
SCIENTIFIC ARTICLE

High-resolution morphological and biochemical imaging
of articular cartilage of the ankle joint at 3.0 T using a new
dedicated phased array coil: in vivo reproducibility study

Goetz H. Welsch & Tallal C. Mamisch & Michael Weber &

Wilhelm Horger & Klaus Bohndorf & Siegfried Trattnig

Received: 20 November 2007 /Revised: 22 January 2008 /Accepted: 3 February 2008 /Published online: 12 April 2008
# ISS 2008

Abstract
Objective The objective of this study was to evaluate the
feasibility and reproducibility of high-resolution magnetic
resonance imaging (MRI) and quantitative T2 mapping of
the talocrural cartilage within a clinically applicable scan
time using a new dedicated ankle coil and high-field MRI.
Materials and methods Ten healthy volunteers (mean age
32.4 years) underwent MRI of the ankle. As morphological
sequences, proton density fat-suppressed turbo spin echo
(PD-FS-TSE), as a reference, was compared with 3D true
fast imaging with steady-state precession (TrueFISP).
Furthermore, biochemical quantitative T2 imaging was
prepared using a multi-echo spin-echo T2 approach. Data
analysis was performed three times each by three different
observers on sagittal slices, planned on the isotropic 3D-

TrueFISP; as a morphological parameter, cartilage thickness
was assessed and for T2 relaxation times, region-of-interest
(ROI) evaluation was done. Reproducibility was deter-
mined as a coefficient of variation (CV) for each volunteer;
averaged as root mean square (RMSA) given as a
percentage; statistical evaluation was done using analysis
of variance.
Results Cartilage thickness of the talocrural joint showed
significantly higher values for the 3D-TrueFISP (ranging
from 1.07 to 1.14 mm) compared with the PD-FS-TSE
(ranging from 0.74 to 0.99 mm); however, both morpho-
logical sequences showed comparable good results with
RMSA of 7.1 to 8.5%. Regarding quantitative T2 mapping,
measurements showed T2 relaxation times of about 54 ms
with an excellent reproducibility (RMSA) ranging from 3.2
to 4.7%.
Conclusion In our study the assessment of cartilage
thickness and T2 relaxation times could be performed with
high reproducibility in a clinically realizable scan time,
demonstrating new possibilities for further investigations
into patient groups.

Keywords MRI . Cartilage . Ankle . 3 T. TrueFISP.

T2 mapping

Introduction

The exact analysis of articular cartilage in joints with high
congruency and a thin cartilage layer is technically
demanding [1]. The clinical impact of such an assessment
is high since modern surgical therapies require preoperative
high-resolution magnetic resonance imaging (MRI) of the
ankle joint [2]. Studies on cadaver specimens have shown
that MRI is capable of exactly visualizing cartilage
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thickness and topography in the ankle at 1.0 and 1.5 Tesla
[1, 3, 4]; however, for high-resolution cartilage imaging
long scan times detract from clinical application.

The feasibility of 3.0 Tesla MRI in the imaging of small
joints with challenging anatomy was demonstrated [5–7]
and advances in signal-to-noise-ratio (SNR) with sufficient
resolution were shown to improve the staging of osteo-
chondral defects [8].

The importance of advanced coil technology in the
visualization of joints with thin cartilage is unquestionable
and can be achieved by surface coils or dedicated phased
array coils [9, 10]. Combining phased array coils and
parallel imaging at 3 T may lead to improved image quality
and a reduction in scan time [11, 12].

In isotropic 3D cartilage imaging T1-weighted 3D-
FLASH was seen as an adequate sequence [13, 14].
However, recent studies point out that other isotropic 3D
gradient echo (GE) sequences show equal or better results
[15, 16]. At present with the 3D true fast imaging with
steady-state precession (True-FISP) sequence, a steady-state
free precession (SSFP) sequence is of increasing impor-
tance in providing an isotropic resolution of 0.3 mm within
the shortest scan time of all 3D GRE sequences [17].

Besides morphological imaging, biochemical MRI tech-
niques show promising results [18–23] with quantitative T2
as a widely implemented MR parameter to reflect inter-
actions between water molecules and surrounding macro-
molecules [24].

The aim of the present study was to evaluate the
feasibility and reproducibility of high-resolution morpho-
logical and biochemical MRI of the articular cartilage of the
ankle joint using a new ankle-dedicated phased array coil.

Materials and methods

Patient population

Ten healthy volunteers without known musculoskeletal
disease and no history of trauma or pain (24–57 years,
mean age 32.4 years, 1 woman, 9 men, mean body mass
index 22.3 kg/m2) were included in the study. Ethics
approval for this study was provided by the ethics
commission of the Medical University, and informed
consent was obtained from all patients prior to enrolment
in the study.

Imaging parameters

Magnetic resonance imaging was performed on a 3.0 Tesla
MR scanner (Magnetom Trio; Siemens Medical Solutions,
Erlangen, Germany). A new eight-channel high-resolution,
small field of view (FoV) foot and ankle imaging coil was

used (Invivo, Gainesville, FL, USA). This dedicated phased
array coil was designed to take advantage of the eight-
channel system capabilities, including the parallel imaging
application. With its boot design it easily slides down over
foot and ankle and can be tilted in 5° increments (Fig. 1).
Volunteers were scanned in a supine position, and MRI was
performed on the left ankle with the foot at a 90° angle to
the lower leg.

All volunteers where scanned once; for variability,
evaluation rescanning was achieved in three of the
volunteers three times. MRI was carried out after at least
half an hour of rest to avoid possible differences in T2
relaxation on behalf of different loading/weight bearing and
thus hydration of cartilage prior to MRI. After localizing, a
3D-TrueFISP water excitation sequence was carried out,
covering the ankle with 320 isotropic 0.31×0.31×0.31-mm
slices using a 160-mm FoV and a 5122 matrix. The
sequence was optimized for cartilage imaging at 3.0 T
taking previous clinical and scientific work and experience
into consideration; TR/TE was chosen at 9.65/4.18 ms, Flip
angle was 28°, two averages, bandwidth measured 200 Hz/
pixel and by utilizing the parallel imaging technique (PAT)
with an acceleration factor of 3 using a generalized
autocalibrating partially parallel acquisition (GRAPPA)
technique, the scan time was set at 9:49 min. All consecutive
sequences were planned sagittal to the talar dome using the
3D reconstruction of the isotropic True-FISP images (Fig. 2).
One sagittal slice about 5 mm lateral to the medial edge of the
talus was used as reference for the following morphological
and biochemical imaging. This particular position was chosen
as in this area osteochondritis dissecans usually occurs [25].
For the sake of comparability, for all following sequences,
in-plane resolution was kept at 0.31×0.31 mm2, whereas
slice thickness was now set to 3 mm using a 100-mm FoV
and a 3202 matrix.

Fig. 1 The new dedicated phased array eight-channel, high resolu-
tion, small field-of-view (FoV) foot and ankle imaging coil used in
this study
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As a reference in morphological high-resolution imaging
of the ankle, in the present study, a proton density fat-
suppressed turbo spin-echo (PD-FS-TSE) sequence was
performed with TR/TE 2,400/39 ms, a flip angle of 160°,
one average, PAT off, bandwidth of 244 Hz/pixel, and 16
slices with a scan time of 4:02 min. Biochemical quanti-
tative T2 imaging was prepared by a multi-echo spin-echo
(SE) T2 approach. Using six echoes, the measurement
parameters were as follows (TE ~ 16.5, 33.0, 49.5, 66.0,
82.5, 99.0 ms; TR 603 ms; flip angle 180°; two averages,
PAT factor 2 using GRAPPA; bandwidth of 130 Hz/pixel,
and 10 slices in 10:53 min). T2 maps were obtained using a
pixel-wise, mono-exponential non-negative least squares
(NNLS) fit analysis. Quantitative T2 measurements and
PD-FS-TSE imaging were conducted in the sagittal direc-
tion planned on a 3D view of the isotropic 3D-TrueFISP
where a sagittal, coronal, and axial plane is given (Fig. 2).
Therefore, 3D-TrueFISP and PD-FS-TSE, as well as T2
mapping, could be assessed in exactly the same plane. Total
scanning time with localizing was 28 min.

Data analysis

To evaluate the reproducibility of the measurements, the
assessment of cartilage thickness in morphological images

and regions of interest (ROI) for quantitative T2 imaging
was done manually by three experts in musculoskeletal
MRI. Each analysis was repeated three times at different
time points in three different reading sessions. Assessment
of cartilage thickness and ROIs for T2 mapping was done
by each reader separately; the slices for evaluation had been
defined before by all three readers in consensus, saved, and
provided identically.

For morphological 3D-TrueFISP and PD-FS-TSE carti-
lage imaging the cartilage thickness of the trochlear surface
of the talus (facing the tibia) and the corresponding inferior
articular surface of the tibia (facing the talus) were assessed
(Fig. 3). The anatomic regions for cartilage thickness
measurements within the two sequences were matched side
by side. For quantitative T2 imaging, ROIs within the same
regions were evaluated (Fig. 4). Analysis was performed on
a multi-modal workstation (Leonardo; Siemens Medical
Solutions, Erlangen, Germany) at the maximum magnifi-
cation. The measurements were obtained from the defined
sagittal PD-FS-TSE at the peak of curvature of both
articular surfaces starting at the chondral surface border.
The vertical line was drawn to the always visible darker
borderline to the corresponding cortical bone. Subsequent-
ly, the thickness measurements were assessed in an
identical positioned plane of the 0.31-mm 3D-TrueFISP

Fig. 3 Measurements were accomplished in a, b the defined sagittal
plane of the 3D-TrueFISP sequence and c, d the accordingly
positioned plane of the proton density fat-suppressed turbo spin echo
(PD-FS-TSE) sequence. Starting from the overview (a, c) for

assessment of cartilage thickness of the articular cartilage of the
trochlear surface of the talus, and the corresponding articular cartilage
of the inferior surface of the tibia could be evaluated by magnifying
the images (b, d)

Fig. 2 High-resolution morphological isotropic (0.31×0.31×0.31 mm)
MRI using the 3D true fast imaging with steady-state precession (True-
FISP) sequence. Reconstructed a sagittal, b coronal, and c axial view of
the ankle of a healthy volunteer. Further sagittal measurements were

planned on this isotropic sequence and marked by arrows: location 1,
5 mm lateral of the medial border of the talar shoulder; location 2,
middle of the talar dome
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sequence. All measurements were repeated three times by
each observer and were accomplished in the defined sagittal
plane about 5 mm lateral of the medial border of the talar
shoulder where osteochondral defects typically appear
(location 1) and in a sagittal plane in the middle of the
talar dome in a region of high load-bearing (location 2).

Quantitative T2 measurements were assessed only in
location 1. To determine the ROIs for the T2 measurements,
at the localization of the thickness measurements at the
peak of curvature, the ROIs were drawn 5 mm in each
direction. The biochemical assessment (T2 measurements)
was achieved in the same location as the morphological
thickness measurements (TrueFISP and PD FS TSE); here
ROIs of 10 mm in width and the height of the cartilage
layer were calculated. The exact pixel size and standard
deviation were documented, and the manual segmentation
time was limited to 5 min per patient.

Quantitative signal intensity analysis concentrated on
image inhomogeneity (non-uniformity, NU). Conventional
SNR measurements cannot be reliably assessed for multi-
channel coils and parallel imaging because of the inhomo-
geneous distribution of noise [26]. Assessment was done by
a one-acquisition technique where four ROIs were placed
within the anatomic structure of interest (cartilage and
bone). For identical placement, ROIs were copied from one
sequence and pasted onto the remaining ones. NUwas defined
as NU=(SDROI/SIROI) *100; with SIROI as mean signal
intensity of the four ROIs (cartilage or bone) and SDROI as
the mean standard deviation of the respective ROIs [27–29].
Thus, high NU values reflect reduced signal homogeneity;
motion artefacts contribute to the NU. Pixel size was kept to
500 pixels for cartilage and 2,500 pixels for bone.

Statistical tests were used to perform the data analyses as
follows. Measurements of cartilage thickness and quantita-
tive T2 and NU values were evaluated by analyses of
variance using a three-way ANOVA with a random factor,
considering the fact of different measurements within each

volunteer. The intra-individual reproducibility was deter-
mined as a coefficient of variation (CV, given in percent)
for each volunteer, averaged for all volunteers together and
was seen as a grade of precision by apportion of standard
deviation relating to the mean (intra-individual CV 1). CV
was measured for every reader; the average reproducibility
was assessed as root mean square average (RMSA, given in
percent) [30] of the CVs of all volunteers and all readers.
Intra-individual reproducibility was additionally assessed
for the repetitive MR measurements of three volunteers
(intra-individual CV 2). Furthermore, inter-individual (bio-
logical) variability was evaluated (inter-individual CV 3).
For significance within CV and RMSA relating to the
different sequences, measurements, volunteers, locations,
and observers, analysis of variance for correlated data was
carried out. SPSS version 15.0 (SPSS Institute, Chicago,
IL, USA) for Windows (Microsoft, Redmont, WA, USA)
was used, and a p value less than 0.05 was considered
statistically significant.

Results

Cartilage thickness

Mean (± standard deviation [SD]) cartilage thickness (mm)
measurements for two positions within the talocrural joint,
for all measurements of all observers, varied between the
two morphological sequences. As seen in Table 1, cartilage
thickness assessed with the 3D-TrueFISP sequence was
significantly higher for all regions than cartilage thickness
assessed by the PD-FS-TSE sequence (p<0.05). No
significant difference was found between talar and tibial
cartilage thickness (p>0.05). However, articular cartilage
for location 1 (about 5 mm lateral of the medial border of
the talar shoulder) was significantly thicker than that in the
middle of the talar dome (location 2; p<0.05).

Fig. 4 Quantitative T2 imaging of equally positioned sagittal plane by
drawing regions of interest (ROI) within the cartilage layers. a
Overview and b magnified images for evaluation. The vertical line

indicates the peak of curvature, the horizontal line 5 mm in each
direction for the repeated ROI measurements
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Quantitative T2 values

Quantitative T2 assessment of hyaline cartilage of the
talocrural joint, taking all measurements and all observers
together, showed similar results for measurements within
the talar and tibial cartilage. Mean T2 values (ms) in
articular cartilage of the trochlear surface of the talus were
54.2±6.9 (ranging from 44 to 72); mean T2 values for
articular cartilage of the inferior surface of the tibia were
54.6±7.2 (ranging from 42 to 77). Mean pixel number for
T2 measurements was 416 (ranging from 260 to 635) for
talar cartilage and 420 (ranging from 260 to 635) for tibial
cartilage.

NU measurements

Signal parameters analyzed using NU showed comparable
values for articular cartilage of the talocrural joint with, no
significant difference between the 3D-True-FISP sequence
(19.3±4.0) and the PD-FS-TSE sequence (18.4±3.4; p>
0.05). Concerning the surrounding bone, the 3D-TrueFISP
sequence showed the significantly lower values of 33.4±
5.2 compared with the PD-FS-TSE sequence, with 50.9±
8.2 (p<0.05).

Reproducibility of morphological imaging

Table 2 depicts the results of the reproducibility calcu-
lations for the cartilage thickness within the talocrural
joint as assessed with the 3D-TrueFISP sequence and the
PD-FS-TSE sequence. Both sequences showed similar
results for intra-individual reproducibility related to
volunteers and raters (CV 1), averaged reproducibility
(RMSA), and repetitive measurements (CV 2) with
slightly, but not significantly, better results for the 3D-
TrueFISP sequence (p>0.05). For all locations and both
sequences, RMSA ranged from 7.1 to 8.5%. In summary,
the intra-individual reproducibility of morphological car-
tilage thickness measurements showed no significant
changes between the 3D-TrueFISP sequence and the PD-

FS-TSE sequence (p>0.05), relating neither to the four
anatomic locations of assessment at the talar and tibial
cartilage at location 1 and 2 nor to the three different
raters. Concerning the inter-individual (biological) vari-
ability (CV 3), values for the 3D-True-FISP sequence
showed significantly lower results compared with those of
the PD-FS-TSE sequence (p<0.05).

Reproducibility of biochemical imaging

Concerning quantitative T2 measurements, intra-individual
reproducibility calculations showed no significant differ-
ences between T2 assessment within the cartilage of the
trochlear surface of the talus and the cartilage of the inferior
surface or the tibia facing to the talus (p>0.05). Whereas
CV 1 (%) ranged from 2.2 to 4.1 for talar cartilage
measurements with an RMSA (%) of 3.2, CV 1 for tibial
cartilage ranged from 2.7 to 5.7 with an RMSA of 4.7.
Concerning repeated measurements, CV 2 also showed no
significant difference between the assessment of talar
(ranging from 2.6 to 4.1) and tibial (ranging from 3.0 to
4.7) cartilage. Also, quantitative T2 measurements showed
no significant reproducibility changes concerning the three
different raters (p>0.05). Furthermore, the inter-individual
(biological) variability showed comparable results, with
12.8 for talar and 13.3 for tibial cartilage (p>0.05).

Table 1 Cartilage thickness (mean ± SD) at two anatomic points
calculated from the 3D true fast imaging with steady-state precession
(3D-TrueFISP) sequence and the proton density fat-suppressed turbo
spin echo (PD-FS-TSE) sequence

Site 3D-TrueFISP PD-FS-TSE p value

Talus (location 1), mm 1.14±0.23 0.99±0.28 <0.05
Talus (location 2), mm 1.07±0.22 0.80±0.26 <0.05
Tibia (location 1), mm 1.17±0.21 0.99±0.28 <0.05
Tibia (location 2), mm 1.08±0.19 0.74±0.15 <0.05

p value indicating changes between two different sequences

Table 2 Reproducibility values of cartilage thickness measurements
calculated from the 3D-TrueFISP sequence and from the PD-FS-TSE
sequence

Site 3D-
TrueFISP

PD-
FS-TSE

p value

Talus
(location 1)

CV 1 (%) 5.3–8.6 6.1–9.7 >0.05
RMSA (%) 7.7 8.2 >0.05
CV 2 (%) 5.4 5.6 >0.05
CV 3 (%) 20.4 29.0 >0.05

Talus
(location 2)

CV 1 (%) 4.6–8.9 5.3–9.1 >0.05
RMSA (%) 7.4 7.1 >0.05
CV 2 (%) 4.7 6.2 >0.05
CV 3 (%) 20.5 33.3 >0.05

Tibia
(location 1)

CV 1 (%) 4.3–10.5 5.9–11.1 >0.05
RMSA (%) 7.6 8.5 >0.05
CV 2 (%) 4.2 8.1 >0.05
CV 3 (%) 17.7 28.5 >0.05

Tibia
(location 2)

CV 1 (%) 3.6–11.8 3.6–11.6 >0.05
RMSA (%) 7.9 8.4 >0.05
CV 2 (%) 5.6 6.3 >0.05
CV 3 (%) 17.9 20.3 >0.05

p values indicating changes between the different sequences
CV 1,intra-individual reproducibility for all volunteers (ranged);
RMSA,average reproducibility for all volunteers and all readers; CV
2,intra-individual reproducibility concerning repeated measurements
in three volunteers; CV 3,inter-individual (biological) variability
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Discussion

The object of this study was to determine the precision of
morphological high resolution isotropic 3D-TrueFISP im-
aging as well as the feasibility of quantitative T2 within the
talocrural joint. To the best of our knowledge this is the first
study to evaluate in vivo high-resolution (0.31×0.31×
0.31 mm) TrueFISP imaging and biochemical T2 mapping
within the ankle in a clinically acceptable scan-time of
about 10 min each.

Magnetic resonance imaging of thin cartilage layers puts
challenging demands on imaging techniques. High-field
MRI, advanced coil technology, and sophisticated sequen-
ces and imaging techniques provide the basis of the
imaging protocol used in this study. An improvement in
image quality for ankle cartilage pathology was shown by
Barr et al. [11] at 3 T compared with 1.5 T. Furthermore,
parallel imaging is capable of significantly reducing scan
time and may also improve image quality [31]. In a recent
article by Bauer et al. [32] using 3 T instead of 1.5 T and
the parallel imaging technique, MR images of the ankle
were obtained with highly rated diagnostic quality and a
scan time reduction of 44%. Whereas this study utilized the
common approach of an eight-channel head coil for in vivo
ankle MRI, in our study a new, anatomically dedicated
eight-channel phased array coil, specifically constructed for
the ankle, was used. Thus, 3T MRI and parallel imaging
prepare the basis of high-resolution morphological and
biochemical MR sequences shown in this study.

Concerning morphological cartilage imaging, the repro-
ducibility of thickness measurements was used as a quality
criterion. Cartilage thickness within the ankle joint differed
between the employed sequences. Existing MR studies on
the ankle joint correlated with standard histology showed
different results, often underestimating articular cartilage
thickness [33, 34]. Taking this fact and recent studies into
consideration, the mean cartilage thicknesses in the present
study, ranging from 0.74 mm to 0.99 mm, assessed by the
PD-FS-TSE, and from 1.07 to 1.17 mm, assessed by the
3D-TrueFISP sequence, are comparable to the findings of
Millington et al. [1] and Al-Ali et al. [4]. The higher values
measured by the 3D-TrueFISP sequence could be caused by
the thinner slices affecting the assessment of cartilage
thickness within the curved anatomy of the talocrural joint.
Furthermore, the differentiation between hyaline cartilage
and the subchondral plate and thus the cartilage thickness
measured is dependent on the interpretation of the tidemark
of the deep calcified cartilage layer [34]. The varying
visualization of the tidemark by different MR sequences
may affect the cartilage thickness measured. Partial volume
effects as well as chemical shift artefacts, which we tried to
reduce by adapting the bandwidth, compound this situation.
Hence, a limitation of this study is the lack of histological

comparison. However, differences between the evaluated
regions of the medial talar shoulder and the middle of the
talar dome could be observed in both sequences. These
results agree with the findings of Millington et al. [1], who
showed the thickest cartilage occurring over the shoulders
of the talus and not at the middle of the talar dome.
Concerning the quality of the MRI sequences, reproduc-
ibility in multiple measurements is even more important. In
our study, the average reproducibility (percent) of cartilage
thickness measurements within the ankle joint ranged from
7.4 to 7.9 for the 3D-TrueFISP sequence and from 7.1 to
8.5 for the PD-FS-TSE sequence. The accuracy for both
sequences of less than 10% corresponds to or even exceeds
that of findings in existing studies on cartilage thickness
measurements within the ankle joint [33–35]. The param-
eters assessed for reproducibility in our study showed
slightly better values for the 3D-TrueFISP sequence
compared with the PD-FS-TSE. These results imply that
the 3D-TrueFISP sequence can be used for the morpholog-
ical evaluation of cartilage thickness. Additionally, its
isotropic dataset of 0.31×0.31×0.31 mm allows recon-
struction in multiple planes, angulation, and thus visualiza-
tion of other important anatomical structures within the
hind foot. Whereas in available sequences used for high-
resolution MRI of the ankle, slice thickness is set to 3–
4 mm [9, 36] or scan time is up to 20 min [1, 4], the
presented 3D-TrueFISP sequence facilitates high-resolution
isotropic MRI in less than 10 min. Furthermore, NU values
showed comparable results for articular cartilage within
both sequences, and with regard to the surrounding bone
even more homogeneous results for 3D-TrueFISP. Recom-
mendation of the 3D-TrueFISP sequence for its potential
improvement in high-resolution cartilage assessment of the
patella [17] can, according to the present study, also be
suggested for the thin cartilage layers within the ankle joint.

The ability to obtain information regarding ultrastructural
organization of cartilage from MRI is highly desirable. T2
relaxation times can be regarded as accepted values for the
biochemical evaluation of relatively thick articular cartilage
within the knee in diverse studies [24, 37–41]. The ankle
joint, with its thin cartilage layers, remains a challenge in
quantitative T2 mapping. In the present study we proved the
feasibility and high reproducibility of this technique within
the ankle. Mean T2 values of around 54 ms found in
articular cartilage of the talocrural joint are comparable with
those described for healthy cartilage within the femorotibial
joint [41]. Mean reproducibility (percent) for repeated T2
measurements even exceeded morphological thickness eval-
uation. T2 relaxation times have been shown in different
studies to be sensitive for cartilage alterations, as seen in
osteoarthritis [42–45] or after surgical cartilage repair
procedures [21, 22, 38, 46]. Subsequently, quantitative T2
mapping may accomplish the evaluation of ankle joint
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pathologies such as OCD, or may be valuable in the follow-
up of demanding surgical techniques like matrix-associated
chondrocyte implantation [47–50]. The limitation of the
manually assessed thickness and T2 values in this volunteer
study may provide the basis for further evaluation of
cartilage repair tissue within the ankle.

In our study, defined regions within the thin and
demanding cartilage of the talocrural joint were analyzed
and an assessment of cartilage thickness and T2 relaxation
was performed in a clinically acceptable scanning time. The
results obtained show a good reproducibility of high-
resolution isotropic 3D-TrueFISP, PD-FS-TSE, and quanti-
tative T2 cartilage imaging providing an excellent basis for
diagnosis, grading, and follow-up of pathological condi-
tions of the ankle cartilage layers.
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