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The unsupervised categorization of sensory stimuli is typically attributed to feedforward processing in a hierarchy of cortical areas.
This purely sensory-driven view of cortical processing, however, ignores any internal modulation, e.g., by top-down attentional signals
or neuromodulator release. To isolate the role of internal signaling on category formation, we consider an unbroken continuum of
stimuli without intrinsic category boundaries. We show that a competitive network, shaped by recurrent inhibition and endowed with
Hebbian and homeostatic synaptic plasticity, can enforce stimulus categorization. The degree of competition is internally controlled
by the neuronal gain and the strength of inhibition. Strong competition leads to the formation of many attracting network states, each
being evoked by a distinct subset of stimuli and representing a category. Weak competition allows more neurons to be co-active,
resulting in fewer but larger categories. We conclude that the granularity of cortical category formation, i.e., the number and size of
emerging categories, is not simply determined by the richness of the stimulus environment, but rather by some global internal signal
modulating the network dynamics. The model also explains the salient non-additivity of visual object representation observed in the
monkey inferotemporal (IT) cortex. Furthermore, it offers an explanation of a previously observed, demand-dependent modulation of IT
activity on a stimulus categorization task and of categorization-related cognitive deficits in schizophrenic patients.
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INTRODUCTION

Natural stimuli such as shapes, colors, tones, or flavors vary along a
continuum. Humans are nevertheless able to classify objects according
to these smoothly varying features into distinct categories via unsuper-
vised stimulus exposure, without being taught what the categories should
comprise. Furthermore, whether we can consistently classify the spec-
trum between red and green into different hues, for instance, depends on
the level of attention and the desired classification granularity. Monkeys
performing such a color categorization task in fact show different visual
responses in the inferotemporal (IT) cortex to the same hue depending
on how fine the required categorization is (Koida and Komatsu, 2007).
How, in general, can discrete categories form out of continuously chang-
ing features even if the statistics of stimulus appearance may not define
clear category boundaries a priori? And how does the brain internally
tune the granularity of categories that emerge from mere exposure to
similar continua of stimuli?

Existing neural network models of stimulus classification do not
adequately answer these questions. In particular, they do not explain the
mechanisms via which the categories can be dynamically modulated by
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internal signals. Classical categorization networks, such as those used in
vector quantization (see Hertz et al., 1991 for a review), assume a dis-
crete number of pre-existing output units, each of which is intended to
label a stimulus category after learning. A fixed number of pre-defined
classes is also assumed in models studying the classification of continu-
ously morphed objects in a feedforward network (Freedman et al., 2003)
or of discrete objects in a network with top-down modulation (Ardid et al.,
2007; Deco and Rolls, 2005; Szabo et al., 2006). The formation of new
categories has been modeled by means of adding further output units to
the network (Carpenter, 1987a,b), although it is not clear how the process
of adding these units can be implemented in neuronal terms. Instead,
new categories may naturally emerge in a recurrently connected net-
work when the stimuli are drawn from a clustered distribution (Rosenthal
etal., 2001) or from a distribution with temporal correlations (Bartlett
and Sejnowski, 1998). Neither work, however, has addressed the internal
modulation of the number of emerging categories. Similarly, the deforma-
tion of pre-existing attractor networks by morphed stimuli has recently
been studied (Bernaccia and Amit, 2007; Blumenfeld et al., 2006), but
the question of how the categorization granularity may depend on inter-
nal cortical states remains an open issue. The notion of categorization
granularity is related to the sparseness of cortical activity (Abeles et al.,
1990; Fuster, 1990; Rolls and Tovee, 1995), which is known to increase
the memory capacity (Treves and Rolls, 1991; Tsodyks and Feigel’'mann,
1988). The latter theoretical works, however, assumed clamping of the
neuronal activities to the inputs and did not address the dynamic self-
organization of the attractors.

Many experimental findings reveal that the stimulus representation
is significantly modulated by internal cortical states, e.g., those reflect-
ing awareness (Rodman et al., 1991), emotions (Godinho et al., 2006),
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attention (Fontanini and Katz, 2006; Reynolds and Chelazzi, 2004), or the
task to be performed (Boudreau et al., 2006; Koida and Komatsu, 2007;
Rainer et al., 2004). Here we consider such a task- or attention-induced
top-down modulation of the neuronal gain (McAdams and Maunsell,
1999; Reynolds and Chelazzi, 2004) and of the inhibitory feedback within
a biologically plausible recurrently connected network model of IT (Dong
et al., 2004; Hestrin and Galarreta, 2005). We show how this top-down
modulation of the neuronal properties affects the formation of cortical
categories under exposure to equiprobable, continuously varying stimuli.
The category formation is enabled by slow homeostatic (Turrigiano and
Nelson, 2004) and Hebbian (Brown and Chatterji, 1994) synaptic plastic-
ity that equalize the average neuronal activity and stabilize simultane-
ously active neuronal ensembles in the network. As a result, the cortical
network is divided in a self-organized manner into a discrete set of dis-
tinct subnetworks forming stable stimulus categories.

Top-down input indirectly modulates global competition among
neurons in the network: the stronger the top-down input—resulting in
stronger global inhibition—the fewer neurons can be active at the same
time, and the greater number of distinct subnetworks will emerge, each
representing a different category. The number of categories can be
naturally adjusted because the categorical representation is based on
attractor formation. Instead of labeling input patterns by single output
units, classification is achieved by a prototype representation consisting
of an ensemble of many neurons. This ensemble can be divided up or
combined with other ensembles depending on the strength of the global
modulatory signal, leading to fine or coarse stimulus classification.

Our model also captures several characteristic nonlinearities of corti-
cal object representation observed in the monkey IT cortex, a higher visual
area believed to extract categorical object information (Kiani et al., 2007)
and displaying persistent activity (Miyashita, 1988). This area appears to
represent objects not by the sum of the cortical columns representing the
individual parts, but rather by a combination of activating and inactivat-
ing these columns (Tsunoda et al., 2001). Furthermore, partial blockade
of inhibition nonlinearly alters the stimulus selectivity for an individual IT
neuron (Wang et al., 2000). We show that these phenomena are simple
consequences of cortical category formation in a competitive recurrent
network endowed with Hebbian and homeostatic plasticity.

Finally, based on our model, we make a non-trivial prediction:
a top-down-induced global gain increase in the IT should not lead to an
increase in neuronal activity, but, on the contrary, to the narrowing of the
IT activity to smaller cortical patches, and hence to a general decrease in
the neuronal activity. Such an activity decrease is in fact observed in the
monkey IT on a task demanding finer classification in a color categoriza-
tion experiment (Koida and Komatsu, 2007). In the model this shrinking of
activity arises due to a top-down-induced increase in competition medi-
ated by global inhibition, and the same mechanisms may also apply to
the experiment. The fact that the categorization granularity can be modu-
lated by a global, unspecific signal also makes our model attractive for
studying cognitive deficits related to the pathological lumping or splitting
of categories as observed in schizophrenic patients (Keri et al., 1999).

MATERIALS AND METHODS

The model IT consists of N recurrently connected excitatory neurons and
Q inhibitory feedback neurons. Each excitatory IT neuron further receives
feedforward input from M excitatory (V1) neurons which also project via
inhibitory neuron to IT (see Figure 1). The number of neurons was chosen
to be N =100 (except in Figure 8 where N = 400), O = 4, and M = 25.

Dynamics of excitatory IT neurons

In view of the encoding in IT by mean firing rates (Aggelopoulos et al., 2005),
we describe the activity of our excitatory model IT neurons, y;, by low-pass
filtering the total excitatory and inhibitory synaptic currents, 17 and /. In
addition to the noisy input patterns we also consider synaptic noise act-
ing on the total synaptic currents (realized by the Gaussian variables m, of
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Figure 1. Model network. A two-dimensional sheet of neurons, e.g., repre-
senting the inferotemporal cortex (IT), receives bottom-up input from a lower
visual area (for example, V1) as well as global top-down input, e.g., from pre-
frontal cortex (PFC), imposed by some global cortical state. V1 projects to IT
through direct excitation (upwards arrows) and via global inhibition (checker
oval). IT neurons are also recurrently connected via (semi-) global inhibitory
neurons (shaded ovals). Top-down input uniformly increases the gain of the IT
neurons and/or drives the recurrent inhibition. Synaptic weights marked with
an arrow are subject to Hebbian plasticity. Synapses marked with a full arrow
are additionally modulated by homeostatic plasticity which scales the con-
nection strengths as a function of the average postsynaptic activity (Materials
and Methods).
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mean 0 and standard deviation 0.1 per unit time, corresponding to 10% of
the maximum activity level). The dynamics of the excitatory neurons are
as follows:
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Here 4, is a homeostatic factor which scales the excitatory synaptic
inputs, x¢ and x, represent the firing rates of the excitatory and inhibitory
feedforward input neuron(s), and the y/ represent the firing rates of the
recurrent inhibitory neurons. The w’s represent plastic synaptic efficacies
between 0 and 1, and the ¢’s represent fixed connectivity parameters
(see below). The neuronal time constant was set to t# = 20 ms. The con-
nectivity parameters ¢”, ¢/ and c; specify the anatomical connections
between the involved neurons. The feedforward connectivity is globally
set to ¢/ = 50 (for the recurrent connectivity see below).

The current-to-rate transfer function ¢#(7) was chosen to be the com-
monly used sigmoidal one:
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with 7, = 0.5, and ¢ = 0.5, except for Figures 6 and 8, where 6 = 1. The
maximum firing rate is setto f, =1 except for Figure 3D where it was
explicitly modulated. We assume that £ _(and thus of the gain of the
input-output transfer function) can increase with the strength of the top-
down input 7, although we do not explicitly introduce this dependency
into our model (but see Larkum et al., 2004).

Dynamics of feedforward inhibition

In addition to direct feedforward excitation there is global feedforward
inhibition of the IT neurons. This feedforward inhibition is mediated by a
single model neuron representing a population of tightly connected inhibi-
tory neurons (Hestrin and Galarreta, 2005). It is linearly driven by the total
stimulus activity,
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with the time constant T, = 1 ms and connectivity parameter c,” =10.

Dynamics of feedback inhibition

Competition among the IT neurons is enabled by inhibitory neurons which
are driven by a large subset of excitatory IT neurons and feed back to
them. The activity of these inhibitory feedback neurons is governed by
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with a threshold-linear transfer function ¢’(Z)= ol 7 -6’ such that
Lx]=xif x> 0 and Lx] = 0 otherwise. The inhibitory transfer function
¢’ is sketched in Figure 3. The inhibitory threshold is set to 6/ =4 in
all simulations and o = 2, except for Figures 6 and 8, where o= 1.
The connectivity parameter ¢, defines a rectangular projection field as
explained below. The top-down input is set to 7, = 3 for Figures 4, 6,
and 8. Otherwise, I, is equal to 2.5 for Figure 2C, 3.5 for Figure 2D,
and 3.75 for Figure 2E and Figure 3C. We further set 7, to 1.5 for
Figure 2F, and to 2 for Figures 3B, 5, and 9. The top-down input 7 , in
the face categorization simulations (Figure 7) was set from top to bot-
tom by 3.5, 3 and 2.

Hebbian plasticity

All connegction strengths to the excitatory neurons, w/, w/, and w;, are
subject to Hebbian modifications. Hebbian long-term potentiation (LTP)
is induced if the pre- and postsynaptic activity are both high, while long-
term depression (LTD) is induced if the presynaptic activity is high, but the
postsynaptic activity low. We also consider multiplicative synaptic bounds
which restrict the weights to be within the interval [w _, 1]. Formally,
Hebbian plasticity takes the form

Aw;=q, Lyj - GWJ(Lyi - 9,,0A,,J(1 -w,)— LGFW - y,.J(w,j - W, )) (5)

with modification thresholds 6 =0.25 and 6, = 0.3, learning rate
g,, = 0.01, much slower that that of neuronal dynamics, and -] defined
as above. In all simulations we set w . = 0.1, so that homeostatic plas-
ticity could exercise its beneficial effects, while in Figures 4 and 5 we
set w . =0.01 for w;“. The synaptic weights were updated once per
stimulus presentation based on the averaged activity (see below).

Homeostatic plasticity

Unlike Hebbian plasticity, homeostatic plasticity acts independently
of presynaptic activity. It aims at maintaining the postsynaptic activity
around a certain target value, here chosen to be the Hebbian modification
threshold epm given above. Including again multiplicative saturation the
homeostatic variables change according to

Ah; =g, [epoﬂ - yJ (I-h)-gq, Ly - epole(hi —hy) ©6)

with minimal value /. = 0.1 and a modification rate g, = 0.01 being
the same as the rate for the Hebbian changes (cf. Discussion and
Supplementary Material). Homeostatic updates are performed once per
stimulus presentation together with the Hebbian updates.

Recurrent excitatory connectivity

To capture the 2-D structure we consider some mapping of the N excita-
tory neurons to the 2-D grid of size JN x+/N with integer-valued coor-
dinates. Denoting the coordinates of neuron i by (a, b), the Euclidean

distance between neuron i and j becomes d; = \/(a ,—a)+(b,—b),
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and the connectivity parameter between these two neurons is set to
e =c, exp(—dt.]/do), with d representing the connectivity decay length
in terms of neurons. We set d =7 and ¢, = 415.8 for all figures, except
Figure 8A, where d = 0.7 and ¢, = 2036.45 were used to prevent the
lumping of IT activity into a single activity patch (we postulate a nar-
row type of excitation as compared to broad inhibition, as this was also
assumed in other modeling studies, see, e.g., Miller, 1996 or Song and
Abbott, 2000). In Figure 8 the network was wired on a 2-D torus (so that
the opposite edges became effectively adjacent) to minimize boundary
effects. Note that with a mapping of 10 x 10 neurons onto an IT patch
of 4 x 4 mm? a decay length of 7 neurons maps to 2.8 mm, a number
which is consistent with the axonal spread observed in IT (Tanigawa
et al., 2005).

Recurrent inhibitory connectivity

Feedback inhibition is organized in Q = 4 semiglobal patches tiling the
2-D cortical sheet into 4 non-overlapping square-shaped subsheets
indexed by /=1,...,4. Each of these subsheets is associated with an
inhibitory neuron forming uniform connections onto and from the exci-
tatory neurons within the subsheet, but not to or from the others. The
connectivity parameters for neuron i in subsheet / are set to be ¢, =20
and c;, = 10, and for a neuron j outside this subsheet ¢}, = ¢, =0.

Stimuli

A stimulus was applied by clamping the activities x” of the model
V1 neurons to 0 or 1. In Figure 2, the morphed stimuli were defined
by sliding a bar of length 10 across the input array. Formally, for
input pattern p (u = 1,...,10) the activity of the i’th neuron in the
input array was set to x” =x"(wW)=1+n, for p<i<p+10 and
xF(w= Ln,.J otherwise (with i = 1,...,M). Here, n, is Gaussian ran-
dom variable with mean 0 and standard deviation 0.05, yielding 5%
of noise on the stimuli.

To show that the model can also cope with input patterns of varying
coding level we further chose a stimulus set with each pattern u
(w=1,...,P) being a subset of the next one as shown in Figure 3A.
Formally, we defined x’=x"(u)=1+m, for 1<i<pu+1 and
xF (w) =n, ] otherwise (with i = 1,...,M). This set consisted of P = 20
patterns and was applied from Figure 3 onwards. Noise was defined in
the same way as for the first stimulus set.

Learning procedure
Prior to learning, all synaptic weights (wf, wi and w,f’) were ran-
domly and uniformly initialized in the interval [w ., 1](withw . =0.1),
except in Figure 4 where w;“ was initialized to [0.01, 0.25] and
in Figure 5 where for convenience the initial values were set to a
narrow interval for visualizing the synaptic dynamics. Similarly the
homeostatic factors were randomly and uniformly initialized in
[~ 1] (with 2 = 0.1). The neuronal activities at stimulus onset
were initialized to 0, except in Figure 4 where prior to stimulus pres-
entation the stimulus-free steady state activities evolved. A single
stimulus presentation (‘trial’) lasted for at least 400 ms until steady-
state activity was approached, at which stage the synaptic weights
and homeostatic factors were updated based on the average activity
across the last 100 ms.

All simulations were performed using the forward Euler method with
a step size of dr = 0.2 ms.

RESULTS

The model network

We consider a recurrently connected network of excitatory neurons rep-
resenting a two-dimensional cortical sheet and receiving synaptic input
from a lower area (Figure 1). Such a network could be realized in any
cortical area where persistent activity is observed. To be specific, we
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Figure 2. Emergence of distinct activity patterns in response to a continuum of stimuli is modulated by unspecific top-down input. (A) Strongly
overlapping, continuously varying stimuli (bottom) with possible real-world counterparts (top, see also Koida and Komatsu, 2007). (B) Before learning, all stimuli
evoke the same random activity patterns in the IT model network (binarized activities, 400 ms after onset of stimulation with the pattern shown in the same
column above; black is active, and white is silent). (C) After 2000 random presentations of the stimuli in the presence of weak top-down input, grouped network
activity spontaneously appears forming 3 categories of contiguous stimuli (for convenience, solid lines are drawn around response patterns defining a distinct
category). (D) The 3 cortical categories do not change immediately if the top-down input strength is increased, despite the increased competition which reduces
the overall activity within each attractor. (E) If the top-down input is strong during learning, 5 instead of the 3 stable categories emerge. (F) These 5 categories
can be merged again into 3 by reducing the top-down input without any need for re-learning.

think of the IT as a possible instantiation, with the input layer being some
lower visual area, e.g., the primary visual cortex (V1).

There are two types of inhibition in the model, both are global and
fast compared to the plasticity time scale (below). Feedforward inhibition
is driven by the summed activity in the input layer and uniformly inhib-
its the excitatory neurons within the network. Because the strength of
this inhibition scales with the total input activity, feedforward inhibition
tends to keep the effective input (actual input together with feedforward
inhibition) to the recurrent network constant. Recurrent inhibition, on
the other hand, implements a negative feedback driven by the inte-
grated activity of the excitatory neurons. This second type of inhibition
introduces competition and leads to the suppression of weakly active
neurons by the strongly active ones. The network can be further modu-
lated for purposes of changing the categorization granularity. This is
achieved by a modulation of global cortical states which, e.g., globally
tunes the gain of the excitatory neurons or the excitability of the recur-
rent inhibition (see Materials and Methods). Here we assume that these
changes are mediated by a top-down signal from the prefrontal cortex
(PFC), but other modulatory signals are also conceivable.

We endowed the excitatory feedforward and recurrent synapses, as
well as the inhibitory synapses mediating the recurrent inhibition, with
slow, local Hebbian plasticity (Figure 1). Hebbian plasticity increases the
synaptic strength if both presynaptic and postsynaptic activities are high,
and decreases it if the presynaptic activity is high, but the postsynaptic
activity low. The excitatory feedforward and recurrent synaptic strengths
onto each IT neuron are further scaled by a common homeostatic fac-
tor depending on the postsynaptic neuronal activity only, but not on
that of any presynaptic neurons. Slow homeostatic plasticity decreases

this synaptic factor whenever the postsynaptic activity is above some
threshold, and strengthens it if the postsynaptic activity is subthreshold
(Materials and Methods).

Formation of cortical categories

To test whether our recurrent network partitions a stimulus continuum
into distinct categories, we randomly initialized all the synaptic strengths
and repeatedly presented the stimuli in a random order (Figure 2A, with
morphed butterflies being a possible real-world analogue or color hues
as used in Koida and Komatsu, 2007). The IT model network is initially
prone to converge to a unique attractor state, despite different stimuli
being applied (Figure 2B). After repeated stimulus presentations, how-
ever, distinct sets of contiguous input patterns are mapped to distinct
sets of output neurons (cortical categories), with sharp transitions of the
neural responses at the category boundaries (Figure 2C).

This categorization emerges based on the fast recurrent dynamics and
the slow joint effects of the homeostatic and Hebbian synaptic plasticity.
Initially, there is only a single attractor. This attractor is formed by neurons
each of which is predisposed to fire because initially it was randomly
assigned a strong homeostatic factor, scaling all the excitatory inputs,
and a weak recurrent inhibitory weight. These highly excitable neurons
fire for all stimuli due to the strong recurrent connectivity and form the
single attractor. The other neurons, initially less excitable, are suppressed
by the recurrent inhibition driven by these highly excitable cells. During
the ongoing presentation of stimuli the excitability of these neurons
decreases due to the homeostatic plasticity, while the excitability of the
non-activated neurons increases. Therefore, eventually every neuron in
the network is enabled to be activated by some of the input patterns.
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Competition induced by the fast recurrent inhibition keeps the different
response patterns apart as soon as they form, although the input patterns
have strong overlaps. The ongoing slow Hebbian plasticity reinforces and
stabilizes these response patterns and leads to the formation of distinct
attractor subnetworks, each representing a separate category.

The number of emerging attractors depends on the strength of the
competition during the learning process. A coarse-grained categorization
with only a few attractors emerges if the competition is weak (Figure 2C),
and a fine-grained categorization if the competition is strong (Figure 2E).
Competition is strengthened by increasing the gain of the excitatory
neurons or by increasing the excitability of the recurrent inhibitory feed-
back neurons. Both mechanisms are assumed to be induced by the top-
down input. Increasing this modulatory input leads to an earlier recruitment
of the recurrent inhibition by less active IT neurons and results in smaller
attractor sizes. Since more of these smaller attractors are required to uni-
formly cover the whole network, more categories eventually emerge.

Once the categories have formed, one may ask whether the granularity
of categorization can be dynamically changed by adjusting the top-down
input, without further learning. It is in fact possible to ‘zoom out’ from
a learned, fine-grained categorization, to a coarse-grained categorization
by simply reducing the top-down input after learning (Figure 2F). This
dynamic top-down modulation of the categorization granularity may
correspond to the demand-dependent IT activity observed in monkey
experiments performing a fine or coarse-grained color categorization task
(Koida and Komatsu, 2007; see also Discussion). No dynamic increase
in the number of categories is possible if the previous learning was only
performed with weak top-down input. Increasing the strength of the top-
down input during a subsequent recall then merely narrows each attractor,
without refining the granularity of the categorization (Figure 2D).

Estimating the number of emerging categories

We next explored the impact of global network properties on tuning the
granularity of categorization. In our model, we considered two ways in
which the top-down input can affect the size and number of categories.
First, a strong top-down input can depolarize the recurrent inhibitory
neuron(s) to some subthreshold value, thus making them more responsive
to the recurrent input (cf. the diagrams for weak and strong top-down
input in Figure 3, top). Alternatively, an additional gain increase in the
excitatory IT neurons increases their impact on the recurrent inhibitory
neurons so that the inhibition is activated by fewer presynaptic IT neurons.
In either case, the same suppression level is therefore reached with a
smaller number of active IT neurons (Figure 3C) when the top-down input
is stronger, resulting in a fine-grained categorization with more categories
(each of which now contains fewer active cells). Thus, varying the maxi-
mum firing rate of the excitatory neurons (which also changes their gain)
or the top-down drive to the recurrent inhibition independently results in
modulating the size and number of emerging categories (Figures 3D,E,
respectively). In contrast to Figure 2, we chose stimuli with varying mean
activity level to show that the size of the emerging attractors does not
depend on the activity level of the input. Note that each higher-numbered
stimulus completely contains all the previous ones, yielding maximal over-
lap for stimuli with different mean activity.

We can also understand this modulation more quantitatively. Homeo-
static plasticity forces the average activation of each neuron to be approxi-
mately the same across time and hence across stimuli (columns with fixed
neuron in Figures 3B,C). Moreover, due to the feedforward and feedback
inhibition, the total number of active IT neurons, N, is approximately the
same across stimuli (rows with fixed stimulus in Figures 3B,C) given a
certain top-down input strength. The total postsynaptic current to an inhibi-
tory feedback neuron, I, , is therefore approximately constant for different
stimuli and takes the form 7., =1, + N, -w- f, .., where I  is the top-
down input to recurrent inhibition, and &, -w- f, . is the recurrent input
generated by the active IT neurons which fire with saturation frequency f,
(model neurons tend to saturate due to strong recurrent connections) and
project with synaptic weight w (fixed in all simulations) to the inhibitory

Modulating the cortical categorization granularity

neuron (cf. the diagrams in Figure 3). The overall activity of the network is
regulated by the strength of the feedback inhibition 7, , which itself remains
approximately constant, independently of the top-down input. To under-
stand why 7, , is constant, we consider the network in a stable equilibrium
state, having learned in the presence of a certain value of 7 . As this equi-
librium represents an isolated stable state of the recurrent dynamics, it is
associated with a distinct value of the total drive 7, , to the global inhibi-
tion. If we now continuously change / , at least in a restricted range, this
equilibrium drive 7, must remain the same. Then, the change in 7 must
be compensated by the corresponding change in the number of active neu-
rons N, ,e.g., N, mustdecrease if /  increases.

To estimate the number of emerging categories we assume that the
different attractor states approximately tile the whole IT network into
distinct subnetworks. The total number of IT neurons, N, is therefore the
sum of the neurons within these distinct subnetworks, N=C-N,_,
where C is the number of subnetworks, and hence the number of categories.
Solving the last two equations for the number of categories yields C=N - w -
£\, — I ). This confirms that the number of categories emerging from
unsupervised learning is proportional to the top-down modulated maximum
firing rate f, _of the excitatory IT neurons (cf. Figure 3D). Similarly, more
categories form by increasing the gain of the neuronal transfer function,
being equivalent to increasing the connection strength w. The above formula
also explains why the number of categories is a nonlinearly increasing func-
tion of the top-down input / , to the inhibitory neurons (cf. Figure 3E).

Emergence of persistent activity

As we have demonstrated in the previous sections, the individual catego-
ries are represented by emergent distinct IT subnetworks. These subnet-
works shrink when the categorization is fine-grained, and enlarge when
it is coarse-grained. Each individual subnetwork represents an attractor
that is activated by the multiple stimuli. Only due to the attractor property
will different stimuli within the same category eventually activate the
same network state.

An interesting further possibility which we explored was whether
the attractor states would remain stable not only in the presence of the
stimuli, but after stimulus withdrawal as well. This would allow for an
efficient memorization of the stimuli (represented by their category) by
the same attractor states which also served for the categorization in the
first place. We have found that such double functionality of the attractor
states does in fact develop in our model network (Figure 4).

Throughout the learning process we assume that the presentation of
a new stimulus resets the network activity to some low initial state. Prior
to learning, neuronal activities that accumulated during an early part of
the trial (single stimulus presentation) decay to some arbitrary, but stable
activity levels after stimulus withdrawal (Figure 4A). These activity states
are the same for all input patterns and no stimulus selectivity develops
(Figure 4B). After learning, all the neurons are clearly separated into two
groups, with stable high and low activities after stimulus removal, respec-
tively (Figure 4C). Note that in the first 30 ms after stimulus presentation
the activity of IT neurons increases due to feedforward activation, while
the recurrent excitatory connectivity and recurrent inhibition are respon-
sible for the subsequent separation into the high and low activity states.
The delay with which neuronal activities bifurcate into the high and low
states depends on the ratio between excitatory and inhibitory connection
strengths. The binary neuronal activities form an attractor state which is
the same for a subset of stimuli (Figure 4D). In the current example three
stable attractor states, which classify the 20 input patterns into three
categories, emerge.

Synaptic dynamics underlying category formation

The self-organized category formation in our network model stems from
a dynamic interplay between homeostatic and Hebbian synaptic plastic-
ity on the slow time scale. In this section, we consider individual synaptic
time courses of all synapses in the network to uncover the role of each
of the mechanisms underlying category formation. Synaptic efficacies are

www.frontiersin.org



Kim et al.

finh 1

1 I

1 1

I 1

1 1 | | 1 |

=14 = o Linn — W, > Iinh
top-  |hput from IT top-down |nput from IT
down

>

5
2 3
5 =
Em £
n15 (0p)

20

12 25
Input neurons

Number of categories

2

0.5 1 2 3 4
Maximum firing rate

B Weak top-down (C Strong top-down
¥

20 40 60 80
Output neurons

Normalized activity

100
Output neurons

100 20 40 60 80

E

»

Number of categories
w

—

0o 1 2 3 4
Top-down input to inhibition

Figure 3. Top-down input can modulate the granularity of categorization via excitatory gain modulation or competitive inhibition. (4) Morphed input
patterns with strong overlap and smoothly increasing activation level. (B) 3 stable categories develop after exposure to the stimuli (unsupervised learning
during 2000 presentations). The initial connectivity was random. The excitatory neurons of the 2-D IT network are aligned along the X-axis, sorted such that
neurons activated by the same stimulus appear consecutively. Each row represents normalized IT response to the corresponding stimulus averaged across
300-400 ms after stimulus onset (at the end of learning) and each column, the individual neuronal responses to all stimuli. (C) Increasing the top-down input
leads to the formation of 6 stable categories with partial overlaps. Diagrams above show the total postsynaptic current I , driving the inhibitory neuron at rate
£, (dashed vertical line) for the cases of weak (left) and strong (right) top-down modulation. This current is composed of the top-down input (red bar) and the
output of the active presynaptic IT neurons (green segments, stretched in the case of high gain). With strong top-down input, fewer IT neurons need to be active
to produce the same inhibition. (D,E) Number of categories formed as a function of the maximum firing rate of the excitatory IT neurons and the top-down input

to the inhibitory neurons, respectively.

updated after each stimulus presentation based on the averaged activity at
the end of the stimulus presentation (Materials and Methods). The homeo-
static process first compensates for unequally distributed activities across
neurons and transiently moves the synaptic dynamics to an unstable equi-
librium point (Figure 5A). The system then hovers near this point with little
homeostatic change; Hebbian plasticity begins to dominate and eventu-
ally pushes the recurrent connections to either the upper or lower limit
(Figure 5B) while the overall activities of the neurons remain unchanged
(as revealed by the homeostatic factor). The emerged discrete attractor
structure remains stable during the ongoing presentation of the morphed
stimuli: a tenfold extension of the learning phase to 50000 trials does not
result in any significant changes (Figures 5A-D). Such a long-run stability

in response to morphed stimuli is not necessarily guaranteed in other
attractor networks which do not involve stabilization mechanisms such as
recurrent inhibition and homeostatic plasticity (cf. Blumenfeld et al., 2006).

Different ways of implementing the slow synaptic processes could
be considered in order to obtain category formation. Hebbian plasticity at
the recurrent inhibitory synapses, for instance, has a somewhat similar
effect of balancing the neuronal activity as that of the homeostatic plas-
ticity at excitatory synapses, and in fact, the two processes have a similar
learning time course (Figures 5A,C). This arises because the presynaptic
variable for Hebbian plasticity in the synapses projecting from the glo-
bal inhibitory neurons is approximately constant across time. Hebbian
plasticity at those synapses is therefore effectively determined by the
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Figure 4. Following learning, stimulus-selective network activity persists after stimulus withdrawal. (4) Prior to learning, the responses of the IT model
neurons to a stimulus presentation decay when the stimulus is withdrawn 100 ms after stimulus onset. (B) Activity of the IT neurons after stimulus withdrawal,
averaged across the time window highlighted with the dashed box in panel A. The horizontal box indicates the stimulus for which the neuronal responses are
shown in panel A. (C) After learning, the activity of a stimulus-selective set of neurons stays high even when the stimulus has been withdrawn. (D) Post-stimulus
activity as shown in panel B, but after 2000 pattern presentations. Categories have formed that are represented by stable attractor subnetworks. Thus, the input
pattern has been memorized in the form of its category and is no longer required to maintain the same response of the network.

Figure 5. Evolution of synaptic variables during the course of unsupervised learning explains category formation. (A) Homeostatic factors h, modulate
all excitatory input to the corresponding neurons and transiently correct for the initial random imbalance in the postsynaptic firing rates before settling to a new
stable state. (B) After homeostatic plasticity has approximately equalized the activities of all neurons over time, Hebbian plasticity spontaneously separates
recurrent synaptic weightsw;;“ into high and low activity states, reinforcing some and weakening other connections. (C) Hebbian plasticity in recurrent inhibitory
weights wi" is functionally equivalent to the homeostatic process. (D) Hebbian plasticity in feedforwardsynaptic weightsw! supports the formation of cortical
categories, but due to the strongly overlapping stimuli the separation is incomplete. Each trial consists of a 400 ms presentation of a randomly chosen stimulus
(shown in Figure 3A). For better visualization the synaptic dynamics is only turned on after the first 50 trials.
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