Localization of DJ-1 mRNA in the mouse brain

Shang, Huifang; Lang, Doris; Jean-Marc, Burgunder; Kaelin-Lang, Alain (2004). Localization of DJ-1 mRNA in the mouse brain. Neuroscience letters, 367(3), pp. 273-7. Amsterdam: Elsevier 10.1016/j.neulet.2004.06.002

Full text not available from this repository. (Request a copy)

DJ-1 is mutated in autosomal recessive, early onset Parkinson's disease but the exact localization of the DJ-1 gene product in the mammalian brain is largely unknown. We aimed to evaluate the DJ-1 mRNA expression pattern in the mouse brain. Serial coronal sections of brains of five male and five female adult mice were investigated by using in situ hybridization with a DJ-1 specific 35S-labeled oligonucleotide probe. Hybridized sections were analyzed after exposure to autoradiography films and after coating with a photographic emulsion. DJ-1 was heterogeneously expressed throughout the mouse central nervous system. A high expression of DJ-1 mRNA was detected in neuronal and non-neuronal populations of several structures of the motor system such as the substantia nigra, the red nucleus, the caudate putamen, the globus pallidus, and the deep nuclei of the cerebellum. Furthermore, DJ-1 mRNA was also highly expressed in non-motor structures including the hippocampus, the olfactory bulb, the reticular nucleus of the thalamus, and the piriform cortex. The high expression of DJ-1 mRNA in brain regions involved in motor control is compatible with the occurrence of parkinsonian symptoms after DJ-1 mutations. However, expression in other regions indicates that a dysfunction of DJ-1 may contribute to additional clinical features in patients with a DJ-1 mutation.

Item Type:

Journal Article (Original Article)


04 Faculty of Medicine > Department of Head Organs and Neurology (DKNS) > Clinic of Neurology

UniBE Contributor:

Burgunder, Jean-Marc










Factscience Import

Date Deposited:

04 Oct 2013 15:05

Last Modified:

04 May 2014 23:20

Publisher DOI:


PubMed ID:


Web of Science ID:



https://boris.unibe.ch/id/eprint/28389 (FactScience: 120499)

Actions (login required)

Edit item Edit item
Provide Feedback