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surements (bias: –15 mm Hg, precision: 76.3 mm Hg). Dobu-
tamine did not affect hepatic oxygenation.  Conclusion:  
Supplemental oxygen increased hepatic tissue p O  2  while do-
butamine did not. Although less invasive, the use of surface 
measurements is discouraged. 

 Copyright © 2009 S. Karger AG, Basel 

 Introduction 

 Patients with hepatic dysfunction are at high risk for 
perioperative complications  [1] . Cells distant from the 
terminal afferent vascular branches (zone 3 cells) have a 
tissue oxygen tension (pt O  2 ) close to the venous p O  2 ,  [2] , 
and are thus prone to hypoxia and consecutive damage 
when systemic p O  2  decreases below normal. Therefore, 
an adequate oxygen supply is crucial to maintain liver 
function. 

  Several therapeutic options exist to maintain tissue 
p O  2 . Supplemental oxygen increases the oxygenation of 
regional vascular beds and improves the patient’s out-
come  [3–5] . However, oxygen availability in the tissues 
critically depends on adequate tissue perfusion  [6] . Thus, 
fluid administration is a therapeutic mainstay as long as 
both ventricles operate on the ascending portion of the 
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 Abstract 

  Background:  Difference in pulse pressure (dPP) confirms ad-
equate intravascular filling as a prerequisite for tissue perfu-
sion. We hypothesized that both oxygen and dobutamine 
increase liver tissue oxygen tension (pt O  2 ).  Methods:  Eight 
anesthetized pigs received dPP-guided fluid management. 
Hepatic p O  2  was measured with Clark-type electrodes placed 
subcapsularly, and on the liver surface. Pigs received: (1) sup-
plemental oxygen (F i  O  2  1.0); (2) dobutamine 2.5  � g/kg/min, 
and (3) dobutamine 5  � g/kg/min. Data were analyzed using 
repeated-measures ANOVA followed by a Tukey post-test for 
multiple comparisons. pt O  2  measured subcapsularly and at 
the liver surface were compared using the Bland-Altman 
plot.  Results:  Variation in F i  O  2  changed local hepatic tissue 
pt O  2  [subcapsular measurement: 39  8  12 (F i  O  2  0.3), 89  8  35 
mm Hg (F i  O  2  1.0, p = 0.01 vs. F i  O  2  0.3), 44  8  10 mm Hg (F i  O  2  
0.3, p = 0.05 vs. F i O 2  1.0); surface measurement: 52  8  35 (F i  O  2  
0.3), 112  8  24 mm Hg (F i  O  2  1.0, p = 0.001 vs. F i  O  2  0.3), 54  8  24 
mm Hg (F i  O  2  0.3, p = 0.001 vs. F i  O  2  1.0)]. Surface measure-
ments were widely scattered compared to subcapsular mea-
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Frank-Starling curve (biventricular preload dependence). 
To ascertain this condition of fluid responsiveness, ade-
quate monitoring is mandatory. Static indicators such as 
central venous pressure, pulmonary artery occlusion 
pressure, or left-ventricular end-diastolic area have been 
shown to be poor predictors of fluid responsiveness  [7] . 
Dynamic indicators like difference in pulse pressure 
(dPP) that rely on heart-lung interaction have consistent-
ly been demonstrated to be excellent predictors of fluid 
responsiveness during mechanical ventilation, with a lin-
ear relationship between dPP values and hypovolemia 
 [8–11] . However, once normovolemia is achieved, addi-
tional fluid fails to increase blood flow in the celiac trunk 
 [12] . Therefore, augmenting cardiac output, e.g. by adren-
ergic inotropes, might be another option to optimize 
blood flow in regional vascular beds.

  Assessing liver p O  2  by inserting probes into the paren-
chyma is an accepted methodology  [13, 14] . Noninvasive 
approaches to measure liver tissue p O  2  either did not get 
wide acceptance  [15]  or were inconclusive  [16, 17] . Polaro-
graphic tissue oxygen sensor probes have been shown to 
give stable and reliable tissue p O  2  measurements  [18, 19] . 
To the best of our knowledge, a comparison between po-
larographic tissue oxygen sensors placed on the liver cap-
sule (noninvasive) and polarographic tissue oxygen sen-
sors placed under the liver capsule has not been done yet.

  The goal of this trial was to study the effects of an ox-
ygen and a dobutamine challenge on liver tissue p O  2  in 
an experimental setting with goal-directed fluid man-
agement to ensure normovolemia. We hypothesized that 
both oxygen and dobutamine improve tissue p O  2 . The 
secondary goal of our study was to compare two mea-
surement sites of liver tissue p O  2 , i.e. an intraparenchy-
mal site versus a surface site. Our hypothesis was that 
both measurement sites can be used interchangeably. 

  Materials and Methods 

 This study was performed according to the National Institute 
of Health guidelines for the use of experimental animals. The pro-
tocol was approved by the Washington University Animal Studies 
Committee. Eight domestic pigs weighing 23–25 kg were fasted 
overnight but were allowed free access to water. The pigs were se-
dated with intramuscular telazol (2 mg/kg), ketamine (1 mg/kg) 
and xylazine (1 mg/kg). Anesthesia was induced and maintained 
by inhalation of isoflurane (1.5–2.0%). All pigs were orotrache-
ally intubated and ventilated with oxygen in nitrogen [inspired 
oxygen fraction (F i  O  2 ) = 0.3]. The animals were ventilated in vol-
ume-controlled mode, with the tidal volume kept at 10–15 ml/kg 
and the respiratory rate adjusted (11–14 breaths/min) to maintain 
end-tidal carbon dioxide tension between 35 and 40 mm Hg.

  Surgical Preparation 
 Catheters were inserted into the femoral artery and vena cava 

inferior by femoral cut down. A balloon-tipped catheter was in-
serted into the pulmonary artery through the left femoral vein. 
The location of the catheter tip was monitored by observing the 
characteristic pressure trace on the monitor as it was advanced 
through the right heart into the pulmonary artery. With the pig 
in supine position, a midline laparotomy was performed. A uri-
nary catheter was inserted into the bladder.

  Tissue p O  2  was measured with a polarographic tissue oxygen 
sensor (Licox CC 1.2, Gesellschaft für Medizinische Sondentech-
nik, Kiel, Germany). The oxygen sensor is a flexible micro cath-
eter probe used for long-term monitoring of partial tissue p O  2  and 
body fluid. A thermistor (Licox 8.1, Gesellschaft für Medizinische 
Sondentechnik) placed in close proximity provided accurate tem-
perature compensation. The device was calibrated before inser-
tion. Calibration remains stable (within 8% in room air) in vivo 
for at least 8 h. Oxygen sensors were calibrated in room air (ambi-
ent p O  2 , 154 mm Hg). All p O  2  values measured before insertion 
were within 8% of 154 mm Hg.

  To measure liver tissue p O  2 , oxygen probes were inserted sub-
capsularly through 20-gauge cannulae from the liver surface 
through the liver capsule. Another probe was placed on the liver 
surface between the right and the left lobe. Dressing (Tegaderm � , 
3M, St. Paul, Minn., USA) of the probe to insulate it from the am-
bient atmosphere was taken out with great care.

  The body temperature of the animals was maintained at 37.0 
 8  0.8   °   C using a warming mattress and a patient air warming 
system (Bair Hugger, Arizant Healthcare Inc., Eden Prairie, 
Minn., USA).

  After induction of anesthesia, the animals received an initial 
bolus of 10 ml/kg of lactated Ringer’s solution, followed by con-
tinuous infusion at the rate of 15 ml/kg/h. Intravascular volume 
was optimized by a goal-directed fluid management approach us-
ing dPP as described previously  [9] . Briefly, dPP was calculated by 
determining the maximal and minimal values of pulse pressure 
(PP max  and PP min ) over one respiratory cycle. dPP is the difference 
between PP max  and PP min  divided by the mean of the two values 
and is expressed as a percentage. In addition to the continuous in-
fusion of lactated Ringer’s solution, boluses of 100 ml of lactated 
Ringer’s solution were given to decrease dPP to below 13%. This 
cutoff point was chosen because it accurately distinguishes  [8]  vol-
ume responders (dPP  1  13%) from nonresponders (dPP  !  13%).

  The animals were allowed to stabilize after induction of anes-
thesia and insertion of the catheters and probes for 60 min. We 
considered an animal to be stable when its mean arterial pressure 
was above 60 mm Hg, cardiac output was above 2.0 liters/min, 
and dPP was below 13% for 30 min without intervention. To 
achieve that condition, pigs received additional fluid boluses (me-
dian 6, range 4–8) during and shortly after the surgical phase; 
there was no need for vasopressors, inotropes or vasodilators. 

  Experimental Design 
 All animals were subjected to 3 treatments in the following 

order: (1) oxygen challenge (F i  O  2  1.0); (2) dobutamine 2.5  � g/kg/
min, and (3) dobutamine 5  � g/kg/min. At least 30 min were al-
lowed to pass between treatments. Treatment periods also lasted 
3 min to provide sufficient time for establishment of steady-state 
conditions. An F i  O  2  of 0.3 was reestablished after the oxygen chal-
lenge.
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  Systemic hemodynamics were recorded every 5 min. Cardiac 
output measurements were taken during each experimental con-
dition with ice-cold saline in triplicate. Arterial and a mixed ve-
nous blood gas analyses were performed during each condition.

  Statistical Analysis 
 All data were tested for normal distribution with a Kolmogo-

rov-Smirnov test. A one-tailed paired ANOVA for repeated mea-
surements followed by the Tukey-Kramer post-test for multiple 
comparisons were used to describe differences between interven-
tions. Absolute values were used for all calculations. Comparisons 
of liver tissue p O  2  measurements at the subcapsular site and at the 
liver surface were performed by the Bland-Altman plot. p  !  0.05 
was considered statistically significant. Data are presented as 
means  8  standard deviations (SDs).

  Results 

 At baseline, all pigs were hemodynamically stable, 
normothermic and adequately ventilated. Vital signs of 
the pigs at baseline are shown in  table 1 .

  Supplemental oxygen administration increased local 
hepatic tissue p O  2  from 38  8  11 to 93  8  36 mm Hg at the 
subcapsular site (p = 0.01) and from 51  8  24 to 114  8  94 
mm Hg at the liver surface (p = 0.001). Accordingly, the 
reduction in F i  O  2  to 0.3 decreased local hepatic tissue p O  2  
to 44  8  10 mm Hg (p = 0.05), and to 54  8  24 mm Hg at 
the liver surface (p = 0.001). Conversely, dobutamine had 
no significant effect on local hepatic tissue p O  2  ( fig. 1 ).

  Systemic hemodynamics were unaffected by different 
F i  O  2 . Heart rate (p  !  0.001), cardiac output (p  !  0.001), 
and stroke volume (p  !  0.001) increased significantly 
after starting dobutamine 2.5  � g/kg/min. At a dose of 
5  � g/kg/min, dobutamine led to a further increase in 
heart rate (p  !  0.001) and cardiac output (p  !  0.01), but 
not in stroke volume, compared to measurements follow-
ing a dobutamine dose of 2.5  � g/kg/min ( fig. 2 ).

  The oxygen challenge (switching F i  O  2  from 0.3 to 1.0) 
increased arterial p O  2  (p  !  0.01); administration of F i  O  2  
at 0.3 brought p O  2  levels back to baseline. The oxygen 
challenge did not affect arterial oxygen content. System-
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  Fig. 1.  Liver tissue p O  2  of 8 pigs measured 
at the subcapsular level ( d ) and at the liver 
surface ($) during an oxygen and a dobu-
tamine challenge.  *  p  !  0.05;  *  *  p  !  0.01; 
 *  *  *  p  !  0.001. 

Table 1. Vital signs of pigs at baseline (n = 8 animals)

Mean8SD

Mean arterial pressure, mm Hg 83.4810.6
Cardiac output, liters/min 2.2880.68
Central venous pressure, mm Hg 11.181.3
Pulmonary artery occlusion pressure, mm Hg 9.582.1
dPP, % 6.681.6
Temperature, ° C 36.880.5
FiO2 0.380
Arterial pO2, mm Hg 111.6821.7
End-tidal carbon dioxide tension, mm Hg 37.381.7
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ic oxygen delivery increased with dobutamine (p  !  0.001 
for dobutamine 2.5  � g/kg/min compared to baseline) 
due to increases in cardiac output. The oxygen challenge 
had no impact on systemic oxygen delivery. Neither the 
oxygen challenge nor the administration of dobutamine 
had an effect on systemic oxygen consumption compared 
to baseline. However, switching F i  O  2  from 0.3 to 1.0 re-
duced systemic oxygen consumption ( fig. 3 ).

  Tissue p O  2  at the liver surface and the subcapsular lev-
el showed similar trends as a response to treatment. How-
ever, when comparing data obtained by measuring liver 
tissue p O  2  at the liver surface with data obtained at the 
subcapsular site, the Bland-Altman plot showed a large 
bias of –15 mm Hg, and a precision of 76.3 mm Hg 
( fig. 4 ).

  Discussion 

 We studied the induction of (a) hyperoxia and (b) the 
administration of dobutamine in an experimental setting 
with goal-directed fluid management by dPP to ensure nor-
movolemia. Supplemental oxygen (F i  O  2  1.0) increased local 
hepatic tissue p O  2 . When F i  O  2  was decreased to 0.3, local 
hepatic tissue p O  2  decreased to baseline levels. Dobutamine 
administration did not affect local hepatic tissue p O  2 . 

  Hyperoxia is considered to be beneficial, as it has been 
shown to lower mortality in an experimental setting  [20] . 
Hemorrhagic shock was induced in 14 pigs; then the ani-
mals were partially fluid-resuscitated with hydroxyethyl 
starch. Additionally, the study group was ventilated with 
100% oxygen and showed lower mortality, and higher 
muscular p O  2 . In a clinical study enrolling 51 patients, it 
was shown that tissue p O  2  is increased by ventilation with 
100% oxygen after cardiac surgery whereas two different 
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  Fig. 2.  Hemodynamics of 8 pigs during an oxygen and a dobutamine challenge.  *  *  p  !  0.01;  *  *  *  p  !  0.001. 
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transfusion regimens had no impact on tissue p O  2   [21] . 
These findings are in accordance with our results show-
ing an increase in liver tissue p O  2  during ventilation with 
an F i  O  2  of 1.0.

  However, ventilation with 100% oxygen is not without 
hazards. An F i  O  2  of 1.0 favors the formation of atelectasis 
 [22] , and is capable of inducing the formation of reactive 
oxygen species  [23] . A high F i  O  2  may lead to vasoconstric-
tion in tissue beds, e.g. coronary vasoconstriction  [24] . 
Hyperoxia may cause maldistribution of blood flow and 
deterioration of blood flow at the level of the distribution 
vessels as a protective mechanism against high p O  2 , lead-
ing to decreased oxygen uptake in spite of unchanged O 2  
delivery  [25] . This would be in accordance with our find-
ings, which showed a reduced oxygen uptake when the 
animals were ventilated with 100% oxygen. 

  The effect of an F i  O  2  of 0.3 versus an F i  O  2  of 1.0 on 
liver tissue oxygen tension was studied in 11 anesthetized 

patients undergoing hepatic resection  [26] . Measure-
ments were taken by a multi-analyte sensor (Paratrend � , 
Diametrics Medical, UK) inserted under the liver cap-
sule. Baseline hepatic tissue p O  2  was in the same range as 
in our study and in a study assessing intrahepatic tissue 
p O  2  with a p O  2  histogram derived from consecutive mea-
surements using a pilgrim step method with a polaro-
graphic p O  2  needle electrode  [27] . The multi-analyte sen-
sor (Paratrend) showed an increase in liver p O  2  with an 
F i  O  2  of 1.0, but statistical significance was not reached 
 [26] . The authors point out that some data were lost due 
to fragile probes. However, in the last 6 of 11 patients 
studied they obtained 95% of possible data points. In our 
study, we noted a marked increase in liver tissue p O  2  when 
ventilating with 100% oxygen, and no effect when ad-
ministering dobutamine. An interpretation of the differ-
ent findings of these two studies remains highly specula-
tive: After inserting a thoracic epidural catheter, Brooks 

Sy
st

em
ic

 a
rt

er
ia

l p
O

2 
(m

m
 H

g
)

0

0.3 1.0 0.3 0.3 0.3
0 0

0.3
0 2.5 5 0Dobutamine

(μg/kg/min)

FiO2

100

200

300

400

500

** **

Sy
st

em
ic

 o
xy

g
en

 d
el

iv
er

y 
(m

l/
m

in
)

0

0.3 1.0 0.3 0.3 0.3
0 0

0.3
0 2.5 5 0Dobutamine

(μg/kg/min)

FiO2

200

400

600

800

*** * ***

Sy
st

em
ic

 a
rt

er
ia

l o
xy

g
en

 c
on

te
n

t 
(m

l/
10

0 
m

l)

6

0.3 1.0 0.3 0.3 0.3
0 0

0.3
0 2.5 5 0Dobutamine

(μg/kg/min)

FiO2

8

10

12

14

**

Sy
st

em
ic

 o
xy

g
en

 c
on

su
m

p
ti

on
 

(m
l/

m
in

)

0

0.3 1.0 0.3 0.3 0.3 0.3
0 0 0 2.5 5 0Dobutamine

(μg/kg/min)

FiO2

20

40

60

80

100

**
*

  Fig. 3.  Oxygenation measurements in 8 pigs during an oxygen and a dobutamine challenge.  *  p    !  0.05;  *  *  p  !  0.01;  *  *  *  p  !  0.001. 
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et al.  [26]  used an ephedrine infusion to keep blood pres-
sure within preoperative values  8  20%. To our knowl-
edge, only one study assessed the impact of ephedrine on 
liver p O  2   [28] , describing an increase in hepatic oxygen 
consumption after administering ephedrine to restore 
central hemodynamics after epidural block at a level of 
T1–T2 in dogs. Maybe, this mechanism in conjunction 
with a restrictive fluid management (Brooks et al. kept 
central venous pressure between 0 and 5 mm Hg in their 
patients) prevented sufficient perfusion of the liver, and 
thus p O  2 , even at a high F i  O  2  level.

  Restrictive fluid management has been considered to 
be useful to minimize blood loss during hepatic surgery 
 [29, 30] . However, this approach has been challenged, as 
fluid restriction led to an increased rate of renal failure 
and 30-day mortality  [31]  in liver transplantated patients. 
We consider a functional approach, i.e. monitor-guided 
and goal-directed fluid therapy when fluid responsive-

ness can be expected, to be most promising to avoid risks 
from both too restrictive and too liberal fluid administra-
tion. Therefore, we monitored dPP, and gave additional 
fluid when dPP increased to values above 13%  [8] .

  The effect of additional oxygen and dobutamine on 
hepatic hemodynamics, and oxygen and lactate metabo-
lism during hepatic artery occlusion and reperfusion was 
studied in 18 dogs  [32] . At the beginning of hepatic artery 
occlusion, the animals received either 100% oxygen or 
dobutamine 5  � g/kg/min. The marked increase in portal 
venous p O  2  with additional oxygen but not with dobuta-
mine resembles our findings of a marked increase in tis-
sue p O  2  with hyperoxia but not with dobutamine. 

  In our study, dobutamine at a dose of 2.5  � g/kg/min 
almost doubled cardiac output, and increased heart rate 
and stroke volume. A rate of 5  � g/kg/min of dobutamine 
further increased cardiac output and heart rate but not 
stroke volume. Mean arterial pressure remained un affect-
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ed with both dosages of dobutamine, as did local hepatic 
tissue p O  2 . This is in accordance with Nordin et al.  [33] , 
who even saw a deterioration of liver p O  2  with do butamine 
in a hemorrhage-crystalloid resuscitation model.

  Dobutamine is supposed to increase tissue p O  2  by di-
lating previously vasoconstricted small vessels due to a  �  2  
effect, thus leading to a more even flow distribution and 
higher oxygen uptake  [34] . Hemodynamic and metabolic 
disturbances in the splanchnic area can be counteracted 
by dobutamine administration  [35] . We saw an increase 
in oxygen delivery with both doses of dobutamine. Oxy-
gen consumption increased with dobutamine 5  � g/kg/
min; however, this increase did not reach statistical sig-
nificance. Oxygen consumption increased in a study with 
8 pigs  [36] , when dobutamine was given at a dose of 10 
 � g/kg/min. In a rat model  [37] , an infusion of dobuta-
mine 5  � g/kg/min caused a pronounced increase in mean 
arterial pressure; tissue p O  2  in skeletal muscle remained 
unaffected even at higher doses. Hepatic tissue p O  2  was 
unaffected by dobutamine in our study as well. 

  To investigate a site for measuring liver tissue p O  2  that 
does not need a puncture of the liver capsule, we com-
pared measurements obtained from a neatly sealed liver 
surface probe with a measurement performed with a 
probe inserted under the liver capsule. Obviously, a non-
invasive measurement technique would be helpful for 
studies of liver p  O  2  . In an experimental hemorrhage-re-
suscitation model in 6 dogs, transcutaneous p O  2  was as-
sessed as well as p O  2  on the liver surface, measured with 
a second transcutaneous p O  2  probe  [38] . A correlation co-
efficient of 0.79 was found regarding the two p O  2  mea-
surements; however, no specific comparisons between 
the two measurement sites of p O  2  were reported. To the 
best of our knowledge, only one Japanese group assessed 
liver p O  2  by attaching a Clark-type electrode on the liver 
surface  [15] . Additionally, p O  2  in the kidney and femoral 
muscle was measured, but no comparisons of measure-
ments of the 3 sites were reported. 

  When we compared measurements on the liver sur-
face with subcapsular tissue p O  2  measurements, we found 
comparable trends to treatment with 100% oxygen. How-
ever, tissue p O  2  measurements on the liver surface were 
widely scattered. In contrast to measurements in the gut, 
we consider the liver capsule to impair tissue p O  2  mea-
surements with electrodes sealed on the liver surface. 
Thus, we recommend subcapsular measurements of liver 
p O  2  to assess tissue oxygenation of the liver. 

  The fact that we did not use the direct Fick method or 
an ultrasonic flow probe on the aorta to measure hemo-
dynamic parameters constitutes a limitation of our study. 

Instead, we used a pulmonary artery catheter. Another 
limitation may be seen in the lack of direct measurements 
of liver blood flow. We considered liver blood flow 
throughout our experiment to be stable due to the hepat-
ic arterial buffer response (HABR), an intrinsic regula-
tory mechanism of the hepatic artery that compensates 
for reductions in portal venous blood flow  [39] . The ad-
ministration of isoflurane as an anesthetic preserves 
HABR  [40] . HABR is impaired during endotoxemia  [41]  
and if blood loss exceeds 30% of blood volume during 
hemorrhage  [42] . However, none of these conditions ap-
plied to our experimental setting. Third, we did not ran-
domize pigs to the respective treatments in our cross-over 
design. We separated the treatment with 100% oxygen 
from the administration of dobutamine by another 30-
min baseline treatment phase. As the only short-time 
storage of oxygen in the body by myoglobin is in cardiac 
 [43]  and red skeletal muscle  [44] , the additional oxygen 
could not have had any effect when the dobutamine was 
started. The half-time of dobutamine is between 2 and 3 
min, even in the failing heart  [45] . Our final measure-
ments were done 30 min after dobutamine had been 
stopped. Thus, we can rule out carryover effects both by 
oxygen, and dobutamine. Finally, the experiments were 
done in healthy pigs. As our focus of interest is liver trans-
plantation, we will proceed to study ischemia-reperfusion 
models to learn how results in a transplantation setting 
compare to findings in this study. To what extent findings 
are applicable to other pathologic conditions like trauma 
or sepsis remains to be elucidated in further projects.

  In summary, we tested the effect of hyperoxia (F i  O  2  of 
1.0) and administration of dobutamine on local hepatic 
tissue p O  2  in an experimental setting with goal-directed 
fluid management by dPP to ensure normovolemia. In this 
setting, we have shown that supplemental oxygen admin-
istration significantly increased local hepatic tissue p O  2 . In 
contrast, dobutamine did not increase local hepatic tissue 
p O  2 . Additionally, we have shown that measurements of 
local hepatic tissue p O  2  at the liver surface compared to 
intraparenchymal measurements lead to widely scattered 
results. This may be due to the connective tissue of the 
liver capsule that impairs proper p O  2  detection by the po-
larographic probes. Therefore, we do not advise the use of 
tissue p O  2  measurements at the liver surface.
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