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Abstract Synaptic information efficacy (SIE) is a statistical
measure to quantify the efficacy of a synapse. It measures
how much information is gained, on the average, about the
output spike train of a postsynaptic neuron if the input spike
train is known. It is a particularly appropriate measure for
assessing the input–output relationship of neurons receiving
dynamic stimuli. Here, we compare the SIE of simulated
synaptic inputs measured experimentally in layer 5 corti-
cal pyramidal neurons in vitro with the SIE computed from
a minimal model constructed to fit the recorded data. We
show that even with a simple model that is far from per-
fect in predicting the precise timing of the output spikes of
the real neuron, the SIE can still be accurately predicted.
This arises from the ability of the model to predict output
spikes influenced by the input more accurately than those
driven by the background current. This indicates that in this
context, some spikes may be more important than others.
Lastly we demonstrate another aspect where using mutual
information could be beneficial in evaluating the quality of
a model, by measuring the mutual information between the
model’s output and the neuron’s output. The SIE, thus, could
be a useful tool for assessing the quality of models of single
neurons in preserving input–output relationship, a property
that becomes crucial when we start connecting these reduced
models to construct complex realistic neuronal networks.

M. London (B) · M. Häusser
Department of Physiology, Wolfson Institute for Biomedical
Research, University College London, Gower Street,
London WC1E 6BT, UK
e-mail: m.london@ucl.ac.uk

M. E. Larkum
Department of Physiology, University of Bern,
3012 Bern, Switzerland

Keywords Synaptic information efficacy ·
Linear integrate-and-fire model · Predicting every spike ·
Layer 5 cortical pyramidal neuron

1 Introduction

Neurons are widely considered to be the fundamental compu-
ting elements of the brain. As such their input–output rela-
tionship is of prime importance. This relationship is often
quantified by measuring the neuron’s frequency–current
curve (F–I curve). This involves injecting current steps of
various amplitudes into the neuron and measuring the fre-
quency of the output spikes. With this approach one can also
calculate the current threshold (i.e. the minimum current that
will cause the neuron to emit an action potential) and the gain
(how many more output spikes will be emitted per additio-
nal current step). Some types of neurons, most significantly,
regular firing cortical pyramidal neurons, typically have a
threshold linear F–I curve, a property which many com-
putational models of neural networks rely on Vogels et al.
(2005).

However, the frequency–current relationship does not
necessarily capture the complete input–output function of
the neuron because it assumes that there is no information
in the temporal pattern of the input or output. For example,
neurons have been shown to also be able to respond reliably
not only to the mean current they receive but also to higher
frequency components (Mainen and Sejnowski 1995).
Consequently, to correctly characterize the input–output
relationship one needs to use a method that also captures
the relationship when dynamic stimuli are present and the
responses are dynamic as well. Several such methods have
been suggested in the past (Arcas et al. 2003; Chance 2007).
Considering the motto of this Special Issue,“predicting every
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spike”, the synaptic information efficacy (SIE) (London et al.
2002) is a particularly appealing approach because it speci-
fically uses prediction power to quantify the input–output
relationship. In essence the SIE is the mutual information
between an input spike train arriving at a synapse and the
output spike train of the postsynaptic neuron. Here we show
that we can measure SIE experimentally given a reasonable
amount of data. This allows us to answer the question: how
well can a reduced model of the neuron capture its input–
output relationship?

Clearly if a model fits a real neuron well enough such
that given the input current it can predict precisely the output
spike train, the SIEs calculated using the real neuron and the
model would match perfectly (because the SIE only relies
on the input and output spike trains and both would be iden-
tical in the experiment and model). However, here we take
a slightly different perspective. We are aiming to characte-
rize the input output relationship by measuring the effect
of a single synapse on the output of the neuron (this could
be extended to the effect of a group of correlated inputs).
However, one synapse on its own typically does not ope-
rate in a vacuum, rather a neuron is bombarded by inputs
arriving at many of its synapses. We assume that the input
current into a neuron is composed of a mixture of many
synaptic inputs some of which might carry information and
some could potentially reflect noise. We are interested only
in the information of one of these inputs. We, thus, inject
a fluctuating current representing the background synaptic
activity as well as one controlled input synapse. We then ask
how well can a reduced model capture the SIE of this one,
well-defined, input in the presence of this background acti-
vity. We show here that even a highly simplified model that
is less than perfect in predicting the exact output spikes of
the neuron, can capture the SIE very well. This is surprising
because the SIE relies only on the relationship between input
spikes and output spikes. The explanation is that with respect
to the relationship between one input and the output, the out-
put spikes that are affected by this input are more important
for the SIE than others, and thus a model succeeding in pre-
dicting these spikes is good enough. This demonstrates the
point that a model should be constructed in a specific context:
under some circumstances it might turn out that there is no
need to predict every spike with the same accuracy because
some spikes are more significant than others.

2 Experimental procedures

2.1 Slice preparation and electrophysiology

All experiments were performed using acute parasagittal cor-
tical slices from rat somatosensory cortex, prepared using
standard techniques in accordance with institutional and

national guidelines. Sprague–Dawley rats (P18–P25) were
anaesthetized with isoflurane (Abbott Labs, Kent, UK) and
decapitated. The cortex was surgically dissected and cut sagi-
tally at a slice thickness of 300 mm on a vibratome (VT1000S,
Leica Microsystems). After slicing slices were incubated for
30–45 min at 32◦C in external solution bubbled with 95% O2

and 5% CO2, and then were kept at room temperature until
recording (at 34◦C). The standard external recording solution
contained (in mM): 125 NaCl, 2.5 KCl, 2 CaCl2, 1 MgCl2,
25 NaHCO3, 1.25 NaH2PO4 and 25 d-glucose.

Neurons were visualized with a 40× water immersion
objective (Zeiss) using IR-DIC optics on an Zeiss upright
microscope equipped with an IR camera (C2400-07,
Hamamatsu, Tokyo, Japan) connected to a video monitor.
Pipettes were prepared from thick-walled filamented borosi-
licate glass capillaries (Harvard Apparatus, Kent, UK)
pulled on a two-stage puller (Model PC-10, Narishige, Tokyo,
Japan) with tip resistances between 5 and 6 M� for whole-
cell somatic recording. The composition of the internal solu-
tion was (in mM): K gluconate 105, Hepes 10, MgCl2 2,
MgATP4 2, sodium phosphocreatine 10, GTP 0.3 and KCl
30, with 2 mg/ml biocytin, at pH 7.3.

Recordings were performed using an Axoclamp 2B ampli-
fier (Axon Instruments, CA, USA) connected to a Macintosh
computer via an ITC-18 board (Instrutech, Port Washing-
ton, NY, USA). Data was acquired with IGOR PRO (version
5.0, Wavemetrics, OR, USA). The current–clamp signal was
Bessel filtered at 3 kHz and sampled at 10 kHz. No correc-
tion of the liquid junction potential was performed. To gene-
rate “background” synaptic input, white noise was convolved
with an exponential decay with a time constant of 1 ms. The
variance and mean of this background current were adjusted
during the experiment to give a spike rate of ∼10 spikes/s
with a CV ∼0.75. Data were analyzed using custom macros
written for IGOR Pro (Wavemetrics), Matlab (Mathworks)
and the CTW algorithm (see below).

2.2 Computer modelling

We have used the simplest version of the leaky integrate-
and-fire model. The sub-threshold integration of the model
is described by Eq. 1 which is a discrete version of the conti-
nuous form, and has three passive parameters: R, membrane
resistance in �; τ , membrane time constant in s; and Vrmp,
resting membrane potential in mV. The model has three addi-
tional parameters to describe spikes: θ , voltage threshold in
V; VAHP, the voltage to which the membrane potential is reset
after each spike; and τref , the refractory period during which
the membrane potential is clamped to VAHP.

v(i + 1) = v(i) + dt
( 1

τ

(
v(i) − Vrmp

)) + RIinj(i)
τ

. (1)

We split the process of fitting the model to the data into two
stages. In the first stage we fit the sub-threshold response,
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and in the second we fit the threshold, AHP and refractory
period. Vrmp is easily obtainable from the beginning of the
voltage trace where no current is injected. However there
were often small drifts (<2 mV) in the resting membrane
potential due to the length of the experiment and the long
period of intensive current injections. Thus Vrmp is the only
parameter that was adjusted for each trace. All remaining
parameters were adjusted once for the training trace and were
used for all the rest of the inputs as is. We then identify
stretches of the voltage trace which do not contain spikes
and use a simplex algorithm to obtain R and τ (Fig. 1b). We
then use a spike-triggered average to determine the threshold,
AHP and refractory period (Table 1).

2.3 Synaptic information efficacy analysis

Estimation of the synaptic information efficacy was done
using the Context Tree Weighting (CTW) algorithm as des-
cribed in London et al. (2002). The CTW algorithm (Willems
et al. 1995) in its simplest form is a universal lossless com-
pression algorithm for binary sequences. For each symbol
in the sequence it computes the probability of the symbol
to occur based on the previous history of the sequence and
uses this probability for compression using arithmetic enco-
ding (Cover and Thomas 1991). Having the probability of
each symbol given the history is very useful for computing
the entropy of the sequence. Moreover the algorithm can
easily be modified to estimate the probability of a symbol
given the history of the sequence and the history of another
sequence (in our case the input spike train). This enables
us to compute the conditional entropy, which is required
for computing the mutual information. One advantage for
using the CTW algorithm is that its redundancy is boun-
ded above uniformly over all data sequences of arbitrary
length. The other major advantage is that increasing the win-
dow over which the history is considered does not bias the
estimator which means that the sampling catastrophe that
often happens with other methods is not an issue with the
CTW. Comparisons of the performace of the CTW with
other methods (Kennel et al. 2005; Gao et al. 2008) have
shown that it can yield more accurate results for both synthe-
tic and neuronal data. We used a custom written JAVA code
which integrates with Matlab and is publicly available (http://
www.dendrites.org/~mikilon/Code/CTW). Empirically we
find that we need few hundreds of spikes for the algorithm
to converge and hence with 53 s of recording at spike rate
of ∼10 spikes/s the algorithm yields stable estimates. We
also found that because the entropy estimation requires only
one sequence while the conditional entropy requires two
sequences there is a consistent bias which causes independent
sequences to have a mutual information of approximately
−1 bits/s (while the mutual information should be zero). In

a

b

Fig. 1 a Whole-cell recordings were made from layer 5 pyramidal cells
in rat somatosensory cortex in vitro (scale bar 100 mm). A fluctuating
current was injected into the soma and the resulting voltage response
was recorded. The current was composed of filtered white noise and a
series of sEPSCs. Two short duration examples are shown (top sEPSC
peak amplitude 300 pA and bottom 1,600 pA). The times of the sEPSCs
are marked by dashed lines. Note that for small sEPSC most events do
not cause a spike, while for the larger amplitude they do. b The synaptic
information efficacy (SIE) computed from the “input spike train” (times
of the input sEPSCs) and the neuron’s output spike train is depicted as a
function of sEPSC peak amplitude for four cells (four different symbols)

order to overcome this bias we estimated the mutual informa-
tion as a difference of two conditional entropies as follows:
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Table 1 Parameters of the model for the different cells

Cell Rinput (M�) τ (ms) Vrmp Threshold VAHP τref (ms)

1 48.0 13.0 −65 −42 −52 5

2 74.7 8.5 −65 −41 −51 6

3 43.7 14.5 −76 −58 −68 8

4 54.1 10.3 −66 −40 −43 2

SIE(Sout; Sin) = Ĥ
(
Sout|Sshuff

in

) − Ĥ(Sout|Sin) (2)

where Sin and Sout are the input and output spike trains res-
pectively, and Sshuff

in is a surrogate spike train obtained by
randomly shuffling the inter-spike intervals of the input spike
train such that any temporal correlations between the input
and the output are removed. The first term of the right hand
side should be equal to the entropy of the output spike train,
but has a small positive bias, however in this way the two
terms on the right have the same bias and hence the estima-
ted SIE is more accurate.

3 Results

3.1 Measuring SIE in layer 5 pyramidal cells

Using somatic whole-cell recordings from layer 5 pyramidal
cells, we injected a fluctuating current to mimic background
synaptic activity, causing the neuron to spike at approxima-
tely 10 spikes/s. On top of the fluctuating current we added
a sequence of EPSC-shaped currents (sEPSC) with a fixed
time course (see Sect. 2, Fig. 1) and varied their peak ampli-
tude (the range of spike output rates in these experiments
was 8–20 spikes/s). Figure 1 illustrates the injection protocol
and the resulting voltage response of the neuron. We then
used the sequence of times of the input sEPSC as an input
“spike train” and computed the mutual information between
this spike train and the output spike train emitted by the neu-
ron to obtain the SIE for every current amplitude. The SIE
as a function of current amplitude is depicted in Fig. 1b for
four different neurons. For a small input (e.g. 0–400 pA) the
SIE is typically very small (less than 2 bits/s). Such an input
is illustrated in the top example trace (Fig. 1a: 300 pA). In
this case the input sEPSC is smaller than the standard devia-
tion of the background current and cannot be identified by
inspection. Moreover, for a given output action potential it
is sometimes difficult to tell whether it was caused by the
sEPSC or not. Nevertheless even such a small current some-
times clearly influences spike generation (see second and
fifth inputs in the example) and changes the probability of
the neuron to emit an action potential. This effect, though
too small to be noticeable by eye, is detected by the SIE. For
larger input amplitudes the SIE grows linearly with input

size. When the current is large enough to rise above the noise
an output spike will frequently follow the input sEPSC. For
the example shown in Fig. 1a (1,600 pA), 85% of sEPSCs are
followed by an output spike within 4 ms. Typically a failure
to trigger a spike occurs because the input just followed an
output spike while the neuron was refractory, or the input fol-
lowed a random large hyperpolarization (see third and fifth
inputs in the example). For even larger sEPSCs (>2 nA) the
SIE saturates at approximately 35–40 bits/s (for the bin size
of 3 ms we use here). This saturation occurs because the infor-
mation is bounded by the minimum of the entropies of the
input and the output. Intuitively one cannot gain more infor-
mation than there is in the output or than is supplied by the
input (see also London et al. 2002, Fig. 2). The reason that
only one cell shows this saturation is that we did not drive
the neurons with input amplitudes large enough to show this
effect (this is generally detrimental to the recording and the
health of the neuron).

The relationship between SIE and input size is therefore
nonlinear, and follows a sigmoidal trajectory. This relation-
ship qualitatively agrees very well with earlier predictions
based on simulations (London et al. 2002) where its pro-
perties are discussed in more detail. This non-linear shape
is in contrast to the linear relationship expected between
cross-correlation and input size as described in Herrmann
and Gerstner (2001) and is primarily due to the nonlinear
properties of the mutual information measure. In the follo-
wing sections we would like to explore how well a simplified
model can capture the relationship between SIE and input
amplitude described above.

3.2 Constructing simplified integrate and fire models
to match experimental data

Many successful sophisticated methods for constructing sim-
plified models of spiking neurons are described in this issue,
and in the literature (Brunel and Latham 2003; Fourcaud-
Trocme et al. 2003; Rauch et al. 2003; Keren 2005; Jolivet
et al. 2006; Badel et al. 2008). Nevertheless we delibera-
tely choose here to take the most simplistic view and fit the
recordings with a leaky integrate-and-fire model in order to
demonstrate the power of the SIE approach. The model has
three passive parameters (R membrane resistance in �, τ

membrane time constant in s and Vrmp resting membrane
potential in V).

The model has three additional parameters to describe
spikes: θ , voltage threshold in V; VAHP, the voltage to which
the membrane potential is reset after each spike; and τref ,
the refractory period during which the membrane poten-
tial is clamped to VAHP. Figure 2 describes the fitting pro-
cess (see Sect. 2). We split the process of fitting the model
into two stages. As the current–voltage relationship for these
cells is linear over a wide range of subthreshold potentials
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a b c

d

e

Fig. 2 Fitting the data with a linear integrate and fire model. a Cur-
rent voltage relationship showing a linear relationship over wide range
of membrane potential. b Fitting a subthreshold voltage trace using a
simplex algorithm (grey data, solid black model) yields the parameters
Rin, τm and Vrmp. The algorithm typically results in a very good fit to the
data. c All spikes in the training trace are aligned, shown in grey. Their
average (spike triggered average) is shown in solid black. The voltage
threshold (θ), VAHP and the refractory period τref are obtained from this
data. d An example of a recorded voltage trace (grey) and the models
prediction (solid black). Markers depict time points in which model

successfully predicted output spike within 2 ms precision. The model,
however, has a significant number of misses and false positives. e The
autocorrelogram of the output spike train (top panel solid) of the neuron
compared to the crosscorrelogram of between the output of the neuron
and the output of the model (top panel dashed line), shows that indeed
the model has many misses. The crosscorrelogram between the input
spike train and either the output spike train of the neuron (solid bottom
panel) or the output spike train of the model (bottom panel dashed line)
shows that the model predicts the output spikes that are correlated with
the input very well

(Fig. 2a), we choose to use a standard minimization
procedure to fit the subthreshold response in the first stage.
In the second step we fit the threshold, VAHP and refractory
period based on the spike triggered average curve (see also
Sect. 2).

We used one trace with a small sEPSC amplitude
(<300 pA) for training. We then used this model on the rest
of the input currents (with different amplitudes). Predicting
every spike with such a simple LIF model is impossible. The
gamma coincidence factor (GCF) (Kistler et al. 1997) mea-
sures how many spikes of the model coincide with the real
spikes of the neuron (with the required tight condition of
2 ms accuracy), normalized to chance level (i.e. if the two
were spiking in their mean rate but completely independent
of each other). For the input currents used in this study the
model achieved a GCF of 0.5 ± 0.1. This score is expected
for the standard linear integrate-and-fire model but is lower
than that of adaptive integrate-and-fire models presented in
this Special Issue which achieve a GCF of ∼0.8.

3.3 Comparing the effect of synaptic input
in the experiment and in the model

As the SIE is measuring the efficacy of the synaptic input
using only the input and output spike trains, clearly, as poin-
ted out above, if the model could predict the output of the
cell perfectly for any given input, then the SIE for the model
and the real neuron would be identical. However, as we see
in Fig. 2 for the integrate and fire model some of the original
spikes are missed, some are spurious and some are shifted
compared to the real cell.

Figure 3a depicts the SIE as a function of sEPSC current
amplitude for one of the neurons presented in Fig. 1b. The
model shown in Fig. 2 was used to integrate the same input
currents, which were used in the experiments. The SIE com-
puted for the model shows a remarkable similarity to the SIE
computed for the data. Similar results were obtained for two
of the other cells presented in Fig. 1 (RMS—2.3, 3.1, 3.13
bits/s for cells 1, 2 and 3, respectively). The explanation for
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a b

Fig. 3 Comparing the SIE of the model and the data. a The SIE of the
data of one cell as a function of sEPSC amplitude and the corresponding
SIE computed for the LIF model shown in Fig. 2. Very close agreement
between the two is achieved. This model was a regular firing cell. Note
that the model was constructed using one trace only and then used with

the same parameters for all other current amplitudes. b Same as a, only
here the cell was firing bursts of action potentials in response to the
current injection. The LIF cannot properly fit a bursting cell, and tends
to burst more for large inputs (see inset). The result is that the SIE of
the model overestimates the SIE of the real neuron (see text)

this close agreement is quite interesting. Both the fluctuating
input current and the input spike trains are random and thus
the neuron and the model have statistically similar output
spike trains (even though they do not overlap on the millise-
cond time scale). This makes their entropies similar. The LIF
model, while poor in predicting the spike caused by the back-
ground fluctuating current (e.g. GCF = 0.5 when the sEPSC
is very small; see Fig. 2) is pretty good in predicting spikes
that are driven by the input sEPSC. This makes the condi-
tional entropy of the model and the neuron quite similar as
well. All in all the SIE which is the difference between the
entropy and the conditional entropy corresponds closely bet-
ween the model and the experiments. In that sense the SIE is
less sensitive to the precise timing of the spikes arising from
the “background” current, and more sensitive to the timing
of spike in relation to the input sEPSC. For cell 4 the agree-
ment between the SIE of the model and of the experiments
was not as good as in the other cells shown in Fig. 3b (RMS:
6.7 bits/s). Interestingly, this cell was firing bursts (typically
of two spikes) in response to current injection at the soma,
in contrast to the other three neurons. An example trace of
recording from this neuron is shown in the inset, together
with the corresponding model trace. Clearly it is impossible
to describe this behavior with such a simple model. With our
fitting strategy the model has the disadvantage that VAHP is
relatively high (−43 mV) and τref is very short (2 ms) in order
to account for the bursting activity. However, in contrast to
the real neuron the model has no memory, and thus produces
many more spikes per burst than the real neuron. Moreo-
ver, the real neuron tended to be quiet after a burst, while
the model does not. The result shows that the model often
reacts to the input with more spikes than the real cell, which
increases the entropy of the output. However when the input
is known (to the estimation algorithm), it accounts for these

spikes, which reduces the conditional entropy. The increase
in entropy and reduction in conditional entropy compared to
the real data, results in an overestimate of the mutual infor-
mation, hence the overestimate of the SIE when computed
with the model.

3.4 Using mutual information to evaluate the predictive
power of the model

Till now we computed the mutual information between the
input and the output of both the experimental data and of
a model to evaluate how well the model captures the input–
output relationship of the real cell. We can also use the mutual
information in a different way: to evaluate directly how well
the model predicts the output. The traditional way this is done
(especially in this Special Issue) is using the GCF (Kistler
et al. 1997). Similarly, we can measure the mutual informa-
tion between the output spike train of the model and that of
the real neuron. If the two are completely independent we
should obtain zero mutual information. If, on the other hand,
the model output is precisely that of the neuron, then the
mutual information will be the entropy of that output spike
train. Normalizing the mutual information by the entropy of
the neuron’s output will yield a measure between 0 and 1,
similar to the GCF.

It is important to understand that there are differences bet-
ween the two measures. On one hand, if one is interested in a
model that predicts every spike precisely, then of course the
GCF provides a good measure to compare models. On the
other hand, if the model predicts the exact output spike train
but with a time shift of, say, 3 ms, then the GCF will be very
small even though the output is by almost any measure iden-
tical. Similarly, if the model predicts a pair of output spikes
for every single output spike of the neuron, again, the two
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a

b

Fig. 4 Using mutual information to evaluate the prediction power of
the model. a The GCF between the model output and the neuron’s output
is depicted as a function of sEPSC amplitude (filled circles). The mutual
information between the model’s output spike train and the output of the
neuron, normalized by the output entropy of the neuron is also shown
(open squares). b Same data as in a is depicted when the mean of each
group is subtracted so that the trend can be compared. Data is fitted with
linear regression line (GCF, solid line; normalized mutual information,
dashed line). Note the good match for the regular spiking cell and the
disagreement between the two measures for the bursting cell

spike trains would carry almost exactly the same amount of
information, but the GCF will give a rather poor score for
the performance of the model (because only ∼50% of the
spikes are predicted). The mutual information is, however,
agnostic about such transformations, and thus suitable as a
complementary method to evaluate the quality of models.

Figure 4 shows the GCF as well as the normalized mutual
information for the two cells presented in Fig. 3a, b. For the
first cell the two measures have very similar shape, only the
mutual information gives lower scores for the model com-
pared to the GCF. Very similar matches were obtained for
the other two regularly spiking cells. For the bursting cell,
however, the two methods gave different results. The GCF is
relatively independent of the input (i.e. sEPSC) amplitude.
The mutual information, on the other hand, grows linearly
with the input size. Curiously, this is the model that perfor-
med least well in capturing the input–output relationship of
the neuron by overestimating the SIE. This result hints that
indeed the mutual information can pick up the relationship
between the prediction of the model and the real data that the
GCF ignores. However, in this case there is also the complica-
tion that the model that performs worst, yields better mutual
information. There is however quite a simple explanation for
this. In Fig. 3b we estimated the mutual information between
the input and the output. As we showed, the model overes-

timated this information because for large inputs it tends to
“over burst” compared to the real neuron (i.e. fire more spikes
in a burst per input). Thus, when we know the input, we can
reduce the entropy of the models output even more than we
can do for the real neuron. Here when we compute the mutual
information between the model’s output and the neuron’s out-
put, the input is not known, but, for large enough sEPSCs,
we already know that the model almost certainly produces
a burst per each input. So to some extent the model output
acts in a similar way as the input given to the synapse. In
other words, bursts of the real neuron are well predicted by
bursts of the model, even though there are more spikes in each
burst, and this increases the mutual information between the
model’s output and the neuron’s output.

4 Discussion

Understanding brain dynamics requires good network
models. Such models must possess two properties: first, the
elements of the model should be representative of real neu-
rons in the sense that when given the right input they will
produce a similar output to that of the real cell; second,
the connectivity of the network should be known. Construc-
ting simplified models of neurons that are able to “predict
every spike” is obviously an important step, especially when
realizing that the properties of the elements of the network
might have a big effect on the network dynamics. However,
simplifying the neuronal elements of the network imposes
a problem on the connectivity, because of the difficulty of
bridging between the knowledge of the biophysical proper-
ties of synaptic communication between neurons (Häusser
and Roth 1997; Markram et al. 1997; Thomson and Lamy
2007) and its implications for the input–output properties
of the neuron (Fetz and Gustafsson 1983; Douglas et al.
1996; Barbour et al. 2007). Succeeding in constructing a
network out of simplified neuronal elements means that the
effect of activating a connection between two real neurons
on the output of the postsynaptic neuron will be the same
in the model. This could be a very complicated task, espe-
cially as there exist non-linear interactions that may take
place between inputs arriving at dendrites (Schiller et al.
1997; Larkum et al. 1999; Häusser and Mel 2003; Larkum
et al. 2004; Polsky et al. 2004; London and Hausser 2005;
Losonczy et al. 2008). It is especially important to be able to
assess whether the connectivity being used indeed preserves
the efficacy of the connections in the model. The SIE might
provide a way to quantify this. We are interested in ways
to quantify the efficacy of the synapse within the context of
network activity so that we can assess whether the “anatomi-
cal connectivity” in the model also represents the “effective
connectivity” in the real network.
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Here we have used the synaptic information efficacy to
quantify the ability of simple models to capture the somatic
input–output relationship of layer 5 pyramidal neurons. We
measured the SIE for real neurons and compared it for the
SIE obtained from simple leaky integrate and fire models
(LIF) that were fit to the data recorded from these neurons.
Surprisingly, even models as simple as LIF can capture the
input–output relationship very well, despite the fact that only
about 50% of the output spikes of the neuron are accurately
predicted by the model. The SIE is hence a good candidate
for evaluation of additional models and in other contexts.

An advantage of the SIE is that it considers higher order
correlations both within the input and output and between
them. Indeed, as we demonstrate this has little effect if the
neuron’s response is as simple as predicted by an LIF. Never-
theless, most layer 5 pyramidal neurons do show more com-
plicated, higher-order behaviour, such as bursts, especially
when dendritic inputs are involved (Reuveni et al. 1993;
Schiller et al. 1997; Larkum et al. 1999; Williams and Stuart
1999; Stuart and Häusser 2001; Larkum et al. 2004). An
example of an extreme case is presented in Fig. 3b where
the neuron responded with burst even in the case of somatic
current injection. The SIE can be used in such cases without
any additional modifications, and thus is a natural candidate
for evaluating models in a context that goes beyond a simple
input–output relationship. Moreover, we can use the mutual
information between the model’s output and the neuron’s
output (when identical input current is used for both) to eva-
luate the performance of the model. This has the advantage
of considering the natural variability of the neuron when the
same input is injected, as well as considering effects such as
time shift delay and change in representations (i.e. replacing
a burst by a single spike).

The overall conclusion is that when we pursue the goal
of constructing a reduced model of a network, some aspects
of mapping synapses onto their targets are relatively insen-
sitive to how perfect the single model neuron is. Hence, in
parallel to perfecting the reduced single neuron model, we
can start addressing the complexities of connectivity in neu-
ral networks using simple models. We should start thinking
about how to connect the neurons in the network such that
we preserve their effective connections as they are in the
real network, and the SIE could be a useful tool to achieve
that.
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