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 Introduction 

 The modern era of molecular biology has been high-
lighted by the development of methods that can alter the 
expression of target genes in intact cells and organisms. 
While applying ‘transgenic’ techniques, it is possible to 
generate organisms that express a specific gene, normal 
or mutated, in either a specific tissue or throughout the 
whole organism for the purpose of studying its effects. 
However, as it is a much simpler task to study the biology 
of a specific biochemical pathway in cultured cells system 
than it is to study an intact organism, it is often desirable 
to turn down or turn off the expression of a specific pro-
tein when studying its role. One of the places where this 
form of gene regulation occurs naturally is in cellular de-
fences against the infection by specific classes of viruses. 
Cells have developed a mechanism that responds to the 
presence of double-stranded RNA (dsRNA), which is of-
ten associated with infection by these specific viruses. 
When the system is activated, specific enzyme complexes 
are able to degrade the RNA represented by the double 
stranded sequence, and to silence the expression of the 
gene product. Learning to co-opt this mechanism and to 
utilize it in order to study the function of specific genes 
has provided a powerful new tool for scientific research. 
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 Abstract 
 In the last decade, few areas of biology have been trans-
formed as thoroughly as RNA molecular biology. Without 
any doubt, one of the most significant advances has been 
the discovery of small (20–30 nucleotide) noncoding RNAs 
that regulate genes and genomes. The effects of small RNAs 
on gene expression and control are generally inhibitory, and 
the corresponding regulatory mechanisms are therefore col-
lectively subsumed under the heading of RNA silencing and/
or RNA interference. Two primary categories of these small 
RNAs – short interfering RNAs (siRNAs) and microRNAs (mi-
RNAs) – act in both somatic and germline lineages of eukary-
otic species to regulate endogenous genes and to defend 
the genome from invasive nucleic acids. Recent advances 
have revealed unexpected diversity in their biogenesis path-
ways and the regulatory mechanisms that they access. Our 
understanding of siRNA and miRNA-based regulation has di-
rect implications for fundamental biology as well as disease 
aetiology and treatment as it is discussed in this review on 
‘new techniques in molecular biology’ .
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  In 2006, Andrew Fire and Craig C. Mello shared the 
Nobel Prize in Physiology or Medicine for their work on 
RNA interference (RNAi) in the nematode worm  Cae-
norhabditis elegans (C. elegans) , which they published in 
1998  [1] . Nowadays, the use of RNAi to evoke gene silenc-
ing in mammalian cells has almost become routine labo-
ratory practice and the capacity of RNAi to effect chang-
es in gene expression has been proven in laboratories over 
and over again  [2, 3] . One of the challenges of using this 
therapy for medical needs will be the development of 
methods that will allow for the introduction of interfer-
ing RNAs into various cells and tissues of the body  [2] . 
Access to the blood stream and its cells is easy; the same 
cannot be said for most other cells and tissues. Delivery 
systems that allow this technology to be applied to many 
tissues will be a great advantage in its future use.

  The aim of this review is to describe to a broad reader-
ship of clinical endocrinologists the basics of this excel-
lent new methodology, which will be commonly used not 

only in laboratories, and therefore research, but also at 
the treatment and clinical levels. It summarizes the 
mechanisms underlying RNAi, and discusses some of the 
current methods used to ensure potent gene knockdown.

  History of Small RNAs 

 In the last decade, biology has been transformed by the 
discovery of small noncoding RNAs [20–30 nucleotide 
(nt)] that can regulate the expression of genes and ge-
nomes. Everything started when 2 research groups found 
that a small 21-nt RNA molecule called lin-4 controlled 
developmental timing in  C. elegans  by posttranscription-
al regulation of the gene  lin-14 . They also observed that 
 lin-4  did not code for a protein, but that it rather con-
tained antisense sequences being complementary to a re-
peated sequence element in the 3 �  untranslated region 
(UTR) of this very specific lin-14 mRNA. Therefore, it 
was hypothesized that lin-4 downregulates  lin-14  expres-
sion via an antisense RNA-RNA interaction  [4, 5] . First, 
the discovery of this new class of RNA was taken as an 
oddity of the  C. elegans  genome. However, 5 years later, 
Fire et al. [1] reported that exogenous dsRNA silenced 
specifically genes through a mechanism named RNAi  . 
Later focusing on the mechanism it became clear that 
RNAi relies on a cellular post-transcriptional gene regu-
latory mechanism that uses endogenously encoded 22-nt 
single-stranded RNAs to guide a ribonucleoprotein com-
plex (the RNA-induced silencing complex, RISC) to tar-
get the mRNAs ( fig. 1 )  [6] . Further, at least 1000 of these 
microRNAs (miRNAs) are found in the human genome; 
they are believed to have a key role in regulating verte-
brate differentiation and development  [6] . The miRNA 
biogenesis pathway includes 3 distinct RNA intermedi-
ates: the initial pri-miRNA, the pre-miRNA hairpin and 
the miRNA duplex ( fig. 2 ). All can be used as entry points 
to allow programming of RISC with artificial miRNAs 
call short interfering RNAs (siRNAs). Therefore, mi-
RNAs and siRNAs appeared to be distinguished in 2 pri-
mary ways. Firstly, miRNAs were viewed as endogenous 
and purposefully expressed products of an organism’s 
own genome, whereas siRNAs were thought to be pri-
marily exogenous in origin, derived directly from the vi-
rus, transposon, or transgene trigger. Secondly, miRNAs 
appeared to be processed from stem-loop precursors with 
incomplete double-stranded character, whereas siRNAs 
were found to be excised from long, fully complementary 
dsRNAs. It seemed clear that that the biogenesis of these 
small RNAs was different and by this point, the 2 catego-

  Fig. 1.  RNA interference mechanism. Long double-stranded RNA 
is introduced into the cytoplasm, where it is cleaved into small 
interfering RNA (siRNA) by the enzyme Dicer. Alternatively, si-
RNA can be introduced directly into the cell. The siRNA is then 
incorporated into the RNA-induced silencing complex (RISC), 
resulting in the cleavage of the passenger strand of RNA by argo-
naute2 (Ago2). The activated RISC-siRNA complex seeks out, 
binds to and degrades complementary mRNA, which leads to the 
silencing of the target gene. 
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ries of small RNAs had become firmly embedded in our 
view of the gene regulatory landscape: miRNAs, as regu-
lators of endogenous genes, and siRNAs, as defenders of 
genome integrity in response to foreign or invasive nucle-
ic acids such as viruses, transposons, and transgenes  [7] . 
In the following years more and more evidence suggested 
that miRNAs play an essential role in multiple biological 
processes and today they are suggested to regulate about 
30% of protein-coding genes  [8] .

  siRNA and miRNA Biogenesis in Mammalian Cells 

 A common characteristic of single-stranded forms of 
both miRNAs and siRNAs is that they associate with a 
multiprotein effector assembly known as the RISC  [9] . 
Dicer, an RNA III endoribonuclease first cleaves dsRNAs 
and, in association with TAR RNA-binding protein 
(TRBP) and argonaute 2 (Ago2) nucleate the formation of 
an active RISC to induce gene silencing  [10, 11] . Although 

the pathways followed by these 2 types of small RNAs are 
relatively similar, both have their own characteristics.

  siRNAs were originally believed to be mainly pro-
duced as a defence mechanism in response to foreign 
nucleic acid such as viral dsRNAs but more and more 
studies uncovered their endogenous genomic origin 
(endo-siRNA), and new roles related to transposons and 
gene regulation are emerging for this new class of small 
RNAs  [12] . In general, RNAi can be triggered by the 
presence of long pieces of dsRNAs (endogenous or exog-
enous), which are cleaved by Dicer into the fragments 
with 5 �  phosphates and 2-nucleotide 3 �  overhangs 
known as siRNAs (21–23   nt)  [13] . This phenomenon can 
be circumvented by the introduction of a synthetic
siRNA into the cells therefore avoiding processing from 
Dicer. Once in the cytoplasm, siRNA is incorporated 
into the RISC  [14]  and its main catalytic protein Ago2, 
incorporate the siRNA guide strand (or antisense 
strand), whereas the passenger strand (or sense strand) 
is cleaved  [15] . The activated RISC selectively seeks out 

  Fig. 2.  Animal miRNAs biogenesis pathway. Most microRNAs 
(miRNAs) are processed from primary transcripts (pri-miRNAs) 
which have a particular hairpin structure containing imperfectly 
base-paired stems. They are usually encoded within specific mi-
RNA genes or within introns of protein coding transcription units 
and are transcribed by RNA polymerase II. Therefore pri-mi-
RNAs can be caped by 7-methylguanosine (m 7 G) at their 5 �  site as 
well as polyadenylated at their 3 �  end (AAAAA). Following tran-
scription, the initiation step (cropping) is mediated by the Dro-
sha-DiGeorge syndrome critical region gene 8 (DGCR8) complex 

that generates  � 65-nucleotide pre-miRNAs. Pre-miRNAs have a 
short stem plus a  � 2-nucleotide 3 �  overhang, which is recognized 
by the nuclear export factor exportin 5. Upon export from the 
nucleus, the cytoplasmic RNase III Dicer catalyses the second 
processing (dicing) step to produce miRNA duplexes. Dicer, 
TRBP (TAR RNA-binding protein), and argonaute (Ago)1-4 me-
diate the processing of pre-miRNA into a mature miRNA guide 
of 20–22 nucleotides which is incorporated into the RNA-induced 
silencing complex (RISC), which in turn induce gene silencing at 
a posttranscriptional level. 
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and degrades mRNA that is complementary to the anti-
sense strand ( fig. 1 )  [16] .

  In contrast, endogenous miRNAs are typically encod-
ed within genes, introns or as separate transcription units 
and generated by a multiple-step process starting from a 
miRNA gene that will finally produce a mature miRNA. 
They are usually transcribed by polymerase II (POL II) 
and possess a specific hairpin-shaped stem-loop second-
ary structure that lacks perfect Watson-Crick comple-
mentarities  [17]  which can, like protein coding mRNAs, 
be caped by 7-methylguanosine at its 5 �  site as well as
being polyadenylated at its 3 �  end  [18] . The pri-miRNA 
hairpin enters a large microprocessor complex which is 
constituted of Drosha (RNase III endonuclease) and an 
essential cofactor, DiGeorge syndrome critical region 
gene 8 (DGCR8) (a protein containing 2 double-stranded 
RNA binding domains). DGCR8 first recognizes the dis-
tinct stem-loop structures and binds to the pri-miRNA. 
Drosha asymmetrically and specifically cuts both strands 
of the hairpin-shaped stem at the sites near the base of the 
stem loop and finally releases a 60- to 70-nucleotide pre-
miRNA that has a 5 �  phosphate and a 3 �  two-nucleotide 
overhang. The pre-miRNA is then transported to the cy-
toplasm by Exportin-5 (EXP5). Like siRNAs, once in the 
cytoplasm, pre-miRNAs are further processed by Dicer. 
Finally, miRNA is unwound, one strand of the duplex is 
degraded whereas the other strand, a mature miRNA 
guide of 20–22 nucleotides, is incorporated into RISC 
complex ( fig. 2 ) which in turn, induces gene silencing at 
a posttranscriptional level  [7, 11, 17] .

  Animal miRNA Biogenesis and Gene Regulation 

 miRNA can trigger post-transcriptional gene regula-
tion by base pairing of the guide strand with a target 
mRNA and subsequent mediation of translational re-
pression or mRNA degradation  [19] . Both siRNAs and 
miRNAs perfectly complementary to their target mRNA 
usually promote endonucleolytic cleavage. However, if 
mismatches and bulges are present during base pairing 
with mRNA, translational repression followed by de-
adenylation, decapping, and exonucleolytic cleavage 
(miRNA mediated mRNA decay) generally occurs  [7, 20] . 
These activities account for most miRNAs but other 
types of regulation, such as translational activation  [21]  
and heterochromatin formation  [22] , have also been de-
scribed.

  With few exceptions, animal miRNA-binding sites lie 
in the 3 �  UTR sequence and are usually present in mul-

tiple copies. A key feature of target mRNA recognition 
was determined by experimental and bioinformatic anal-
yses, and involves Watson-Crick base pairing of miRNA 
nucleotides 2–8, representing a so-called seed region. In 
addition to this, it was observed that GU pairs or mis-
matches in the seed region greatly affect repression, but 
are usually present in the central region of the miRNA-
mRNA duplex. Finally, reasonable complementarity to 
the miRNA 3 �  half is required to stabilize the duplex in-
teraction  [19] . Animal mRNAs can be targeted simulta-
neously by more than one miRNA species at multiple 
sites in the 3 �  UTR, leading to a degree of translational 
repression thought to be associated with the degree of 
miRNA-binding. In addition, the seed region and mRNA 
recognition with mismatches, enables the base pairing of 
a single miRNA with several targets of similar sequences 
 [23] . In contrast, most plant miRNAs bind with near-per-
fect complementarity to sites within the coding sequence 
of their targets and trigger endonucleolytic mRNA cleav-
age by an RNAi-like mechanism. In rare instances, a
similar mechanism is used by vertebrates  [19] . However, 
when synthetic siRNAs are specifically designed to en-
gage targets with imperfect complementarity they be-
come virtually indistinguishable from miRNAs in their 
silencing effects, and mediate translational repression 
and exonucleolytic degradation in a manner similar to 
miRNA silencing ( fig.  3 )  [24] . All these structural and 
functional aspects of endogenous miRNA can potential-
ly lead to off-target mRNA silencing  [25, 26]  and there-
fore experimental testing is required when designing 
synthetic siRNAs or miRNAs.

  Exogenous siRNA/miRNA Delivery, and Safety 
Concerns 

 There are several ways to artificially generate RNA 
molecules to silence gene expression. Historically, the 
first method used, mainly in worms and plants, involved 
the introduction of long dsRNAs complementary to a 
specific target sequence. However, long dsRNAs ( 1 30 nt) 
trigger an interferon response and the shutdown of cel-
lular protein expression in mammalian cells  [27] . This 
can be circumvented by the introduction of chemically 
synthesized siRNAs directly into the cytoplasm bypass-
ing the ‘dicing’ step. RNAi may also be mediated by short 
hairpin RNA (shRNA) cloned in a plasmid or a viral vec-
tor  [28] . The core of these constructs is constituted of a 
sequence of 21–29 nt, a short loop region, and the reverse 
complement of 21–29 nt region usually driven by a poly-
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merase III (POL III) promoter such as U6 or H1. When 
transcribed in vivo, this short transcript folds back on it-
self to form a hairpin structure which is transported in 
the cytoplasm and processed by Dicer to finally produce 
duplex RNA similar to siRNA. As the understanding of 
miRNA biogenesis advanced, a new generation of con-
structs expressing RNA hairpin more closely resembling 
endogenous miRNAs appeared. Zeng et al.  [24]  first de-
veloped a vector based on human miR-30, and showed 
that potent RNAi could be triggered by substituting the 
stem sequences of the miRNA precursor with unrelated 
base-paired sequences targeting a gene of interest. This 
initial work has led to the development of a new genera-
tion of miRNA-adapted shRNA (shRNAmir) vectors  [29]  

that enter the endogenous miRNA pathway starting with 
the transcription of an initial pri-mRNA.

  The use of shRNA vectors for RNAi was hampered 
when in 2006, Grimm et al. [30] evaluated the long-term 
high level expression of several shRNAs species delivered 
by adeno-associated vector in the liver of mice and 
showed that many animals presented a dose-dependent 
liver injury which was, in some cases, associated with 
morbidity. They concluded that toxicity was largely due 
to oversaturation of the endogenous small RNAs path-
way and that this could be overcome by optimizing sh-
RNA dose and sequence. Castanotto et al. [31] confirmed 
this concept when they performed studies on siRNA and 
found that siRNAs and shRNAs compete with the en-

  Fig. 3.  siRNA and miRNAs mode of action. Upon export from the 
nucleus, Dicer catalyses the dicing step to produce miRNA du-
plexes. Dicer, TAR RNA-binding protein (TRBP) and argonaute 
(Ago)1-4 process a mature miRNA guide and mediate its incor-
poration into the RNA-induced silencing complex (RISC). In an-
imals, miRNAs usually recognize their complementary mRNA 
imperfectly and block their expression by translation inhibition 

and further exonucleolytic degradation. miRNAs can follow the 
same pathway as observed for siRNAs of perfect complementar-
ity with their target mRNA, leading to Ago2-catalyzed mRNA 
cleavage (endonucleolytic cleavage) and further degradation of 
the remaining fragments. Other types of regulation have been re-
cently discovered, such as heterochromatin formation or activa-
tion of translation, but these are not yet well characterized.             
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