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G-7 INFLATION FORECASTS:
RANDOM WALK, PHILLIPS CURVE
OR WHAT ELSE?
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This paper compares the forecasting performance of some leading models of inflation for
G-7 countries. We show that bivariate and trivariate models suggested by economic theory
or statistical analysis are not much better than univariate ones. Phillips curve
specifications fit well into this class. Improvements in both the MSE of the forecasts and
turning point prediction are obtained with time-varying coefficients models, which exploit
international interdependencies. The performance of the latter class of models is stable
throughout the 1990s.

Keywords: G-7 Countries, Inflation, Panel VAR Models, Markov Chain Monte Carlo
Methods

(S)he was not hurting anybody, just running away.

S. Endo

1. INTRODUCTION

Because Central Banks have abandoned the control of monetary aggregates and
implemented inflation targeting rules directly or indirectly by means of aggressive
Taylor rules, forecasting inflation rates, both unconditionally or conditionally, has
become crucial for both policy makers and private agents who try to understand
and react to Central Banks decisions. Several methods have been proposed but the
overall performance has been, at best, mixed: the information provided by past
inflation appears to suffice and very few variables add marginal predictive content
to univariate specifications [see, e.g., Cecchetti, Chu, and Steindel (2001)].

Traditional forecasting models of inflation are motivated by a standard Phillips
curve trade-off. Blinder (1997) attributes the popularity of this specification to
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2 FABIO CANOVA

the stability of the relationship and its reliability as forecasting tool. Stock and
Watson (1999) criticized this conventional wisdom, showing that in the United
States, the parameters of a standard Phillips curve have changed over time; that
other measures of real activity forecast inflation better than the unemployment
rate, and that combining forecasts produced by different specifications improves
the performance of a model which only uses the unemployment rate. Atkeson and
Ohanian (2001) also criticize this view by showing that Phillips curve forecast
of U.S. inflation over a 15-year period are no better than those obtained from a
random walk model. The instability of the forecasting relationships is not limited
to traditional Phillips curve based models but extends to other theoretical or ad hoc
empirical models used in the literature [see, e.g., models that include asset prices,
for example, Stock and Watson (2000), Goodhart and Hoffman (2000), Marcellino
(2002)]. Although forecasting specifications built adding one indicator of real
activity at the time work poorly and tend to be unstable, some improvements have
been documented by Cristadoro et al. (Forthcoming), Wright (2003), Granger
and Yeon (2004), and Inoue and Kilian (2003), using methods that combine
information obtained from many predictors.

In this paper, we explore the interaction between predictability and instability
by comparing the forecasting performance of some leading models for inflation in
G-7 countries. To narrow down the scope of the comparison, we focus attention
on four different but interrelated questions. First, we would like to investigate how
models that rely on a Phillips curve or other theoretical relationships fare relative
to univariate (a-theoretical) models. Our cross-country perspective here can help
to shed light on whether U.S. results are unique or common to the most developed
countries. Second, we are interested in knowing whether there is information in
other domestic variables (which may or may not have theoretical underpinning)
useful for forecasting inflation. Third, we would like to know whether models
that allow for parameter drifts improve the performance of specifications which
force coefficients to be constant over time. Finally, we want to study whether
cross-country information helps in forecasting domestic inflation rates.

Our analysis concentrates on CPI inflation but the results are qualitatively
similar to those obtained using GDP deflator inflation. We are concerned with
three forecasting horizons that are of interest to policy makers: one quarter, one
year, and two years. We calculate statistics measuring the average magnitude of
the squared forecast errors and the ability to predict turning points of inflation.
Our sample covers the period 1980:1–2000:4, and the last five years are typically
used to evaluate the performance of various specifications. In all cases, models are
estimated recursively and out-of-sample forecasts computed using the information
available at each t .

We consider several models in our horse race. First, as a benchmark, we estimate
ARIMA models, identified with a standard approach, and AR models, where the
lag length optimizes the trade-off between the number of lags and the in-sample
forecasting performance. To address the first question, we consider nine alterna-
tive bivariate AR specifications: two with a standard Phillips curve relationship
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G-7 INFLATION FORECASTS 3

(standardized unemployment rate and employment growth) and one with a New
Keynesian version of it (labor income share), two with measures of real activity
(output gap and GDP growth), two with monetary variables (nominal M2 growth
and real M2 growth) and two with financial indicators (the slope of the nominal
term structure and nominal stock returns). We find that theory-based bivariate
models improve over univariate a-theoretical specifications at long but not at short
horizons. Also, we find that the performance of these models is country dependent.
Interestingly, a New Keynesian Phillips curve is never best in the race, whereas
in France, Italy, and Germany, where a traditional Phillips curve is preferred, the
MSE at the one-step horizon is broadly equivalent to the one of univariate spec-
ifications. As in Stock and Watson (1999), we find that conclusions concerning
the relative ordering of bivariate models are tenuous: changing the forecasting
sample at times alters the ranking of models and their MSE performance relative
to univariate models. Finally, the collection of best bivariate models are roughly
equivalent to univariate models in terms of turning point predictions at all horizons.

To examine the second question, we study the performance of trivariate unre-
stricted VAR (UVAR) and BVAR models. We find that the MSE of the forecasts
can be reduced in some countries and at long horizons but that turning point recog-
nition does not improve. Adding a Bayesian prior helps. However, on average, a
BVAR is hardly better than an univariate AR model and a UVAR is actually worse.

To investigate whether the presence of parameter drifts improves the quality
of the forecasts, we estimate univariate AR and BVAR models with time varying
coefficients. The added flexibility, in general, reduces the MSE of the forecasts
of univariate AR models and turning point recognition improves, primarily at
the one quarter horizon. Adding time variation to the BVAR model, by contrast,
systematically reduces the MSE of the forecasts only in two countries. Some
improvements, on average, over the fixed coefficient model are noticeable at all
horizons but no improvements over the TVC-AR model occur.

Finally, to evaluate whether international information is useful to forecast do-
mestic inflation, we consider four specifications: one that uses as predetermined
in country-specific BVAR variables capturing the state of the world economy
(commodity prices, U.S. GDP growth, and the median stock return in the G-7); a
BVAR model that includes the seven inflation rates and the same three predeter-
mined variables considered in the previous model; a factor model along the lines
of Stock and Watson (1999) and Cristadoro et al. (Forthcoming); and a version
of the panel BVAR model studied by Canova and Ciccarelli (2002) and (2004),
in which the vector of coefficients is moved by a restricted number of indices
capturing common, country specific or variable specific effects. Except for the
factor model, time variations are allowed in all setups. With the first specification,
MSE improvements both over univariate models and domestic BVAR models are
visible primarily at longer horizons and this improved performance is matched
by more appropriate turning point detection. Interestingly, this model produces
the best one quarter ahead forecast of U.S. inflation. The second specification is,
on average, roughly equivalent in MSE to the first one. Also, the turning point
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4 FABIO CANOVA

recognition of this specification is reasonably good. The index model produces
the best overall MSE of the forecasts at all horizons for Germany, France, and
at two horizons for Italy, Japan, and Canada. MSE gains are pronounced and
robust across forecasting samples: in fact, the forecasts produced by this model
one and two years ahead track reasonably well actual inflation in the G-7, with
no visible change in the performance across the two halves of the 1990s. The
MSE superiority is matched by the record of turning point predictions, which is
the best of all models. Comparing the outcomes of these three models with those
of the factor model, one can conclude that cross-sectional information helps in
forecasting, but it is only when it is used in conjunction with time variations in the
coefficients that large improvements are obtained.

In summary, although forecasting inflation rates is difficult and the temptation
to rely on naive models is widespread, shrewdly chosen models do improve over
univariate ones. The forecasting performance of standard or modified Phillips
curve models and of other small-scale fixed coefficients specifications that ex-
ploit only domestic interdependencies is far from appealing in the majority of
the G-7 countries. However, multivariate models with time-varying coefficients
and some international linkages improve on univariate ones, both with fixed and
time-varying coefficients. Economically, this is reasonable: the inflation process
displayed changes over the sample and there appears to be a common component
in the international swings of inflation over time. Our results show that taking into
account these two factors may turn around the standard bias-variance trade-off,
which favors simple and parsimonious models in prediction.

The rest of the paper is organized as follows: the next section describes the
specifications used and the data employed. Section 3 presents the statistics used.
Section 4 examines the performance of the various specifications. Section 5 con-
cludes.

2. THE SPECIFICATIONS

Our sample covers quarterly data from 1980:1 to 2000:4—1980 is chosen because
comparable G-7 data is available only from this date on—and we use the last
five years to evaluate the performance of various forecasting specifications. In
some exercises, we use the 1980s to estimate various models and the sample
1991:1–1995:4 to evaluate the forecasting performance. When we use a data-
based Bayesian prior, whatever information is available before 1980 was employed
to estimate the hyperparameters of the prior. Details about the sources and the
preliminary transformations are in Appendix A. All the comparisons are performed
using out-of-sample predictions. That is, models are estimated recursively and
forecasts computed at one, four, and eight quarters ahead using the information
available at each t . Multistep forecasts are obtained directly fitting the models
at the required horizon. This avoids the need to specify an auxiliary model for
the exogenous variables, whenever they appear in the specification. All models
include intercepts.
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G-7 INFLATION FORECASTS 5

We collect two types of forecasting statistics, the MSE and the number of
correct turning point signals. To avoid problems with the units of measurement
of the variables in different models, we present Theil-U statistics (the ratio of the
MSE of the model to the MSE of a no-change model), which immediately allows
us to compare the performance relative to a random walk model. Results obtained
using Mean Absolute Deviation (MAD) statistics are broadly similar and omitted
for reason of space. Turning point predictions are calculated using a two quarters
rule, as detailed in the next section. Complementing synthetic MSE measures with
turning point detection is important because MSE reduction can be achieved by
altering the timing and the direction of the forecasts. Therefore, an evaluation
exercise based on both provides a more complete picture of the properties of
various specifications.

2.1. Univariate Models

We consider two univariate specifications: ARIMA and AR models. For the first
type of models the specification is identified using plots of autocorrelation and
the partial autocorrelation functions. For AR models, the lag length is selected
using the Schwarz criteria (SIC), which trades off the increase in the explanatory
power obtained with additional lags with a penalty on the dimensionality of the
model. The results we present are roughly insensitive to the criterion employed.
Had we used Hannan and Quinn criteria, the ranking presented here would have
been unchanged.

2.2. Bivariate Models

We considered nine bivariate models. Together with inflation we use unemploy-
ment, employment growth, the labor income share, output gap, output growth,
money growth, real money growth, and the slope of the term structure or stock
returns. This choice of variables is motivated by straightforward theoretical ar-
guments. The first five specifications embody notions of traditional and New
Keynesian Phillips curve [see Gali and Gertler (1999), Mankiw (2001)]. (Real)
Money growth has been selected since inflation in the long run must be a monetary
phenomena; the slope of the term structure is selected following work by Plosser
and Rowenshort (1994) and the notion that monetary shocks are typically transmit-
ted to the real economy via changes in the slope of the term structure at different
horizons [see, e.g., Evans and Marshall (1998)]. Nominal stock returns are used
since they are considered a good hedge against inflation [see Fama (1970)]. For
all bivariate models, the lag length is chosen using the Schwarz criteria.

2.3. Unrestricted VARs (UVAR)

The UVAR models we consider include domestic variables only. We search for
the best specification using GDP (growth and gap), stock returns, the slope of
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6 FABIO CANOVA

the term structure, wage and rent inflation, real and nominal exchange rate, unit
labor costs inflation (when available), capacity utilization, unemployment rate and
employment (rate and level) and the labor force as possible predictors. The search
is limited to these variables because they are the only ones available on a consis-
tent basis across the G-7. To avoid excessive data mining and large specifications,
we restricted attention to three variable models and choose among all possible
combinations the two variables that give the smallest MSE for inflation in each
country over the estimation sample. The chosen variables differ across countries:
for the United States, the trivariate model includes inflation, the output gap, and
the labor force; for Japan, inflation, the output gap, and the real exchange rate;
for Germany, inflation, employment growth, and unit labor costs; for the United
Kingdom, inflation, stock returns, and unit labor costs; for France, inflation, rent,
and wage inflation; for Italy, inflation, the unemployment rate, and rent infla-
tion; for Canada, inflation, the output gap, and stock returns. The heterogeneity
is more apparent than practical because many variables have similar predictive
power. The lag length of the model in each country is selected using the Schwarz
criteria.

2.4. Bayesian VARs (BVAR)

The Bayesian VAR (BVAR) models used here are standard and, at this stage, we
keep the prior specification very simple. Because we are interested in relative
comparisons, the variables for each country are the same used in the UVAR. The
model is:

yt = BtYt + Ct + et (1)

Dt = D0 + ut , (2)

where Yt = [yt−j , yt−j−1, . . . , yt−j−p], j = 1, 4, 8, Dt = vec[B ′
t , C

′
t ], et ∼

(0, �e) and ut ∼ (0, �u). (2) describes the prior of the model. We follow the
standard specification of the so-called Minnesota Prior and set D0 = 0, except
on the first lag of the dependent variable in each equation and use one param-
eter θ1 to trade off the forecasting information in the mean of the first lag. The
structure of �u is standard: one parameter controls the general tightness of the
specification (θ2), one the decay of the prior variance as the lag length increases
(θ3), and one weights the relative contribution of lags of other variables in each
equation (θ4). The prior for Ct is noninformative (θ5 = 1000). Estimates of the
four parameters can obtained informally, using a rough specification search over
a grid of values, or formally, maximizing the predictive density of the model in an
Empirical Bayes fashion. Here we use the second approach and we revert to infor-
mal searches whenever the maximization algorithm failed to converge. Estimates
of the hyperparameter vector are similar but not identical across countries (see
Table 1).
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TABLE 1. Hyperparameter estimates

Parameter US Japan Germany UK France Italy Canada

BVAR

θ1 1.0 1.0 0.0 0.0 0.0 0.0 1.0
θ2 0.05 0.25 0.20 0.55 0.30 0.15 0.1
θ3 −1.5 2.0 2.0 1.0 0.0 2.0 2.0
θ4 1.0 0.5 1.0 0.5 1.0 1.0 0.05

Univariate-TVC

θ1 1.0 1.0 1.0 1.0 1.0 0.0 1.0
θ2 0.02 0.122 0.062 0.062 0.062 0.022 0.062
θ3 0.6 2.0 2.0 2.0 1.0 1.0 1.0
θ5 10000 100 100 10000 10000 10000 10000
θ6 1.0 1.0 1.0 1.0 1.0 1.0 1.0
θ7 1.0e-6 1.0e-7 1.0e-7 3.6e-5 4.5e-5 1.46e-4 1.0e-7

BVAR-TVC

θ1 1.0 1.0 0.0 0.0 0.0 0.0 1.0
θ2 0.1 0.15 0.05 0.2 0.1 0.1 0.05
θ3 −1.5 3.0 2.0 0.0 −0.5 0.4 4.0
θ4 0.02 0.05 0.5 0.02 0.07 0.30 0.05
θ5 10 10 10 10 10 10 10
θ6 1.0 1.0 1.0 1.0 1.0 0.98 0.98
θ7 0.0 0.0 1.0e-7 0.0 1.0e-6 1.0e-8 0.0
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TABLE 1. (Continued.)

Parameter US Japan Germany UK France Italy Canada

BVAR-I

θ5 30 10 10 0.1 1.0 35 0.01

7-BVAR

θ1 1.0 1.0 1.0 1.0 1.0 1.0 1.0
θ2 0.15 0.15 0.4 0.4 0.4 0.4 0.15
θ3 5.0 5.0 5.0 5.0 5.0 5.0 5.0
θ4 [0.05,0.25] [0.05,0.25] [0.05,0.35] [0.05,0.35] [0.05,0.35] [0.05,0.35] [0.05,0.25]
θ5 30 10 10 10 10 35 10
θ6 1.0 1.0 1.0 1.0 1.0 1.0 0.99
θ7 1.0e-7 1.0e-6 1.0e-7 1.0e-7 1.0e-6 1.0e-7 1.0e-7

Notes: θ1 controls the mean of the first (or fourth) lag; θ2 the general tightness, θ3 the harmonic decay of the variance of the lags, θ4 the weight on variables other
than the dependent one, θ5 the prior variance on the exogenous variables, θ6 the decay toward the mean, and θ7 the time variations in the law of motion of the
coefficients. θ1, θ2, θ3, θ4, θ6, θ7 for the BVAR-I are the same as those of the BVAR-TVC.
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G-7 INFLATION FORECASTS 9

2.5. Time Varying Coefficient Models (TVC)

We consider two TVC models: a BAR and a BVAR. Because their specification is
similar, we describe them in one single framework. The models have the structure:

yt = BtYt + Ct + et (3)

Dt = PDt−1 + (I − P)D0 + ut , (4)

where P is a matrix, I the identity matrix, yt is a scalar in the univariate model and
it is a 3 × 1 vector in the BVAR, and all the other variables have been previous
defined. The major difference between (2) and (4) is that Dt is allowed to evolve
over time in a geometric fashion and that the variance of ut (denoted by �ut ) is
also allowed to vary over time.

We parametrize these two additional features as follows: we let P = θ6 ∗ I with
θ6 < 1 and set �ut = θ7 ∗ �u0, where �u0 has the same structure as �u described
in the previous subsection (for univariate models, the parameter controlling the
importance of lag of other variables θ4 is set to 1). Here θ7 controls how much
time variation there is in the evolution of the law of motion of the coefficients and
θ6 the extent of the mean reversion of the coefficient vector. Clearly, if θ6 = 1 and
θ7 = 0, no time variation in the coefficients is necessary. We experimented with a
different structure for D0, along the lines of Canova (1993b) to take into account
of predictability over the calendar year. That is, the prior mean of lag j = 1, 4, 8 of
the dependent variable is θ1 and the prior mean of lag j − 4 is 1 − θ1. Estimates
of the vector � are obtained by maximizing the predictive density and when the
maximization algorithm failed to convergence the analysis is supplemented with
a rough grid search. As with BVARs, the final specifications are similar although
not identical across countries. Hyperparameter estimates for the models are shown
in Table 1.

2.6. International Models

We consider different specifications in this class of models. The first one adds
as predetermined to the previous BVAR models (with or without time varying
coefficients, whichever is the best) variables controlling for demand and sup-
ply pressures in international markets. The variables we use are: a commodity
price index, U.S. GDP growth, and the median stock returns across the G-7,
and they enter the specification in all countries with one lag. The prior for the
coefficients on these variables has a zero mean and variance regulated by the
hyperparameter θ5.

The second specification is a BVAR with the G-7 inflation rates augmented
with the same international factors used in the previous specification. The prior
depends on the same seven hyperparameters we have used in the previous setup
and estimates are reported in Table 1.
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10 FABIO CANOVA

Because these two specifications take a rough short cut to the problem of spec-
ifying interdependencies that may leave out important aspects of the international
transmission, the third specification explicitly models these features. The model
is:

yit = Bit (�)Yt + Cit + eit , (5)

where i = 1, . . . , N; t = 1, . . . , T ; yit is a G × 1 vector for each country
i, Yt = (y ′

1t−j , y
′
2t−j , . . . y

′
Nt−j )

′, Bh
it are G × GN matrices, Cit is G × 1, and

eit is a G × 1 vector of random disturbances. Here we have p lags for the NG

endogenous variables and interdependencies among units are allowed whenever
Bh

it,r �= 0 for h �= i and for any r . This generalization is not without costs: the
number of parameters is greatly increased (we have now k = NGp+1 parameters
each equation); furthermore, the G variables entering the VAR must be the same
for each unit.

Canova and Ciccarelli (2004) showed that cross-country interdependencies are
important in predicting output growth across countries. To reduce the dimensional-
ity of the Parameter vector, they assumed a two components hierarchical structure:
the coefficients have a time-invariant component, which randomly varies over the
cross-section, and a time-varying one, which drifts over time as in equation (4).
In that specification the dimensionality of the time-varying component may still
be large. To circumvent this problem, Canova and Ciccarelli (2002) use an index
structure. To adapt their structure to the present context, rewrite equation (5) as:

Yt = Mtδt + Et, (6)

where Mt = ING ⊗ X′
t ; Xt = (Y ′

t−1, . . . , Y
′
t−p, 1)′, δt = (δ′

1t , . . . , δ
′
Nt )

′, δit =
(γ 1′

it , . . . , γ G′
it )′. Here γ

g

it are k × 1 vectors containing, stacked, the g rows of
the matrices Bit and Cit , whereas Yt and Et are NG × 1 vectors containing the
endogenous variables and the disturbances of the model.

If δit varies with cross-sectional units in different time periods, it is impossi-
ble to obtain meaningful estimates using classical methods. Here, we view each
coefficient as random (as we have done with TVC models) and assume that:

δt = �1αt + �2λt + �3ρt + ut , (7)

where �1 is a N · G · k × N matrix of ones and zeros, �2 is a N · G · k × 1 vector
of ones, and �3 is a N · G · k × G matrix of zeros and ones. Let θt = (αt , λt , ρt )

and rewrite (7) as δt = �θt + ut where � = [�1, �2, �3]. We further assume

1. Conditional on Mt , Et has a normal distribution with covariance �E = � ⊗ H,

where � is N × N and H is G × G, both positive definite and symmetric matrices.
2. The NGk × 1 vector ut is normally distributed with covariance �E ⊗ V , where V is

a k × k matrix of the form V = σ 2Ik .
3. θt has a structure of the form:

θt = (I − C)θ0 + Cθt−1 + ηt ηt ∼ N(0, Bt ), (8)
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where C is a full-rank known matrix and

Bt = γ1 ∗ Bt−1 + γ2 ∗ B0 = ξt ∗ B0, (9)

where ξt = γ t
1 + γ2

(1 − γ t
1 )

(1 − γ1)
, B0 = diag(B01, B02, B03), and γ1, γ2 are known.

4. ut , ηt , Et are mutually independent.

Using (5) into (6) we can write the model as:

Yt = Atαt + Wt λt + Zt ρt + vt , (10)

where At = Mt�1, Wt = Mt�2 and Zt = Mt�3.
In equation (10) the NG × 1 vector Yt depends on a N × 1 vector of unit

specific coefficients αt , a common coefficient λt and a G × 1 vector of variable
specific coefficients ρt (for a total of N + G + 1 as opposed to the original NGk

coefficients). Additional indices relating, for example, to the lags, or combination
of all the previous ones (e.g. country-variable, country-lag, etc.) can be similarly
added. Because the regressors in equation (10) are particular combinations of the
lags of the VAR variables, the coefficients λt , αt , ρt can be interpreted as “factor
loadings” and measure the impact that different linear combinations of the lags
of the right hand side variables have on the current endogenous variables. Hence,
we have reparametrized the panel VAR model to have a hierarchical structure
composed of (10)–(8)–(9), which is convenient to estimate.

Posterior estimates for θt can be obtained using Monte Carlo Markov Chain
methods after appropriate prior distributions for (�E, σ−2, B−1

0 ) are selected.
The Gibbs sampler is particularly useful in our case because a vector of condi-
tional posteriors can be easily obtained. Details on the algorithm are shown in
Appendix B.

Stock and Watson (2002), Cristadoro et al. (Forthcoming), and others have
examined panel models where either N or G or both are large. Their approach is
to set up the problem so that it can be handled in the context of (dynamic) factor
models with classical methods. Three features differentiate our approach from
their: first, indices are a priori determined by the interest of the researcher through
a hierarchical prior. Second, the coefficients on our indices are allowed to vary
over time. Third, posterior distributions are exact even in small samples, whereas
their approach requires N or G to be large for estimates to be meaningful.

Although the first difference is probably minor, the second could be important in
forecasting inflation and the third relevant when, as it is the case here, both N and
G are small. To assess the importance of these two features, we also considered a
factor model where the seven inflation rates are regressed on the lags of a (subset)
of the static factors obtained from the same variables used in the panel VAR.
We use Bai and Ng’s (2002) ICp1 criteria to select the number of factors and,
conditional on the results, the SIC criteria is used to select the lag length of the
regressions.
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12 FABIO CANOVA

3. THE FORECASTING STATISTICS

To compare the performance of the various specifications and the improvements
obtained by the addition of each feature, we report a linear statistic (Theil-U
statistics at one, four, and eight quarters ahead, or ratio of MSE of the model to the
best univariate model at these three horizons) (Table 2) and a nonlinear one (turning
point predictions). In comparing Bayesian models, we supplement the analysis by
computing predictive Bayes factors, that is, we compute PBF = f (yt+j |M1)/

f (yt+j |M2), where f (yt+j |Mi ) = ∫
f (yt+j | Di,Mi , yt )g(Di | yt ,Mi )dDi ,

where Mi is model i = 1, 2 and Di its parameters, numerically drawing Di from
the posterior g(Di | yt ,Mi ) and averaging over draws.

Turning point predictions can be computed from the predictive density of future
observations. We define turning points as follows:

DEFINITION 3.1. A downward turn for unit i at time t + h + 1 occurs if yi
t+h,

the reference variable, satisfies for all h yi
t+h−2, yi

t+h−1 < yi
t+h > yi

t+h+1. An
upward turn for unit i at time t + h + 1 occurs if the reference variable satisfies
yi

t+h−2, yi
t+h−1 > yi

t+h < yi
t+h+1.

Similarly, we define a nondownward turn and a nonupward turn:

DEFINITION 3.2. A nondownward turn for unit i at time t + h + 1 occurs if
yi

t+h satisfies for all h yi
t+h−2, y

i
t+h−1 < yi

t+h ≤ yi
t+h+1. A nonupward turn for unit

i at time t + h + 1 occurs if yi
t+h satisfies yi

t+h−2, y
i
t+h−1 > yi

t+h ≥ yi
t+h+1.

Although there are other definitions in the literature [see, e.g., Lahiri and Moore
(1991)] this is the most used one and suffices for our purposes. Let f̃ (yi

t+j | Ft) =∫
Y

p

t+j
f (Yt+j | Ft)dY

p

t+j be the marginal predictive density for the variables of
unit i after integrating the remaining variables and let K(yi1

t+j | Ft) = ∫
. . .

∫
f (yi1

t+j . . . yiG
t+j | Ft)dyi2

t+j . . . dyiG
t+j be the marginal predictive density for infla-

tion, which we order first in the list for unit i.
We compute turning point predictions one, four, and eight quarters ahead, using

the information available at each t . Then, given the marginal predictive density K,
the probability of a downturn in unit i is

PDt = Pr
(
y1i

t+1 < y1i
t

∣∣ y1i
t−2, y

i1
t−1 < yi1

t , Ft

)
=

∫ y1i
t

−∞
K

(
y1i

t+1

∣∣ y1i
t−2, y

1i
t−1, y

1i
t , Ft

)
dy1i

t , (11)

and the probability of an upturn is

PUt = Pr
(
y1i

t+1 > y1i
t

∣∣ yi1
t−2, y

i1
t−1 > yi1

t , Ft

)
=

∫ ∞

y1i
t

K
(
y1i

t+1

∣∣ y1i
t−2, y

1i
t−1, y

1i
t , Ft

)
dSi1

t . (12)

Using a numerical sample from the predictive density satisfying y1i
t−2, y1i

t−1 <

(>)y1i
t , we can approximate these probabilities using the frequencies of
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TABLE 2. Theil-U statistics, 1996:1–2000:4

TVC TVC
Country Step ARIMA AR Bivariate VAR BVAR AR BVAR BVAR-I 7-BVAR Factor Index

US 1 1.21 0.89 1.09 1.20 0.86 0.92 0.86 0.79 0.82 1.23 0.95
4 1.04 1.11 1.00 1.38 0.97 0.92 0.97 0.94 0.96 1.23 0.97
8 0.94 1.19 0.96 0.85 0.79 0.91 0.79 0.80 0.86 1.05 0.49

JP 1 0.68 0.82 0.71 0.67 0.59 0.73 0.59 0.67 0.79 0.57 0.57
4 0.72 0.91 0.73 0.97 0.89 0.83 0.89 0.79 0.76 0.97 1.03
8 0.53 1.06 0.61 0.94 0.99 0.88 0.99 0.98 0.84 0.96 0.82

GE 1 0.83 0.75 0.77 1.05 0.87 0.79 0.76 0.82 0.84 0.67 0.54
4 1.05 1.05 1.03 1.32 0.97 0.97 1.18 0.91 0.91 0.92 0.80
8 1.03 1.29 0.97 1.98 1.98 1.11 1.32 1.06 1.00 0.99 0.60

UK 1 0.90 0.93 0.81 1.00 0.96 0.83 0.96 0.98 0.86 0.57 0.58
4 1.01 1.14 0.90 1.24 0.98 0.88 1.04 1.01 0.81 0.87 1.11
8 0.90 1.29 0.96 1.05 1.45 0.85 1.45 1.44 1.22 1.58 1.37

FR 1 0.92 0.91 0.95 0.86 0.86 0.76 0.79 0.79 0.83 0.91 0.59
4 1.11 1.00 0.92 0.80 0.80 0.90 0.80 0.79 0.96 0.98 0.68
8 1.25 1.30 0.84 0.66 0.66 0.91 0.88 0.89 0.77 1.23 0.60

IT 1 0.93 1.00 0.98 0.93 0.91 0.73 0.71 0.77 0.89 0.86 0.73
4 1.04 1.35 1.05 1.62 1.62 1.06 0.94 0.77 0.94 1.11 0.57
8 1.63 2.00 1.02 2.14 2.14 1.14 0.83 0.70 1.36 1.88 0.62

CA 1 1.15 0.86 0.91 1.78 0.95 0.85 0.95 0.90 0.72 1.11 0.72
4 1.74 0.84 0.90 1.60 0.80 0.88 0.80 0.65 0.94 1.02 0.64
8 2.09 0.96 0.81 1.01 0.66 0.82 0.66 0.52 0.82 1.02 0.55

Median 1 0.92 0.89 0.91 1.00 0.87 0.79 0.79 0.79 0.83 0.86 0.59
4 1.04 1.05 0.92 1.32 0.97 0.90 0.94 0.79 0.94 0.98 0.80
8 1.03 1.29 0.96 1.01 0.99 0.91 0.88 0.89 0.86 1.05 0.60

Mean 1 0.93 0.88 0.89 1.07 0.87 0.80 0.82 0.80 0.82 0.85 0.67
4 1.09 1.06 0.86 1.28 1.00 0.92 0.94 0.84 0.89 1.00 0.83
8 1.19 1.55 0.90 1.23 1.22 0.95 0.98 0.80 0.98 1.24 0.72

Notes: The bivariate column reports results obtained with inflation and GDP gap for US and Canada; inflation and employment growth for Germany and Italy; inflation and the unemployment
rate for France, inflation and M2 growth for Japan; inflation and stock returns for the United Kingdom. BVAR-I is the BVAR with international variables; 7-BVAR is a model with inflation
interdependencies; Index is a Panel BVAR model with an index structure; Factor is a factor model. Numbers in boldface indicate the smallest values. Posterior standard errors for the
Bayesian specifications are of the order of 0.03 at the first step, 0.04 at the fourth step, and 0.05 at the eighth step.
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TABLE 3. Turning point predictions, 1996:1–2000:4

1-Step 4-Step 8-Step

Model DT&NDT UP&NUP DT&NDT UP&NUP DT&NDT UP&NUP

True 52 46 43 41 34 28
ARIMA 39 34 27 27 23 18
AR 36 35 29 29 20 21
Bivariate 37 33 30 29 20 21
VAR 36 32 24 27 20 17
BVAR 36 32 29 30 22 19
TVC-AR 38 36 31 26 23 19
TVC-BVAR 36 34 27 28 21 20
BVAR-I 37 36 31 30 19 21
7-BVAR 36 35 29 28 21 21
Factor 36 30 24 28 15 21
Index 39 37 31 34 24 23

Notes: DT&NDT indicates downturns and no-downturns, UT&NUT indicates upturns and no-upturns as defined in
Section 3. Under the heading bivariate we report the number turning point recognized by the collection of the best
bivariate models for each country. In bold are the best models.

realizations which are less then or greater then yi
t . With a symmetric loss function,

minimization of the expected loss leads us to predict the occurrence of turning
point at t + 1 if PDt > 0.5 or PUt > 0.5.

Because some methods are univariate and other multivariate, a comparison
country by country may be inadequate. Therefore, we report turning point pre-
dictions for the seven countries as a whole in each procedure. That is, for the 20
periods in the forecasting sample, we compute forecasts and check whether at
each date they satisfy the required condition for each country. Table 3 reports the
number of correct signals found.

4. THE RESULTS

In the working paper version [Canova (2002)] we described in details the features
of the distribution, the autocorrelation and the cross correlation function of inflation
in various countries. To summarize, there are instabilities in all the statistics we
collect when comparing the estimation sample (1980–1995) and the forecasting
sample (1996–2000). The largest differences appear to be in the autocorrelation
function of inflation and in the cross-correlation function of inflation rates across
countries. Although these differences may be a result of the smaller size of the latter
sample, they are suggestive of the difficulties that models may face in forecasting
inflation rates over time.

AR models improve the MSE of the naive no-change model in six of the
seven countries at the shortest horizon but appear to be consistently superior to
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a random walk only for Canada, where the gains are, on average, about 10%.
Bootstrapping the forecasting residuals, 1000 times, we find that the probability
that the Theil-U at the one-step horizon is greater or equal to one is negligible
for all countries but Italy.1 At longer horizons, the results are less clear cut, and
excluding Japan at the four-quarter horizon and Canada at the four- and eight-
quarter horizon, one falls within or below the estimated one standard error band
for the Theil-U at that horizon. ARIMA specifications produce uniformly smaller
MSEs than those of the AR model in Japan, whereas in Canada they are uniformly
larger; in all other countries results depend on the horizon. Average and median
Theil-U measures confirm this pattern: the ARIMA dominates the AR model only
at the longest horizon.

Despite these shortcoming, both models are surprisingly accurate in predicting
turning points. On average about two-thirds of the turning points are recognized:
the ARIMA model is somewhat better at one step and the AR model more accurate
at the four-step horizon. At the eight-step horizon, the two models have similar
performance.

4.1. Can Theory-Based Models Improve Atheoretical Ones?

The answer is “it depends.” There are countries where theory-based bivariate
models improve the MSE of univariate specifications and countries where the
opposite is true. Furthermore, situations where bivariate models are worse than
the naive no-change model are also present. For example, in the United Kingdom
(Japan) at the one-step horizon, six (four) of the nine bivariate models improve in
MSE sense univariate models, whereas for the United States none of the bivariate
models beats a AR model or a no-change model. Results also depend on the
horizon. The best bivariate U.K. model produces a MSE, which is 10% lower at
the one- and four-step horizons but higher then the one of an ARIMA model at
the eight step horizon. By contrast, in Italy, France, and Canada the best bivariate
model is superior to the best univariate specification at long horizons by more than
10%. On average or in the median, the outcomes confirm to be far from uniform
and only at longer horizons the performance of bivariate models becomes more
encouraging.

The collection of the best bivariate models is roughly equivalent to AR models
in terms of turning point recognition at all horizons. Because these results are
obtained employing the best specification in each country, it should be clear that
using the same specification for all countries would do no better.

Because there is evidence that forecast combinations are preferable to single
model forecasts [see Granger and Yeon (2004), Stock and Watson (2002), Wright
(2003)], we also computed the MSE produced by equally weighting the output
of the nine bivariate models. As Table 4 indicates, it is possible to improve over
individual models in certain countries and at certain horizons. Nevertheless, it is
remarkable that a random walk is still best in the United States at the one-quarter
horizon.
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TABLE 4. Bivariate, Theil-U statistics, 1996:1–2000:4

Best Phillips curve Money Combination

Country 1-Step 4-Step 8-Step 1-Step 4-Step 8-Step 1-Step 4-Step 8-Step 1-Step 4-Step 8-Step

US 1.09 1.00 0.96 1.24 1.03 0.90 1.12 1.02 0.79 1.02 0.93 0.90
Japan 0.71 0.73 0.61 0.83 0.79 0.80 0.71 0.73 0.61 0.73 0.75 0.73
Germany 0.77 1.03 0.97 0.77 1.03 0.97 0.96(∗) 0.95(∗) 0.88(∗) 0.80 0.88 0.79
UK 0.81 0.90 0.96 0.89 0.97 1.07 0.83 0.82 1.11 0.74 0.76 0.88
France 0.95 0.92 0.84 0.95 0.92 0.84 1.04(∗) 1.12(∗) 0.92(∗) 0.80 0.83 0.89
Italy 0.98 1.05 1.02 0.98 1.05 1.10 0.99(∗) 1.19(∗) 0.97(∗) 0.90 0.88 0.94
Canada 0.91 0.90 0.81 0.87 1.03 0.78 1.03 1.32 1.24 0.91 1.08 1.00

Median 0.91 0.92 0.96 0.89 1.03 0.94 0.99 1.02 0.92 0.80 0.88 0.89
Mean 0.89 0.86 0.90 0.93 0.99 0.94 0.97 1.02 0.93 0.85 0.88 0.83

Notes: A (∗) indicates the forecasting sample 1996:1–1998:4. Bootstrap standard errors for all models are of the order of 0.02 at the first step, 0.04 at the fourth step, and 0.08 at the eighth
step.
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FIGURE 1. Relative MSE: bivariate vs univariate model. Vertical axis 1996–2000, horizontal
axis 1990–1995.

Stock and Watson (1999) argued that when a bivariate model has an edge over
other specifications in a sample, it typically performs poorly in others, suggesting
that forecasting relationships are tenuous. This lack of robustness is partially
confirmed here. In Figure 1, we plot the MSE of each model relative to the MSE
of the best univariate model for each of the three horizons. On the vertical axis
we report the relative MSE obtained when data up to 1995 is used to estimate
the models and data from 1996 used to forecast. On the horizontal axis, we plot
the relative MSE obtained when data up to 1990 is used to estimate the models
and data from 1991 to 1995 is used to forecast. If the forecasting performance is
robust the points should line up, approximately, on the 45 degree line. All other
configurations indicate tenuous forecasting power. Although there are instances
where relative MSEs line up approximately on the 45 degree line (in particular
for Italy or Canada) instabilities in the relative MSE ordering are present at all
horizons and few cases in which the “last-will-be-the-first” exist, primarily at long
horizons.

Are Phillips curves useful for forecasting inflation? The evidence is mixed.
Among the models we tried, we found that a specification loosely based on a
traditional Phillips curve is preferred in MSE at the one-quarter horizon in France,
Germany, and Italy, whereas in Canada and the United States pairing the output
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gap with inflation gives the best results. In the United Kingdom, traditional Phillips
curves are systematically inferior to models that use financial market indicators to
forecast inflation. This outcome is roughly independent of the forecasting sample
and of the horizon except in the United States, where a model that uses the slope
of the term structure dominates in the 1990–1995 sample. Table 4 confirms the
results of Atkeson and Ohanian (2001): Phillips curve models do not have an
hedge over univariate models in forecasting inflation in the US in the short run.
However, in the other G-7 countries, some gains are present.

Fuhrer and Moore (1995) indicated that the New Keynesian Phillips curve
has a hard time to account for the in-sample dynamics of inflation. Gali and
Gertler (1999) breathed new life into the specification by pointing out that the
theory implies a relationship between real marginal cost and inflation. Using
ancillary assumptions to proxy for unobservable marginal costs, they concluded
that inflation dynamics in the United States are well approximated by a model
with sticky prices (à la Calvo) with a five quarters average period between price
changes. Do real marginal costs help in forecasting inflation? The answer is
negative. Using the income labor share (as in Gali and Gertler) to proxy for these
costs we find that in only three countries such a bivariate model improves over
univariate specifications, but it no case it is the preferred specification. Apparently,
the predictive power of real marginal costs is negligible once lags of inflation are
included.

Is money a leading indicator for inflation? Only in Japan do money growth
measures turn out to be the most useful variable to predict inflation when lags of
inflation are included in the specification. As a matter of fact, A bivariate model
with money growth is worse than Phillips curve models in four countries at the
one-step horizon. At the longer horizons, specifications that use money growth or
real balances growth are competitive with the best model in three countries (see
Table 4).

Three conclusions can be drawn. First, theoretically based bivariate models
improve over atheoretical univariate ones, both in terms of MSE and turning point
recognition only at long horizons. Consistent with the works of Cecchetti et al.
(2001) and Benerje et al. (2003), we find that superiority of one specification
depends on sample and the horizon. Phillips curve relationships (both traditional
and New Keynesian types) are relatively stable in the 1990s but not very useful
to forecast inflation in the G-7. Second, money has forecasting information for
inflation primarily at long horizons. However, even at these horizons there are real
or financial indicators that are as good as money. Third, there is no bivariate spec-
ification that is useful to forecast inflation in all G-7 countries and is consistently
superior in both samples considered.

4.2. Is There Information in Other Domestic Variables?

Having examined the ability of variables typically suggested by theory, we have
conducted a search over the variables listed in Section 2.3, whose relationship with
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inflation has not been necessarily highlighted by any theory, to examine whether
the forecasting performance of univariate models can be improved upon. The
search was marginally successful: as shown in Table 2, in France the performance
of univariate models can be significantly improved at all horizons, whereas in the
United States MSE improvements are visible at some horizon. These tendencies
are not general: in fact, both median and mean measures are worse than those
obtained with univariate models at all horizons. A weakly restricted BVAR is
generically superior to an unrestricted VAR, and it is at short horizons that the
prior helps most (the exception is France). Interestingly, a BVAR model is best
among all the models so far considered at all horizons in the United States.
However, the record of turning point recognition of both the UVAR and the BVAR
model is unimpressive.

In sum, the addition of variables to univariate/bivariate specifications reduces the
mean square error in a few instances but in others it introduces noise that increases
the variability of the forecasts and clouds the ability of the model to track the
actual path of inflation. Statistically, searching for good predictors of inflation is
a worthwhile exercise when relationships are stable and the informational content
of predictors robust. However, given the instabilities present in the inflation series,
atheoretical models that are flexible and adapt quickly to a changing environment,
may be more efficient forecasting tools than either theory-based or statistically
based fixed coefficient specifications.

4.3. Does Time Variation in the Coefficients Help?

The instabilities present in the distribution, autocorrelation, and cross-correlation
properties of inflation suggest that there are potential gains from using time-
varying coefficient models. The question of interest is whether these gains are
quantitatively important. Tables 2 and 3 indicate that for the AR model, MSE
improvements are sizable but not necessarily uniform in magnitude across coun-
tries or horizons. For example, a TVC-AR model produces better MSE than a
fixed coefficient AR model for Italy at all three horizons, whereas for Canada
improvements are marginal. Also, although on average, or in the median, a TVC-
AR model is better in MSE terms than a fixed coefficient AR model, the record of
turning point predictions is similar, except at the one-step horizon.

The picture is different for BVARs. In fact, for four countries, the optimal
amount of time variations is zero, whereas in the others improvements are visible
only at certain horizons. Time variations reduce mean and median Theil’s U
relative to a basic BVAR, but at all horizons the performance of a TVC-BVAR is
similar to the one of a TVC-AR model. Italy is the only country where major MSE
improvements are noticeable. In fact, the Theil’s U at the two-year horizon is about
half of the one of univariate AR or ARIMA models and 15% smaller than the one
of a random walk. Time variations appear to produce important improvements in
terms of predictive densities. In fact, the predictive Bayes factor is 1.12 when we
compare a TVC-BVAR to a fixed coefficient UVAR and 1.23 when we compare
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to a TVC-AR to a fixed coefficient AR. However, they not help in turning points
detection: the TVC-BVAR model recognizes roughly the same number of turning
points as a fixed coefficient BVAR, and it is inferior to a TVC-AR model at all
three horizons.

Why is it that time variations help more in univariate than in multivariate
models? We have already mentioned that the auto- and cross-correlation function
of inflation with other domestic macrovariables is unstable over the sample. Our
results indicate that modeling time variations in the parameters describing the
autoregressive structure produces larger gains than modeling time variations in
domestic cross-variable relationships.

One should stress that the amount of time variation our procedure selects is small
and only for the United Kingdom does the best univariate model require significant
variations in the coefficients. These results should be compared with those of Stock
and Watson (1996), who found that time variation does not help in forecasting
a multitude of U.S. time-series. Two important points need to be made. First, if
there are long cycles in the data, what shows up as time variation in a sample
of 20 years could be captured with mean reversion over longer periods of time.
Second, because small deviations in value chosen produce dramatic changes in
the forecasting performances of both models, unless time variation is optimally
chosen, forecasting gains may fail to materialize.

We also have studied whether general time variation patterns, where the variance
of the coefficients is also allowed to evolve, help in forecasting. Because there are
countries where inflation displays leptokurtic behavior and volatility clustering
appears to be pervasive, modeling heteroschedasticity has the potential to improve
the forecasting performance in some of the countries. It turns out that this is
not the case: the MSEs of models where parameters regulating heteroscedasticity
in the coefficients are chosen to maximize the predictive density are practically
identical to those reported in Table 1. In fact, the estimated parameters imply
that homoscedasticity is nearly optimal in six countries. Moreover, turning point
detection is largely unchanged.

To conclude, despite the evident structural changes in the process for inflation,
the contribution of time variations in the coefficients to the forecasting performance
of multivariate models is limited. Consistent with the results of Marcellino (2002),
however, some gains are noticeable with univariate models, primarily at longer
horizons.

4.4. Is There Information in the Cross-Section?

Historically, inflation rates significantly comoved across G-7 countries. This was
true of the high inflation decade of the 1970s, of the subsequent deflationary period
of the 1980s, and of the more stable period with declining trends experienced since
the beginning of the 1990s. Hence, whatever helped, say, to forecast inflation in
the United Kingdom should, in principle, have helped to forecast inflation also in
France. This commonality seemed to have changed in the late 1990s and, except
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in a few cases, movements in inflation rates appear to be driven by idiosyncratic
and national factors. Hence, although there seems to be room to improve the in-
sample performance by adding international variables to domestic specifications,
it is open to question whether cross-country information will help in forecasting
out-of-sample.

As mentioned, the first two specifications come short of fully modeling inter-
dependencies across countries and variables. The first specification, which treats
international factors as predetermined in each of the seven domestic specification,
represents a rough short cut in two ways: first, it assumes that cross-sectional infor-
mation can be summarized with a small number of observable variables. Second,
it assumes that each G-7 country can be modeled as a small open economy, which
takes international information as independent of the domestic one, an assumption
that has somewhat less appealing content. In the second specification the seven
inflation rates are directly interrelated but only a small number of (hopefully
common) factors captures the main features of domestic interdependencies.

Ideally, one would like to estimate a model were both national and international
interdependencies are fully accounted for. However, there are computation costs;
degrees of freedom limitations are important, and substantial noise may be added
to the equations with no clear forecasting gains. Also, a panel VAR requires that
the same variables are used in each country. Hence, unless the dimensionality
of the model is large, it maybe impossible to accommodate the idiosyncrasies
of the national inflation rates. The panel index model allows, in principle, for a
rich set of interdependencies across variables in all country, but a priori collapses
complicated feedbacks into a index structure with time-varying coefficients. The
index structure averages out noise; limits the dimensionality of the parameter
vector; and allows the estimation of a large-scale model. However, it is worth
stressing that the index structure forces substantial similarities across countries
and may be suboptimal when significant heterogeneities are present.

The first specification (BVAR-I in the tables) produces interesting results. For
example, in the United States the model produces the lowest MSE at one quarter
horizon of all specifications: the addition of international variables reduces the
MSE of a domestic model by about 10% at this horizon. Gains are also evident
on average and in the median at longer horizons. The fact that international
information helps in medium-run forecasts of inflation is not surprising: whereas
short-term inflation movements are generally dominated by national factors, it is
international conditions that play the largest role in determining inflation dynamics
in the medium run. Adding international factors is important also in turning
point detection: the BVAR-I model produces an improved record of turning point
recognition relative to previous VAR models.

The performance of the second specification (7-BVAR in the tables) is equally
interesting. The model produced the smallest MSE at the four-quarter horizon for
Japan and the United Kingdom and, excluding Italy, the MSE at longer horizon
is at least as good as the one of a BVAR-I model. Note also that the largest gain
appear for the United Kingdom and Canada at the one-quarter horizon. Because
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these are two small open economies with similar trade links, it is comforting to find
that a model where inflation interdependencies are fully modeled is appropriate.
This model also improves over domestic BVAR models at long horizons and it is
roughly equivalent in turning point recognition to a BVAR model with carefully
selected international links.

The performance of panel-index specification is encouraging. For France and
Germany, substantial MSE improvements are evident at all horizons and MSE
reductions of 10% are common. Major improvements also obtain for Japan, Italy,
and Canada at two of the three horizons, whereas for the United States the MSE
at the eight-quarter horizon is about 40% smaller than the one obtained with other
specifications. The United Kingdom is the only country where the performance
of the model is unsatisfactory. Apparently, although there are forecasting gains
for European countries when one averages the information contained in lagged
G-7 variables [as in Benerjee et al. (2003)], little improvements are recorded in
the United Kingdom, where the evolution of inflation has important idiosyncratic
components.

Roughly speaking, the cross-section provides information for forecasting
medium-run trends of inflation: in fact, there are countries where the MSE at
the eight-quarter horizon is lower than the MSE at the one-quarter horizon. These
improvements are reflected in more accurate turning point predictions. In fact, this
model has the best record of turning point predictions at all horizons. Figure 2
suggests that this occurs because the model tracks well the timing and, in several
cases, also the magnitude of the peaks and throughs of actual inflation in all
countries but the United Kingdom.

Because both a model with time-varying coefficients but without interdepen-
dencies and a model with interdependencies and without time variations are nested
in our specification, we can easily evaluate which of the two features help most.
The predictive Bayes factors of the two restricted models are 0.88 and 0.90,
respectively, suggesting that it is the combination of these two features that im-
proves inflation forecasts across countries.

This conclusion is confirmed by comparing the performance of the factor model
and of other international models. The factor model, which only exploits cross-
sectional information, is somewhat inferior on average and in median MSE not
only to the panel-index model (at all three horizons) but also to the BVAR-I and
7-BVAR models and to a domestic TVC-BVAR model. The record of turning point
predictions is reasonable but still substantially inferior to the one of the other four
models, which also allow for time variations in the coefficients.

Figure 2 also indicates that the performance of the index model is robust to
changes in the forecasting sample and its ability to track inflation in the G-7 is
similar in the first and second half of the 1990s. This is not necessarily the case for
other models of this class. For example, had we used the first part of the 1990s to
forecast, the MSE of the BVAR-I would have been worse in some cases by up to
10–15%. Table 5 elaborates on the issue of robustness by presenting the Theil-Us
for the 7-BVAR, for the factor, and the index model over the 1990–1995 sample.
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FIGURE 2. Four quarters ahead inflation forecasts, panel VAR index model.

TABLE 5. Theil-U statistics, 1990:1–1995:4

7-BVAR Factor Index

Country 1-Step 4-Step 8-Step 1-Step 4-Step 8-Step 1-Step 4-Step 8-Step

US 1.26 1.37 1.54 0.92 1.33 2.30 0.77 0.70 0.73
Japan 0.69 1.06 0.88 0.53 0.78 0.54 0.53 0.89 0.52
Germany 0.95 0.99 0.48 0.69 0.82 0.66 0.60 0.73 0.55
UK 1.07 1.12 1.31 0.65 1.31 1.39 0.58 1.43 1.01
France 0.99 1.40 1.32 1.31 2.73 3.98 0.77 1.18 1.05
Italy 1.11 1.09 1.63 1.60 2.23 3.24 1.19 0.79 1.03
Canada 0.88 0.87 0.87 0.82 0.61 1.03 0.55 0.33 0.39

Median 0.99 1.09 1.31 0.82 1.31 1.39 0.60 0.79 0.73
Mean 0.99 1.13 1.16 0.93 1.40 1.88 0.86 0.88 0.76
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It is clear that, on average, cross-sectional information is more important than
time variations in forecasting inflation over this sample. Moreover, taking a short
cut to model interdependencies does not imply robust forecasting performance.
Consistent with the visual impression of Figure 2, the panel-index model maintains
superiority at all horizons also in this sample.

To summarize, adding international interdependencies to domestic models helps
to forecast national inflation rates, primarily at longer horizons. However, the
largest gains are obtained interacting time variations with cross-sectional in-
formation. With such a specification, inflation forecasts appear to be good and
sufficiently robust throughout the 1990s.

5. CONCLUSIONS

This paper addressed four interrelated questions. First, we studied how models that
loosely rely on the existence of a Phillips curve or other theoretical relationships
fare relative to univariate (a-theoretical) models in the G-7. Second, we investigated
whether there is information in other domestic variables (which may or may not
have theoretical underpinning) useful for predicting inflation. Third, we examined
whether drifts in the parameters improve the forecasting performance. Finally, we
evaluated whether cross-country information helps to forecast domestic inflation.

We show that theory-based bivariate models improve over univariate a-
theoretical specifications at long but not at short horizons and that the performance
depends on the country. We also show that, among bivariate specifications, Phillips
curve models do not necessarily have an edge. In fact, a New Keynesian Phillips
curve is never best in the race, whereas in France, Italy, and Germany, where a
traditional Phillips curve is preferred, the MSE at the one-step horizon is broadly
equivalent to one of univariate specifications. As in Stock and Watson (1999),
we find that conclusions concerning the relative ordering of bivariate models are
tenuous: changing the forecasting sample at times alters the ranking of models and
their MSE performance relative to univariate ones. Finally, the collection of best
bivariate models are roughly equivalent to univariate models in terms of turning
point predictions at all horizons.

Trivariate UVAR and BVAR models improve over univariate or bivariate speci-
fications in some countries and at some horizon but turning point recognition does
not improve. Adding a Bayesian prior helps. However, on average, a BVAR is
hardly better than an univariate AR model and a UVAR is actually worse.

The added flexibility of time variations in the coefficients helps to reduce
the MSE of the forecasts of univariate AR models and turning point recognition
improves, primarily at the one-quarter horizon. Adding time variation to the BVAR
model systematically reduces the MSE of the forecasts only in two countries. Some
improvements, on average, are noticeable at all horizons, but a TVC-BVAR model
is hardly better than a univariate TVC-AR model.

Adding international variables makes some difference. With the simplest spec-
ification, the MSE improvements are visible, both over univariate models and
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domestic BVAR models, primarily at longer horizons. This improved performance
is also matched by more appropriate turning point detection. The second specifi-
cation is roughly equivalent in MSE, on average, to the first one but differences
across countries are present. Also, the turning point recognition performance of
this specification is reasonably good. The index model produces the best overall
MSE of the forecasts at all horizons for Germany, France, and improvements are
visible at two horizons in Italy, Canada, and Japan. MSE gains are pronounced
and robust across samples: in fact, the forecasts produced by this model one and
two years ahead track reasonably well actual inflation in the G-7, with no visible
change in the performance across the two halves of the 1990s. The MSE superiority
is also matched by the record of turning point predictions, which is the best of all.
We show that having only time variations or cross-country information does not
produce either systematic or robust gains. In fact, it is only when cross-sectional
information is used in conjunction with time variations in the coefficients that
large and stable forecast improvements are obtained.

In conclusion, although forecasting inflation rates is difficult and the temptation
to rely on naive models is widespread, shrewdly chosen models do improve over
univariate ones. The forecasting performance of standard or modified Phillips
curve models and of other small-scale fixed coefficients specifications, which
exploit only domestic interdependencies, is not very appealing in the majority of
the G-7 countries. However, multivariate models with time-varying coefficients
and some international linkages improve on univariate models both with fixed and
time-varying coefficients. Economically, this is reasonable: the inflation process
displayed changes over the sample and there appears to be a common component
in the international swings of inflation over time. Our results show that taking into
account these two factors may turn around the standard bias-variance trade-off that
favors simple and parsimonious models in prediction. Models with these features
are useful because they provide information about the time varying (local) trends
present in almost all G-7 countries. Although this conclusion is naturally tentative,
models with time variations and interdependencies are potentially of great use
in tracking time-series featuring varying local trends and unstable relationships
with the rest of the economy and, for this reason, they should be attractive to
practitioners who are engaged in both unconditional and conditional prediction
activities.

The results we obtained should do not suggest that economic theory should
be dispensed of when forecasting. What we showed is that some theories that
rely on a time invariant and a closed economy point of view are inadequate to
capture the dynamics of inflation. Theories that make inflation dynamics functions
of economic and policy conditions and consider interdependent economies could,
in principle account for the results we obtain.

It is also important to stress that our effort complements those of Cristadoro et al.
(Forthcoming), Wright (2003), Granger and Yeon (2003), and Inoue and Kilian
(2004) who have emphasized that methods that combine the information coming
from many predictors are typically superior in forecasting inflation than models
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which employ single predictors. This paper enriches this literature by showing
that there are gains to be made by combining cross-country information with time
varying coefficients. Clearly, one would like to know more about the properties
of models with time-varying coefficients and cross-country interdependencies. In
particular, one would like to know how they perform when the DGP displays
breaks in the intercept or Markov switching patterns and what kind on interna-
tional correlations are needed to obtain measurable gains from flexibly modelling
cross countries interdependencies. Furthermore, a thorough comparison among
different ways to pool cross-sectional/country information may indicate whether
one method is preferable to all the others. We leave all these investigations for
future research.

Although this paper has concentrated on the problem of forecasting inflation
rates unconditionally, it also may be interesting from the policymakers point
of view to conduct conditional type of forecasts. The machinery developed by
Waggoner and Zha (1999) makes this task feasible even in the hierarchical panel
BVAR models we consider.

NOTE

1. To conduct the bootstrap exercise we have tested for serial correlation and heteroscedasticity
in the residuals of the AR model for each country using standard Q and Breusch and Pagan tests. If
the null was rejected, residuals were prewhitened and scaled before the bootstrap was performed.
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APPENDIX A: THE DATA

The data used comes from the OECD database. Inflation rates are calculated annualizing
quarterly rate of growth of the consumer price index. We also have considered, as an
alternative, inflation rates computed using GDP deflator and we have verified that both
the qualitative and the quantitative conclusions we have reached are robust. We also have
computed annual growth rates by taking the rate of change in the consumer price level over
four quarters. Although some of the quantitative conclusions are altered by this alternative
measure, the general conclusions are robust also to this change. The rate of growth of money
and of output are similarly computed. We use in all cases a broad definition of money: M2
is employed in all countries but France where M3 is used. Note that money supply data
for European countries is available only up to 1998:4. Therefore, the forecasting statistics
produced by bivariate models where money growth is used cover only the 1996:1–1998:4
period. The output gap is computed using a one sided exponential smoothing algorithm.
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We choose this specification, as opposed to a more standard Hodrick and Prescott (HP)
filter, because the time-series for the gap retains the timing of information of the original
series, a feature not produced by the HP filter because of its two-sided nature. Because this
measure is statistically based, the usual questions about the economic meaning of this gap
can be raised. Note that the measure we constructed is highly correlated with the output
gap generated with a Beveridge-Nelson decomposition. The slope of the term structure
is calculated by taking the difference between the annualized long-term interest rate (of
maturities varying from 5 to 10 years, depending on the country) and the annualized short-
term one (typically, a three-month rate). The unemployment rate measures are standardized
unemployment figures as provided by the OECD. The employment growth series measures
the number of workers seeking jobs that have found a job in the quarter under consideration,
annualized as the other variables. The rent price index measures the costs of housing and
its growth rate is computed in a similar fashion. All the other variables we have tried
(unit labor costs, capacity utilization, employment, wage rate, nominal exchange rates, real
effective exchange rates in levels, and growth rates) are the standard ones provided by the
OECD data bank. Stock prices are obtained from the BIS data bank. We use in the exercise
the SP500 index for the United States, the Nikkei 225 index for Japan, the Toronto 300
composite index for Canada, the DAX composite index for Germany, the CAC 40 index
for France, the FT100 index for United Kingdom, and the MIB index for Italy.

Some of the inflation series (especially those for the United Kingdom and Japan and
marginally the one for Germany) display residual seasonal variation despite being labeled as
“seasonally adjusted.” To take care of these predictable variations, this residual seasonality
is removed using time-varying seasonal dummies. This appears to be sufficient as the
autocorrelation function of the adjusted series does not show any significant seasonal
coefficients. Some seasonal variations also are present in the monetary aggregates of some
countries. Therefore, we also purge monetary aggregates from residual seasonal variations
before they are used in bivariate forecasting models.

Levin and Piger (2002) prefilter the G-7 inflation series to take into account predictable
variations because changes in VAT and other sale taxes. None of our series display signifi-
cant predictable changes at the dates they suggest (UK 1990:2, Canada 1991:1; 1994:1, and
1994:2, Germany 1993:1, Japan 1997:2). Therefore, we conjecture that OECD statisticians
have already made these adjustments or that these changes produce jumps in prices but no
changes in the inflation series.

APPENDIX B: GIBBS SAMPLER

For our application, it turns out that C = I is optimal. Hence, the model we use has the
structure:

Yt = Mt�θt + vt

(B.1)
θt = θt−1 + ηt ,

where vt ∼ [0, σt� = (1 + σ 2M ′
tMt )�]. To compute posterior distributions we need prior

densities for (�, σt , B0, θt−1). Because we want to minimize the impact of our choices on
the posterior distribution of the indicators, we specify rather loose priors.
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We let B0i = bi ∗ I, i = 1, 2, 3, where bi is a vector of parameters that con-
trols the tightness of the variance of factor i and we let p(�−1, σ−1

t , bi , θt−1) =
p(�−1)p(σ−1

t )p(θt−1)
∏

i p(bi) with

p(�−1) = W(z1, Q1)

p
(
σ−1

t

∣∣Ft−1

) = G

(
ζ

2
,
ζ st

2

)
(B.2)

p
(
b−1

i

) = G

(
�0

2
,
δ0

2

)

p (θt−1 | Ft−1) = N(θ̄t−1|t−1, R̄t−1|t−1),

where N stands for Normal, W for Wishart, and G for gamma distributions, Ft−1 denotes
the information available at time t − 1, and st = 1 + σ 2M ′

tMt . The last conditional
distribution also implies that θtp(θt | Ft−1) = N(θ∗

t |t−1,R
∗
t |t−1), where θ∗

t |t−1 = θ̄t−1|t−1, and
R∗

t |t−1 = R̄t−1|t−1+Bt . We also assume z1 = NG+1, ζ = 0 = �0, γ1 = 1, γ2 = 0, R̄0 = I

and set σ 2 equal to the average of the estimated variances of NG AR(p) models, Q1 to
the estimated variance-covariance in the time invariant version of (B.1), whereas θ0 is
initialized with a sequential OLS on (B.1) in a training sample.

To calculate the posterior distribution of ψ = (�, bi, {σt }T
t=1, {θt }T

t=1), we com-
bine the above priors with the likelihood of the data, which is L(ψ | yT ) ∝
(
∏T

t=1 σt )
−NG/2|�|−T/2 exp[− 1

2

∑
t (Yt − Mt�θt )

′(σt�)−1(Yt − Mt�θt )], where Y T =
(Y1, . . . , YT ) denotes the data. Using Bayes rule, we have p(ψ | Y T ) =
p(ψ)L(Y T | ψ)/p(Y T ) ∝ p(ψ)L(Y T | ψ). Given p(ψ | Y T ), the posterior for the
components of ψ , p(� | Y T ), p(bi | Y T ), p(σt | Y T ) and p(θt | Y T ), can be obtained by
integrating nuisance parameters out of p(ψ | Y T ).

For the model considered in this paper, it is impossible to compute p(ψ | Y T ) an-
alytically, but the Gibbs sample can be used if p(� | Y T , ψ−�), p(σt | Y T , ψ−σt

),
p(bi | Y T ψ−bi

) and p(θt | Y T , ψ−κ ), where ψ−κ denotes the vector of ψ excluding
the parameter κ , are available. The conditional distributions of interest are

(
θt

∣∣Y T , ψ−θt

) ∼ N(θ̄t |t , R̄t |t ) t ≤ T ,

(
�−1

∣∣ Y T , ψ−�

) ∼ W

{
z1 + T ,

[
,

∑
t (Yt − Mt�θt ) (Yt − Mt�θt )

′

σt

+ Q−1
1

]−1
}

,

(
b−1

i

∣∣ Y T , ψ−bi

) ∼ G

[
T + �0

2
,
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t

(
θ i
t − θ i

t−1

)′ (
θ i
t − θ i

t−1

) + δ0

2ξt

]
,

(
σ−1

t

∣∣ Y T , ψ−σt

) ∼ G

[
ζ + NG

2
,
ζ st + (Yt − Mt�θt )

′ �−1 (Yt − Mt�θt )

2

]
,

where θ̄t |t and R̄t |t are the one-period-ahead forecasts of θt and the variance-covariance
matrix of the forecast error, respectively, and are obtained as:

θ̄t |t = θ∗
t |t−1 + R∗

t |t−1 (Mt�)′Ft(Yt − Mt�θ∗
t |t−1)

R̄t |t = R∗
t |t−1 − R∗

t |t−1 (Mt�)′Ft (Mt�)R∗
t |t−1,

https://doi.org/10.1017/S136510050705033X Published online by Cambridge University Press

https://doi.org/10.1017/S136510050705033X


30 FABIO CANOVA

where Ft = ((Mt�)R∗
t |t−1(Mt�)′ + �)−1 and θ i

t is the ith-subvector of θ , with i =
1, 2, 3.

Because we are not directly sampling from the posterior, it is important to monitor
that the Markov chain induced by the sampler converges to the ergotic (posterior) distri-
bution. The result we present are based on chains with 24,000 draws: 600 blocks of 40
draws were made and the last draw for each block is retained after the discarding the
first 4000. This means that a total of 500 draws is used at each t to conduct posterior
inference.
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