Steady-state function of the ubiquitous mammalian Na/H exchanger (NHE1) in relation to dimer coupling models with 2Na/2H stoichiometry

Fuster, Daniel Guido; Moe, Orson W; Hilgemann, Donald W (2008). Steady-state function of the ubiquitous mammalian Na/H exchanger (NHE1) in relation to dimer coupling models with 2Na/2H stoichiometry. Journal of general physiology, 132(4), pp. 465-80. Baltimore, Md.: Rockefeller University Press 10.1085/jgp.200810016

JGP2008finalPDF.pdf - Published Version
Available under License Creative Commons: Attribution-Noncommercial-Share Alike (CC-BY-NC-SA).

Download (2MB) | Preview

We describe the steady-state function of the ubiquitous mammalian Na/H exchanger (NHE)1 isoform in voltage-clamped Chinese hamster ovary cells, as well as other cells, using oscillating pH-sensitive microelectrodes to quantify proton fluxes via extracellular pH gradients. Giant excised patches could not be used as gigaseal formation disrupts NHE activity within the patch. We first analyzed forward transport at an extracellular pH of 8.2 with no cytoplasmic Na (i.e., nearly zero-trans). The extracellular Na concentration dependence is sigmoidal at a cytoplasmic pH of 6.8 with a Hill coefficient of 1.8. In contrast, at a cytoplasmic pH of 6.0, the Hill coefficient is <1, and Na dependence often appears biphasic. Results are similar for mouse skin fibroblasts and for an opossum kidney cell line that expresses the NHE3 isoform, whereas NHE1(-/-) skin fibroblasts generate no proton fluxes in equivalent experiments. As proton flux is decreased by increasing cytoplasmic pH, the half-maximal concentration (K(1/2)) of extracellular Na decreases less than expected for simple consecutive ion exchange models. The K(1/2) for cytoplasmic protons decreases with increasing extracellular Na, opposite to predictions of consecutive exchange models. For reverse transport, which is robust at a cytoplasmic pH of 7.6, the K(1/2) for extracellular protons decreases only a factor of 0.4 when maximal activity is decreased fivefold by reducing cytoplasmic Na. With 140 mM of extracellular Na and no cytoplasmic Na, the K(1/2) for cytoplasmic protons is 50 nM (pH 7.3; Hill coefficient, 1.5), and activity decreases only 25% with extracellular acidification from 8.5 to 7.2. Most data can be reconstructed with two very different coupled dimer models. In one model, monomers operate independently at low cytoplasmic pH but couple to translocate two ions in "parallel" at alkaline pH. In the second "serial" model, each monomer transports two ions, and translocation by one monomer allosterically promotes translocation by the paired monomer in opposite direction. We conclude that a large fraction of mammalian Na/H activity may occur with a 2Na/2H stoichiometry.

Item Type:

Journal Article (Original Article)


04 Faculty of Medicine > Department of Dermatology, Urology, Rheumatology, Nephrology, Osteoporosis (DURN) > Clinic of Nephrology and Hypertension

UniBE Contributor:

Fuster, Daniel Guido


600 Technology > 610 Medicine & health






Rockefeller University Press




Factscience Import

Date Deposited:

04 Oct 2013 15:05

Last Modified:

19 Jan 2016 15:33

Publisher DOI:


PubMed ID:


Web of Science ID:




URI: (FactScience: 116690)

Actions (login required)

Edit item Edit item
Provide Feedback