generation.21,22 The AKT/eNOS pathway is also believed to
be involved in shear stress-induced NO expression, thereby
indicating a role of NO not only in angiogenesis, but also in
collateral remodelling.23 In addition, VEGF-induced mobiliz-
ation of endothelial progenitor cells from bone marrow is
reduced in mice deficient in eNOS, an effect that might
also contribute to NO-related collaterogenesis.24 Thus, the
capacity of eNOS (a downstream target of several angiogenic
molecules and the shear stress signaling pathway) to gener-
ate NO importantly contributes to collaterogenesis; conver-
sely, when this pathway is deficient, collaterogenesis is
impaired.

In light of the complex processes described above, the
administration of a single agent in the hope that it would
lead to lasting physiological effects may be far too simplistic
an approach. Cell therapy attempted to circumvent this
limitation, as progenitor cells secrete multiple cytokines
and growth factors, many of which have known angiogenic
potential. The negative, or at best modest, efficacy of ran-
domized cell therapy trials to date might partly be
explained, as with gene therapy—by the complexity of col-
laterogenesis.18,25,26 However, other factors including cardi-
ovascular risk factor impairment of the host response must
also be considered.

Figure 1 Insert (upper left) illustrates a non-functioning collateral between parallel circuits in the absence of flow obstruction. Following proximal occlusion,
there is a pressure drop across the pre-existing collateral, leading to increased shear stress activating complex intracellular signalling cascade involving, among
many others, up-regulation of various adhesion molecules and MCP-1. The latter facilitate migration of circulating monocytes into the subintimal space where
they express multiple factors, including VEGF, FGF, transforming growth factor, and PDGF. These products act in a coordinated manner leading to smooth muscle
cell growth and vessel remodelling. Red arrows indicate potential negative impact of cardiovascular risk factors on the steps involved in native collateral
development.
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1.1 Risk factor-induced impairment of native
collaterogenesis and response to therapy

Many of the risk factors predisposing to atherosclerosis
(present in most patients who participate in such trials)
impair the innate collaterogenic responses to arterial
obstruction and tissue ischaemia (Figure 1). Thus, studies
have suggested that age, hypercholesterolemia, genetic sus-
ceptibility, diabetes, and smoking, frequently present
together, all adversely affect the intrinsic capacity for col-
laterals to develop. Although not yet proven, an interven-
tion that enhances collaterogenesis in a young healthy
mouse or rat may, like intrinsic collaterogenesis, be ineffec-
tive in a patient in part because of an inability to overcome
the host resistance to therapy.27

1.1.1 Potential mechanisms
Risk factor-induced impaired collaterogenic capacity could
involve any of the multiple steps involved in collateral
development: depressed mobilization of bone marrow-
derived progenitor cells, decreased angiogenic efficacy of
the multiple angiogenic effector cells, and/or diminished
responsiveness of the target tissue (developing collaterals)
to the multiple angiogenic stimuli. If any of these
deficiencies exist, they could translate into not only a dimin-
ished intrinsic collateral response, but also into an impaired
responsiveness of the patient to virtually any angiogenic
intervention.

Thus, in patients with multiple risk factors: (i) mobiliz-
ation strategies using such agents as GCF or GCSF may not
optimally mobilize effector cells from the bone marrow;
(ii) reduced responsiveness of developing collaterals would
interfere with the beneficial effect of any intervention;
and importantly; (iii) there is good evidence that risk
factors cause dysfunctionality of the very stem and progeni-
tor cells that are not only involved in intrinsic collaterogen-
esis responses, but also are the focus of an increasing
number of trials testing the hypothesis that autologous
administration of these cells will enhance collateral
development.

2. Individual risk factors and their effects
on collateral development

2.1 Mechanisms of impaired vascular responses
in the elderly

Clinical studies demonstrate adverse outcomes following
myocardial infarction in the elderly.28,29 Although multiple
mechanisms undoubtedly contribute to the higher risk,
aged mice have impaired collaterogenesis; it is therefore
likely that inadequate collateral development contributes
to the adverse outcome of older patients.

The transcription factor hypoxia-inducible factor (HIF)
plays a pivotal role in coordinating tissue response to
ischaemia.30,31 Under hypoxic conditions, HIF proteins
bind to DNA hypoxia-responsive elements (HRE) augment-
ing the transcription of several factors including VEGF,
VEGFR2, insulin-like growth factors, erythropoietin, nitric
oxide, and many of the enzymes involved in glycolysis.32,33

Under normal oxygen tension HIF protein is almost instan-
taneously degraded by an oxygen-dependant ubiquitin–
proteasome complex. In young animals, the onset of

cellular hypoxia rapidly switches off this pathway and the
intra-nuclear levels of HIF protein increase.34,35 However,
although HIF mRNA levels are equivalent in smooth
muscle cells from senescent rabbits exposed to hypoxia
when compared to younger animals, levels of HIF protein
itself are significantly lower than in younger animals.36 It
is postulated that the normal suspension of proteasomal
degradation that stabilizes HIF proteins under hypoxic con-
ditions fails to occur with increasing age, although the
exact molecular defect as yet remains obscure. In a
further study of the effect of aging on HIF signalling,
although HIF protein levels in liver, kidney, and brain
extracts appeared to increase appropriately with the
onset of tissue ischaemia, the formation of HIF/HRE com-
plexes was profoundly reduced.37

In addition, it has been shown that JAK-2 phosphorylation
is less responsive to SDF-1 in EPCs derived from patients with
CAD compared with healthy volunteers.38 The CXCR4 recep-
tor is an important mediator of EPC homing to sites of vascu-
lar injury, and its downstream signalling cascade (which
includes JAK-2 phosphorylation) influences the migratory
and angiogenic capacities of cultured human EPCs. It has
not been determined which of the risk factors, or combi-
nation of risk factors, is responsible for this defect, but
age may be one such factor.

Changes in the cellular inflammatory response to
ischaemia occur in older animals. Migration of human
inflammatory cells across the endothelial cell barrier is
an essential component of the vascular response to
ischaemia, and although migratory lymphocytes (CD4þ

and CD8þ subgroups) may be enriched in elderly subjects,
increases in transendothelial migration are not
observed.39 Similarly, T-lymphocyte infiltration into
ischaemic skeletal muscle was four-fold lower in elderly
rabbits compared to controls.40 The critical role of
T-lymphocytes in modulating tissue responses to ischaemia
is now well established.18 As well as a direct source of
pro-angiogenic growth factors such as VEGF and FGF,
T-lymphocytes also stimulate endothelial cells to produce
VEGF through a CD40-derived pathway.41,42 Thus, dys-
functional lymphocyte trafficking is likely to be a signifi-
cant contributor to the impaired responses observed in
older animals.36

The augmentation of growth factor release in response to
ischaemia is also blunted in older animals. In addition to
impaired VEGF release mediated through HIF pathway
abnormalities and to impaired inflammatory cell trafficking,
there are also age-related deficiencies in the release of
other angiogenic growth factors such as platelet-derived
growth factor (PDGF).43 A paracrine relationship exists
between cardiomyocytes and cardiac endothelial cells,
with myocytes inducing endothelial cells to release PDGF,
an important collaterogenic cytokine. However, this
pathway is dysfunctional in older animals, with a significant
reduction in cardiac PDGF production under normoxic con-
ditions.44 Defects in the expression of other pro-angiogenic
growth factors, including angiopoietin-1 and -2,45 and
reduced levels of Flt-1 and Flk-1 (VEGF), have been
described in association with aging.40,45

Thus, the impairment in the ischaemic vascular response
observed in the elderly is due to abnormalities in many sig-
nalling pathways, and as such presents a significant chal-
lenge to address therapeutically.
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2.2 Impaired collaterogenic responses associated
with hyperlipidaemia

The potential implications of a relationship between lipid
status and vascular remodelling are profound. LDL particles
are directly toxic to endothelial and smooth muscle cells and
inhibit their proliferation and migration with the effects
reversed by HDL.46,47 This in vitro effect has been shown
to have biological relevance, in that collateral formation
in response to hindlimb ischaemia in hypercholesterolemic
rabbits is reduced compared to controls.48,49 Studies of the
relevant molecular pathways have shown that oxidized LDL
inhibits VEGF-induced endothelial cell migration in part by
inhibiting Akt/endothelial NOS pathway.50 In addition,
ox-LDL reduced endothelial cells’ bFGF mRNA and protein
levels, DNA and total RNA syntheses, and cell replication
rates in a time and concentration-dependent manner.51

These observations were completely restored by bFGF and,
conversely, a bFGF-neutralizing antibody inhibited total
RNA synthesis to a similar extent to that induced by
ox-LDL.52 Thus, it appears that the inhibitory effects of
ox-LDL on endothelial cell proliferation are attributable in
part to reduced bFGF expression. This defect in FGF signal-
ling would appear to provide mechanistic justification for
trials employing FGF as an angiogenic agent. However,
several randomized clinical trials of intracoronary FGF in
patients with stable angina failed to show significant
improvement in objective measures of myocardial ischae-
mia,2,53 results compatible with the concept that collatero-
genesis cannot be achieved by the administration of a single
collaterogenic molecule.

Studies of lipoprotein(a) transgenic mice found a signifi-
cant inverse relationship between lipoprotein(a) levels and
recovery of blood flow after femoral artery ligation.54

Although the mechanisms for these observations are
unknown, lipoprotein(a) binds to endothelial cells and inhi-
bits the activation of transforming growth factor (TGF-b).
TGF-b has complex effects on angiogenesis, with both pro
and anti-angiogenic activities.55 Its pro-angiogenic effects
appear to be partly modulated by the induction of VEGF
expression,56 and partly by activation of MCP-1, which
through its chemotactic effects on monocytes and vascular
smooth muscle cells, is an important factor in collateral
development.57,58

Hyperlipidaemia also influences T-lymphocyte migration
following the induction of experimental limb ischaemia. In
apoE2/2 mice, tissue response to hindlimb ischaemia was
markedly impaired with a five-fold reduction in T lympho-
cyte infiltration.59 Commensurate with this, VEGF protein
expression was significantly reduced. Thus, it seems that
as with aging, the effects of hyperlipidemia impair multiple
parts of the vascular remodeling cascade.

2.3 Diabetes and collateral vessel remodelling

Although some studies indicate that diabetic patients form
coronary collaterals in response to coronary stenoses less
effectively than non-diabetic patients with the same
degree of arterial disease,60 other studies investigating the
acute recruitment of collaterals during angioplasty have
not confirmed these data.61,62 Nevertheless, diabetics
experience a four-fold increase in mortality following an
MI, and more frequently develop post-infarction angina,
infarction extension, and congestive heart failure.63,64

These clinical observations can be explained by several
effects of diabetes, including the greater prevalence of
small vessel disease and its potential influence on collateral
development.

Animal models of diabetes demonstrate that diabetic
animals have an impaired collateral response to arterial
obstruction, and also exhibit altered biology of cellular
function that could contribute to this defect. Thus, in non-
obese diabetic mice, flow recovery in an ischaemic hind-
limb was significantly reduced when compared to
control.65 Although significant reductions in local levels of
VEGF were also observed, the cellular or metabolic path-
ways leading to this observation were not identified. As
alluded to previously, a central component of collaterogen-
esis is intact endothelial function, with endothelial cell
activation, proliferation, and migration being crucial to
the collaterogenic processes.66,67 Multiple studies demon-
strate the impact of diabetes on normal endothelial func-
tion and as such is one logical pathway through which
diabetes could impair collateral remodelling.68,69 One mol-
ecular mechanism contributing to impaired endothelial
function involves defects in the eNOS/NO pathway due to
a risk factor associated increase in reactive oxygen
species. Thus, the mitochondrial superoxide overproduc-
tion induced by diabetes and hyperglycaemia decreases
phosphorylation of the Akt site on eNOS, causing posttran-
scriptional eNOS inhibition.70

Additionally, high glucose concentration alters endothelial
cell cytoarchitecture (including the generation of giant
cells, and changing the structure and distribution of cellular
actin filaments),71 alters cell proliferation, and induces
delays in various phases of endothelial cell cycling.72 Free
radicals associated with hyperglycaemia may also modulate
these effects, as co-culture of endothelial cells in hypergly-
caemia with several different anti-oxidants restored cell
proliferation rates to control levels.73

As noted, adequate collaterogenesis requires contri-
butions from several circulating cell populations. Monocytes
are of particular importance, adhering to adhesion mol-
ecules such as VCAM and ICAM25,74 that are expressed by
endothelial cells, migrating to the subintima, and then
releasing many pro-angiogenic and pro-arteriogenic
growth factors.75 However, the migratory response of mono-
cytes to VEGF-A (an important monocyte chemoattractant)
is attenuated in diabetic patients.76 VEGF-A-inducible
kinase activity of Flt-1 remains intact in diabetic mono-
cytes, implying that the defect lies further downstream in
the signalling pathway. EPCs—another circulating cell
believed to be involved in collaterogenesis—not only circu-
late in lower numbers in diabetic patients,77 but also
support in vitro angiogenesis assays less potently than
cells collected from non-diabetic patients.78 Subsequent
studies have confirmed the compromised function of EPC
precursors derived from diabetics, although the effects
appeared to be secondary to hyperinsulinemia rather than
hyperglycaemia.79

Thus, these animal studies provide some insights into the
mechanisms underpinning the impaired development of col-
laterals in diabetic patients following acute arterial obstruc-
tion. Given the complexity of diabetes as a disease process,
the studies also indicate, as might be expected, that dia-
betes probably produces this defect through multiple mech-
anisms involved in collaterogenesis.
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2.4 Genetic background in governing
collaterogenesis

Less than 50% of patients with critical coronary stenoses
develop angiographically visible collaterals.80,81 Although
factors alluded to previously—such as hypercholesterolemia,
diabetes, and advanced age—may impair collateral develop-
ment, studies examining the characteristics of patients have
generally found that clinical characteristics only partly cor-
relate with impairment of collateral development.82,83 One
possible explanation for this is that there are important
genetic differences that determine the potential for collat-
eral development. However, there are few human data
linking genetic background and inter-individual variability
in collaterogenesis. Monocytes harvested from patients
with poor collateral development produced significantly
less VEGF when exposed to hypoxic conditions than mono-
cytes collected from patients with a robust collateral
response.84 Other than suggesting genetic or epigenetic
variability as an explanation of this finding, no other insights
into mechanisms were revealed.

Several studies of the genetic heterogeneity of vascular
remodelling have been conducted in mice. Various mouse
strains demonstrate a 10-fold range in the growth of capil-
laries following growth factor infusion into a corneal micro-
pocket.85 In addition, the angiogenic response to chronic
airway inflammation was also seen to vary widely between
different mouse strains, both in terms of absolute vessel for-
mation and in the type of vessel developed.86 Murine genetic
background also effects large vessel remodelling in the
carotid artery model, and the response to myocardial infarc-
tion.87,88 Most relevant to collaterogenesis, there is wide
genetically determined variability in pre-existing mouse
hindlimb collateral morphology, a factor that markedly influ-
enced tissue damage and hypoxia induced by femoral artery
ligation.89 Such variability was compelling demonstrated by
Chalothorn et al.,90 who showed that the diminished collat-
eral function seen immediately after femoral artery occlu-
sion in BALB/c vs. C57Bl/6 mice is associated with fewer
pre-existing collateral vessels. Most interesting in terms of
genetic predisposition, other tissues of BALB/c mice, in
addition to the skeletal muscle of the hindlimb, were
found to have fewer collaterals, including the small intes-
tine and brain.

2.5 Other cardiovascular risk factors and collateral
response

The relationship between other cardiovascular risk factors
and collateral response is less well characterized. Obesity
does not appear to be related in multivariate analyses.60

Smoking may impact on collaterals although the data are
somewhat conflicting. EPC numbers are lower in smokers
(rebounding rapidly with smoking cessation).77,91 EPC func-
tion has been demonstrated to be impaired with reduced
migration and adherence.92 In addition, smoking appears
to reduce monocyte VEGF secretion,93 and also the
migratory response of endothelial cells to this growth
factor.94

Animal studies demonstrate the relevance of these in
vitro findings. In mice undergoing hindlimb ischaemia, the
exposure to cigarette smoke significantly reduced flow
recovery with lower hindlimb HIF-1 and VEGF expression.94

However, although the inference of these animal data

suggests there should be a link between smoking and vascu-
lar response in patients, the clinical data are mixed: some
studies appear to exclude such a relationship while others
suggest a close link.60,95

2.6 Influence of risk factors on the collateral
response to therapeutic interventions

Thus, considerable data from animal models demonstrate
that traditional cardiovascular risk factors significantly
impair native collateral development in response to arterial
obstruction and resulting ischaemia. Although definitive
experimental data relating risk-factor induced impairment
in native collateral development to a parallel resistance to
the beneficial effects of angiogenic interventions are
lacking, there are some preliminary findings linking these
two concepts. For example, EPCs derived from elderly
patients appear less effective in restoring tissue perfusion
than EPCs from younger patients when transplanted into
athymic nude mice with hindlimb ischaemia.96 Additionally,
bone marrow mononuclear cells derived from patients with
an ischaemic cardiomyopathy (who, when compared to con-
trols, were older and had a greater prevalence of diabetes,
smoking, and hypercholesterolemia) exhibited reduced in
vitro angiogenic capacity and less collaterogenic efficacy
in a nude mouse model of hindlimb ischaemia vs. controls.97

Clearly, the clinical implications of such a link are pro-
found, particularly as many of these risk factors co-exist in
patients who would be candidates for angiogenic therapy.
For example, hyperlipidaemia was present in 70% of patients
enrolled into TOPCARE-MI.98 In the three randomized studies
published recently, 17% of patients were diabetic, 68% had a
history of hypercholesterolemia, and the patients mean age
was 58 years.10–12 Although not particularly elderly, rela-
tively speaking these patients are far older than the young
animals usually used in studies evaluating effectiveness of
various angiogenic therapies. Thus, these considerations
suggest there are significant obstacles to successful appli-
cation of collaterogenic therapy to patients; they also
provide, at least in part, some insights into why the
results of randomized clinical trials reported thus far are
disappointing.

3. Future directions

There are several approaches being considered to address
the potential limitations imposed by risk factor-induced
impairment of many of the mechanisms involved in
optimal collaterogenesis. Progenitor cells that are used to
induce collaterogenesis can be genetically engineered to
correct some of the deficiencies caused by the risk factors.
The concept is that if a patient’s progenitor cells are trans-
fected with a gene whose gene product is known to be
impaired as a result of one or more risk factors, the resulting
overexpression of the gene would result in enhanced col-
laterogenesis. For example, transduction of EPCs with
VEGF164 appeared to increase their in vitro proliferative
activity and adhesive characteristics compared to control
cells.99 Systemic injection of the transduced EPCs in
athymic nude mice with hindlimb ischaemia enhanced neo-
vascularization and blood flow recovery, and reduced the
incidence of limb necrosis and auto-amputation compared
to mice receiving non-transduced EPCs. Although this
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approach has potential, it remains to be determined
whether these or related strategies will be successful in
patients with multiple defects caused by the presence of
multiple risk factors.

A different approach to potentiate the effects of cell
therapy and thus overcome host resistance is to promote
cell survival and reverse the very poor short-term survival
of transplanted cells.100 Over-expression of Akt1 is one
such pro-survival factor and has been studied in a rat
infarct model.101 Transplantation of MSCs over-expressing
Akt1 into the ischaemic myocardium restored four-fold
greater myocyte volume than equal numbers of cells trans-
duced with the reporter gene lacZ. Another approach to
enhance cell survival is to transduce cells with human telo-
merase reverse transcriptase (hTERT). In a study utilizing
this approach, mitogenic capacity and VEGF-induced
migration were markedly enhanced in hTERT-transduced
EPCs compared to GFP-transduced EPCs.102 Subsequent in
vivo transplantation of hTERT-transduced EPCs improved
limb salvage and perfusion in comparison with
GFP-transduced EPCs.

Another cell-based strategy we are currently testing is
based on the concept that the dominant mechanism by
which cells exert their collaterogenic effects derive from
paracrine activity rather than from their capacity to trans-
differentiate into blood vessel cells and anatomically form
or expand collaterals.103 Thus, MSCs express a large
number of cytokines and growth factors that are known to
exert angiogenic effect and their secreted products increase
the proliferation and migration of endothelial cells and
smooth muscle cells.104,105 Other groups have confirmed
these data and the importance of paracrine signalling in
mediating the benefits of cell therapy for tissue
ischaemia.106,107

One strategy that derives from these observations is that
cell products obtained from MSCs acquired from young
healthy individuals could be administered to older patients
with multiple risk factors, rather than the cells themselves.
Because these cell products probably would not be immuno-
genic (just as plasma from one individual can be adminis-
tered to another individual), ‘allogeneic’ transfer would
probably be possible. The success of this strategy, as well
as any angiogenic strategy, will depend on whether a
major portion of the defects in collaterogenesis manifested
by a given patient are due to the impaired function of the
host’s progenitor cells (which would be overcome by inject-
ing the secreted products derived from young normal
persons), or are due to impaired responsiveness of the
host’s tissues to collaterogenic agents.

4. Conclusions

Although there exists a great unmet need to enhance collat-
eral function in patients with refractory angina, human
studies thus far have failed to provide compelling data
demonstrating that growth factor (delivered by protein or
gene) or cell therapy are effective and ready for widespread
application. Cardiovascular risk factors are likely to signifi-
cantly inhibit the effectiveness of such therapies to
improve tissue perfusion. Therefore, the development of
strategies to overcome this formidable problem is urgently
needed.
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