
Sampling-Design Effects on Properties
of Species-Area Relationships – A Case Study
from Estonian Dry Grassland Communities

Jürgen Dengler & Steffen Boch

# Institute of Botany, Academy of Sciences of the Czech Republic 2008

Abstract Despite widespread use of species-area relationships (SARs), dispute
remains over the most representative SAR model. Using data of small-scale SARs of
Estonian dry grassland communities, we address three questions: (1) Which model
describes these SARs best when known artifacts are excluded? (2) How do deviating
sampling procedures (marginal instead of central position of the smaller plots in
relation to the largest plot; single values instead of average values; randomly located
subplots instead of nested subplots) influence the properties of the SARs? (3) Are
those effects likely to bias the selection of the best model? Our general dataset
consisted of 16 series of nested-plots (1 cm2–100 m2, any-part system), each of
which comprised five series of subplots located in the four corners and the centre of
the 100-m2 plot. Data for the three pairs of compared sampling designs were
generated from this dataset by subsampling. Five function types (power, quadratic
power, logarithmic, Michaelis-Menten, Lomolino) were fitted with non-linear
regression. In some of the communities, we found extremely high species densities
(including bryophytes and lichens), namely up to eight species in 1 cm2 and up to
140 species in 100 m2, which appear to be the highest documented values on these
scales. For SARs constructed from nested-plot average-value data, the regular power
function generally was the best model, closely followed by the quadratic power
function, while the logarithmic and Michaelis-Menten functions performed poorly
throughout. However, the relative fit of the latter two models increased significantly
relative to the respective best model when the single-value or random-sampling
method was applied, however, the power function normally remained far superior.
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These results confirm the hypothesis that both single-value and random-sampling
approaches cause artifacts by increasing stochasticity in the data, which can lead to
the selection of inappropriate models.
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Introduction

Species-area relationships (SARs) are widely used to describe the relationship of
species richness (S) on area analyzed (A), to disentangle underlying mechanisms, to
standardize richness values to a common spatial “grain”, to extrapolate species
richness values to areas larger than those analyzed, and to develop efficient
conservation strategies (e.g. Williamson 1988; Rosenzweig 1995; Connor and
McCoy 2001; Desmet and Cowling 2004; Fridley et al. 2005; Kier et al. 2005;
Drakare et al. 2006; Dengler, in press). Despite the widespread application of SAR
analyses, the best functional model for describing this relationship is still subject to
robust debate. While some authors advocate that species-area relationships should
follow a saturation function (He and Legendre 1996; Lomolino 2000; Tjørve 2003),
others claim that real SARs never have an upper asymptote (e.g. Rosenzweig 1995;
Williamson et al. 2001, 2002; Dengler 2003, in press). For small-scale (mm2 – ha)
SARs in continuous vegetation, the controversy focuses more on whether the
logarithmic model (Gleason 1922; He and Legendre 1996; van der Maarel 1997) or
the power model (Arrhenius 1920; Crawley and Harral 2001; Fridley et al. 2005;
Dengler, in press) describe real patterns more closely.

In this Special Issue, Palmer et al. demonstrated how analytical artifacts in
biodiversity research in general may lead to faulty conclusions. More specifically
for sampling and analysis of species-area data, Dengler (2008, this issue) showed
that many such “pitfalls” are also hidden along the course of analysis of species-area
data but general awareness of these is widely lacking. As argued by Dengler (2008,
this issue), several of these methodological artifacts should favour other SAR models
such as logarithmic function, saturation functions, or modified versions of the power
function over the regular power function. Thus, a considerable part of best fits
reported for non-power functions in small-scale SACs (e.g. Rejmánek and
Rosén 1992; Stohlgren et al. 1995; Dolnik 2003; Stiles and Scheiner 2007) may be
caused rather by methodological inadequacies than by differences in the actual
SARs. However, only a few studies have comparatively analyzed the effects of
different methodological approaches on the perception of SARs, namely the any-part
vs. the grid-point system and the use of square vs. rectangular plots (review in
Dengler 2008).

For other aspects that according to Dengler (2008, this issue) theoretically should
also cause artifacts, we know of no empirical studies that try to assess whether the
predicted effect really occurs or how influential it is. In this study, we aim to address
three of these open points. i) In a single-value nested design, plots that are enlarged
in only one direction (e.g. Mueller-Dombois and Ellenberg 1974; Dolnik 2003;
Scheiner 2003; Stohlgren 2007: 96), the smaller-sized plots should be less
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representative for the area of the largest plot than subplots placed centrally
(Dengler 2008, this issue). ii) While some authors construct SARs from nested-plot
data with one count per area size (Mueller-Dombois and Ellenberg 1973; Dolnik
2003; Scheiner 2003; Dolnik and Breuer 2008), others argue that at least the smaller
plots should be represented by several subplots, whose richness values are averaged
(Barkman 1989; Peet et al. 1998; Dengler 2006, 2008, this issue). iii) There is a
long-standing debate in SAR research whether nested-plot design or random (non-
nested) placement of all subplots is more appropriate. For example, Barkman (1989),
Connor and McCoy (2001), and Stohlgren (2007) favour the second solution
because they see basic prerequisites of statistical analysis being violated in the first
approach. According to Dengler (2008, this issue, see detailed discussion therein),
this position, however, may be a misunderstanding, and nested-plot design could
even be advantageous from a statistical point-of-view. In cases i)–iii), Dengler
(2008, this issue) suggests that artifacts caused by what he identifies as less
appropriate sampling strategies (i.e., smallest plot in the corner instead of the center
of the largest plot, single-value instead of nested-value, random-plot design instead
of nested-plot design) all act in the same direction. They should increase
stochasticity and thus the chance of erroneous selection of SAR models.

In this study, we use small-scale species-richness data from dry grassland
communities in Estonia to address the following questions:

& Which model describes the empirical SACs of these communities best when
a methodology is applied that according to Dengler (2008, this issue)
minimizes artifacts?

& How do deviating sampling procedures with respect to points i)–iii) influence the
properties of the SARs?

& Do differences in the properties of SARs sampled with different approaches bias
SAR model selection?

Material and Methods

Field Data

We collected 16 series of nested-plot species-richness data of visually homogeneous
stands from the whole range of dry grassland types occurring on the island of
Saaremaa (Estonia; hemiboreal zone, 21°45′–23°30′ E/57°50′–58°40′N). The
analyzed stands belong to six associations from five phytosociological orders
(see Table 1). Each series of nested plots was located in a different dry grassland area
(see Table 1). We used a sampling design similar to that outlined in Dengler et al.
(2004, but without plot sizes below 0.0001 m2), i.e., square plots of 0.0001 m2,
0.0009 m2, 0.01 m2, 0.09 m2, 1 m2, 9 m2, and 100 m2, with all sizes but the largest
represented by five subsamples nested within the 100-m2 plot. These five subseries
of smaller plots were located in the four corners and in the center of the 100-m2 plot.
All macroscopically visible “plants” (including bryophytes, lichens, “algae”, and
also non-terricolous plants) were recorded with the any-part approach (see Dengler
2008, this issue).
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Data Analyses

For the comparison of different SAR functions, we selected five of the 23 SAR
models described in Dengler (in press). With this choice we aimed to include those
models that normally result in best fits and to represent models with fundamentally
different shapes and different numbers of fitted parameters (Table 2, for a
visualisation of the shapes of these functions, see Dengler 2008, this issue: Fig. 1).
All functions were fitted both in S-space and in log S-space (in this article, we use
log10 throughout), resulting in 10 models to be compared. Model fitting was done
with the non-linear regression module of STATISTICA 7.1 (StatSoft, Inc. 2005;
settings: least squares; method of estimation: quasi-Newton; criterion of conver-
gence: 0.0001). We used b0=5, b1=0.1, and b2=0.1 as starting points and 0.1 as
step-width throughout unless the iterations did not converge or got caught in a local
optimum (indicated by unreasonably low R2 values below 0.4). In the latter cases,

Table 1 Overview of the 16 series of nested plots

Series
Nr.

X coordinate Y coordinate Association Order (Sub-) Class

B10 553,264 6,481,823 Caricetum arenariae* Corynephoretalia
canescentis

Koelerio-Corynephorenea

B13 553,994 6,457,198 Sileno-Festucetum Trifolio arvensis-
Festucetalia ovinae

Koelerio-Corynephorenea

B01 573,781 6,448,848 Festucetum polesicae Sedo acris-Festucetalia Koelerio-Corynephorenea
B02 574,556 6,450,459 Festucetum polesicae Sedo acris-Festucetalia Koelerio-Corynephorenea
B03 568,842 6,474,769 Festucetum polesicae Sedo acris-Festucetalia Koelerio-Corynephorenea
B06 563,894 6,475,496 Festucetum polesicae Sedo acris-Festucetalia Koelerio-Corynephorenea
B04 570,082 6,473,200 Cladonio-Sedetum** Alysso alyssoidis-Sedetalia Sedo-Scleranthenea
B08 584,200 6,455,832 Crepido-Allietum Alysso alyssoidis-Sedetalia Sedo-Scleranthenea
B11 558,094 6,476,048 Crepido-Allietum Alysso alyssoidis-Sedetalia Sedo-Scleranthenea
B12 556,838 6,455,864 Crepido-Allietum Alysso alyssoidis-Sedetalia Sedo-Scleranthenea
B14 570,411 6,490,202 Crepido-Allietum Alysso alyssoidis-Sedetalia Sedo-Scleranthenea
B05 576,417 6,465,338 Helictotrichon

pratense comm.
Brachypodietalia pinnati Festuco-Brometea

B07 577,482 6,465,170 Helictotrichon
pratense comm.

Brachypodietalia pinnati Festuco-Brometea

B09 577,871 6,463,993 Helictotrichon
pratense comm.***

Brachypodietalia pinnati Festuco-Brometea

B15 612,570 6,467,809 Helictotrichon
pratense comm.

Brachypodietalia pinnati Festuco-Brometea

B16 607,534 6,480,890 Helictotrichon
pratense comm.

Brachypodietalia pinnati Festuco-Brometea

Coordinates of the central subplot according to UTM (WGS-84) and phytosociological assignment
following Boch and Dengler (2006) are given. The full association names are Caricetum arenariae
Christiansen 1927, Sileno otitae-Festucetum brevipilae Libbert 1933 corr. Kratzert and Dengler 1999 nom.
invers. propos., Festucetum polesicae Regel 1928, Cladonio symphicarpiae-Sedetum albi Tx. 1951 nom.
invers. propos., Crepido pumilae-Allietum alvarensis Krahulec et al. ex Dengler and Löbel 2006. The fact
that in three series the five subplots were subdivided between two associations in the classification of
Boch and Dengler (2006) does not mean that these plots are less homogeneous than the others.
*) Two of the five subplots were assigned to the Helichryso arenarii-Jansionetum litoralis Libbert 1940
**) One of the five subplots was assigned to the Helictotrichon pratense-[Brachypodietalia pinnati]
community
***) Two of the five subplots were assigned to the Helianthemo oelandici-Galietum oelandici Krahulec et
al. ex Dengler and Löbel 2006
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the starting values were altered using previously established parameter values from
similar situations, which always led to stable results with satisfactory fit (indicating
that the global optimum was found). As goodness-of-fit metrics, we basically
applied AICc (Akaike’s Information Criterion corrected for small n) calculated for
both S-spaces, and log error of extrapolation (LEE; Dengler, in press). These three
measures contain valuable complementary information and thus should be used
jointly for quality assessment (Dengler, in press). While the two AICc measures
assess the goodness-of-fit within the fitted range of A (AICc [S] with additive error
terms and AICc [log S] with multiplicative error terms), LEE provides a
quantification of the extrapolation capability beyond the largest plot size (which
does not necessarily coincide with fitting quality; Dengler; in press). LEE is simply
the difference (on log10 scale) between the richness value predicted for the largest
plot when fitting the same model to all data apart from the largest plot and the actual
richness value of this plot.

These calculations were first done for the mean richness values of the 16 series of
nested plots (i.e., each value except the one for 100 m2 represented the arithmetic
mean of the species densities in five subplots of equal size). Second, the same
analyses were applied to single-value nested-plot data, namely to the central subplot
series and to two marginal subplot series (located at opposite corners). Finally, for
comparison between nested-plot and random-plot SARs for each of the 16 series of
nested plots, two subseries with nested-plot design and two with random-plot design
were generated from the whole data set. In this case, the 100-m2 plots were excluded
from the calculation because no replicate measures were available for this plot size
within the 16 series. Both in the nested-plot and in the random-plot cases, arithmetic
means of two species-richness counts were used. In the nested-plot case, these were
simply the two combinations of the series in opposite corners of the 100-m2 plot. In
the random-plot case, random data were gained by “bootstrapping” (compare Quinn
and Keough 2002), i.e., resampling the available five values of each size. Contrary
to claims of some authors (Connor and McCoy 2001; Stohlgren 2007) fully
randomized sampling for statistical (not physical!) independence includes the
possibility of sampling overlapping areas or even sampling the same area twice.

Table 2 The five function types used to model the species-area relationships in this study and their
characteristics (for more details, see Dengler, in press)

Curve Name Model General shape Number of
parameters

Upper
asymptote

Power (regular) S ¼ b0 Ab1 Unbound, convex 2 no
Power (quadratic) S = 10 ^ (b0 + b1 log A +

b2 (log A)2)
u-shaped (b2>0) or
inverse u-shaped (b2<0)

3 no

Logarithmic* S = b0 + b1 log A Unbound, convex 2 no
Michaelis-Menten S = b0 A/(b1 + A) Saturation, convex 2 yes (b0)
Lomolino S ¼ b0

.
1þ blog b2=Að Þ

1

� �� �
Saturation, sigmoid 3 yes (b0)

S − species richness; A − area; bi – fitted parameter, log − logarithm of a certain base (here log10 is used).
In the case of the power function, b0 and b1 are often termed c and z. Note that for the u-shaped or inverse
u-shaped quadratic power functions the point beyond which richness would decrease with increasing area
normally lies far outside the fitted range of areas
* The logarithmic function is often erroneously termed “exponential function”.
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Thus, the two series of pairs of subplots were drawn using random numbers and the
sampled subplots were returned to the sampling pool for each subsequent iteration.
Consequently, the SACs of the random-plot data are not necessarily non-decreasing.
LEE for nested plot vs. random plot (as for the two other comparisons) was
calculated as the extrapolation capability of the model for the range 0.0001–9 m2 to
the actual richness value of 100 m2.

A comparison of parameter estimates for the average-value nested-plot SARs
between S- and log S-space or against zero were calculated with the appropriate t-
tests in STATISTICA 7.1 (StatSoft, Inc. 2005). For comparison of different sampling
designs with (partly) more than one replicate per nested-plot series, two-factorial
analyses of variance (ANOVAs) were applied with STATISTICA 7.1 (StatSoft, Inc.
2005). Here, sampling design was treated as one factor (d.f.=1) and the identity of
the nested-plot series as another factor (d.f.=31), with potential interactions
accounting for further 31 d.f. Only the results for sampling design are shown as
only these are relevant to our questions.

Results

General Characterization of the SARs

Species richness on the studied plot sizes differed considerably between vegetation
types (Table 3). The maximum values (eight species on 1 cm2; 24 species on 1 dm2;
52 species on 1 m2, and 140 species on 100 m2) were all found in one stand (B11) of
the Crepido pumilae-Allietum alvarensis. In this community, bryophytes and lichens
constituted the largest proportion of plant diversity (i.e., 38 bryophytes and 65
lichens compared to 36 vascular plants and one alga on 100 m2).

In all analyzed dry grassland stands, either the power function or the quadratic
power function fitted for the respective S-space were the best models according to
AICc (S) and AICc (log S) (Table 3 and 5). With additive error terms (AICc/S) the
regular power function was prevailing, whereas with multiplicative error terms
(AICc/log S) the quadratic power function was slightly more frequently selected.
With respect to extrapolation capability (LEE), again the power function (S)
performed best, followed by the three other variants of the power function included
in this comparison (Table 3 and 5). On average, only the regular power function (log
S) overestimated the real richness value of the largest plot (but insignificantly; P=
0.134), whereas all other models tended to underestimate the real value. The degree
of underestimation ranged through minor and insignificant in the regular power
function fitted for S (P=0.054), moderate in quadratic power and Lomolino
functions, and high in the variants of the logarithmic and Michaelis-Menten model
(all highly significant; P<0.002). Combining the various aspects of fitting quality
(column “mean of mean ranks” in Table 4), the regular power function fitted for S
was the best model. It is followed by the three other variants of the power function
and then the two variants of the Lomolino function, which generally also performed
moderately to well. By contrast, both variants of the logarithmic and Michaelis-
Menten function proved to be unsuitable for fitting the real data as well as for
extrapolating.
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Focusing on the power function (S) as the best model (see Table 3), it turns out
that explained variance (R2

adj.) was extremely high throughout (more than 99% with
one exception, not shown). While the intercept (c value) distinctly differed between
the analyzed community types (15.1–41.8), the slope in the log-log representation (z

Table 5 Proportion of best fits (according to AICc/S) found for different sampling approaches

Model Average-value
(0.0001–100 m2)
n=16

Single-value
(0.0001–100 m2)
n=48

Nested-plot
(0.0001–9 m2)
n=32

Random-plot
(0.0001–9 m2)
n=32

Power (S) 69% 90% 78% 91%
Power, quadr. (S) 31% 8% 16% 3%
Logarithm (S) − 2% − 3%
Michaelis-Menten (S) − − − −
Lomolino (S) − − 6% 3%

Note that best fits for AICc (S) necessarily can only occur in models fitted in S and not in the
corresponding models fitted in log S. Accordingly, the five models fitted in log S are not listed here.
Average-value data (each data point represents a mean of five subsamples, except for 100 m2 ) and single-
value data were both recorded with the nested-plot approach, while nested-plot SARs and random-plot
SARs were both based on averaged values (each data point represents a mean of two subsamples).

Table 4 Overview of the performance of the 10 SAR models for the 16 series of nested-plot mean-value
SAR data of Table 3

Model Mean of
mean ranks

ΔAICc (S,
mean rank)

ΔAICc
(S)

ΔAICc
(log S,
mean rank)

ΔAICc
(log S)

Log Error of
Extrapolation
(LEE) [absolute,
mean rank]

Log error of
extrapolation
(LEE)

Power (S) 2.4 1.4 0.8±1.7 4.0 8.9±6.0 1.7 −0.02±0.03
Power (log S) 3.2 4.1 11.4±7.3 1.9 2.6±3.8 3.5 0.03±0.08
Power, quadr.
(S)

3.3 1.9 3.8±3.1 4.8 11.3±5.1 3.0 −0.06±0.06

Power, quadr.
(log S)

3.4 4.5 11.8±4.5 1.8 2.5±3.2 3.8 −0.07±0.08

Logarithm (S) 8.0 7.3 30.3±7.7 10.0 n.d. 6.6 −0.22±0.06
Logarithm
(log S)

8.1 9.0 36.8±8.7 6.4 23.3±11.7 8.8 −0.34±0.09

Michaelis-
Menten (S)

8.3 7.6 30.6±5.3 9.0 54.7±9.4 8.2 −0.29±0.04

Michaelis-
Menten
(log S)

9.3 9.9 41.7±6.7 7.9 30.8±9.2 10.0 −0.56±0.09

Lomolino
function (S)

4.4 3.5 7.2±2.9 5.9 14.8±5.0 3.8 −0.07±0.05

Lomolino
function
(log S)

4.9 5.8 16.7±5.6 3.3 6.0±2.4 5.6 −0.11±0.06

For ΔAICc (S), ΔAICc (log S), and LEE, mean values and s.d. are given (n.d. − not defined).
Additionally, mean ranks are listed for these three fundamental, complementary metrics. ΔAICc is the
difference in AICc between the particular model and the best model, i.e., ΔAICc of the best model is zero.
LEE is negative when the true richness value for the largest plot is underestimated, and positive when it is
overestimated. In the second column from the left, the combined mean rank of these three measures is
presented as an overall assessment of the suitability of the different models. The best performing models
according to the different criteria are marked in bold face.
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value) showed less variance, and the ranges of values found in the different
phytosociological orders were similar (Table 3). The z values showed a minor albeit
significant (P=0.009) difference between fitting in S (mean±s.d.=0.220±0.033; see
Table 3) and fitting in log S (0.229±0.023; not shown). Regarding the quadratic
power models (S and log S) for individual plant communities, the quadratic terms
were partly positive (upward curvature) and partly negative (downward curvature).
The quadratic term (b2) was significantly higher if fitted in S (mean±s.d.=0.0009±
0.0064) than if fitted in log S (−0.0066±0.0107) (P=0.001) but only the latter was
significantly different from zero (P=0.587 for S; P=0.026 for log S).

Average-Value SARs vs. Single-Value SARs

Goodness-of-fit measured with AICc (S), AICc (log S), and LEE did not differ
significantly between single-value SARs of the central and marginal subseries for
any of the 10 SAR models (not shown). Thus, for the subsequent analyses, the two
marginal and the central subseries of each nested-plot series were pooled as single-
value SACs and contrasted to those SARs obtained for average richness values
(Table 6). The power function (S) fitted best according to AICc (S) in most cases
both for average-value and for single-value SARs, followed by the quadratic power
function (S), but the relative proportion of the regular power function was higher for
single values (Table 5). In the case of the four power-function and the two Lomolino
variants, the average absolute fit within the modelled range (measured as AICc) was
significantly better for SARs constructed from average values than for those
constructed from single values (Table 6). This was equally true for both S-spaces
(i.e., AICc/S and AICc/log S). By contrast, the average absolute curve fit was not
significantly influenced by sampling method for the four other models (variants of
the logarithmic and the Michaelis-Menten models; Table 6). The picture is nearly
reversed when instead of the absolute goodness-of-fit, the relative goodness-of-fit
compared to the best model is considered (ΔAICc/S and ΔAICc/log S; Table 6).
Here, the first-named six models showed no significant differences between the two
compared sampling designs, whereas single-value SARs increased their relative
performance compared to the respective best models. As with average-value SARs
(see previous section), single-value SARs performed best according to AICc (S) (in
this case, only five of 48 best models were not power functions fitted for S; Table 5).
However, the lower ΔAICc values for the logarithmic and Michaelis-Menten models
in this case indicate that they did not perform as poorly as in the first case.
Regarding the extrapolation capability (measured as LEE), the two sampling
approaches did not differ significantly among the 10 SAR models, however, the
variance of LEE increased for all of them. Finally, the estimates for the fitted
parameters (b0 ... b2) did not differ in any systematic manner between average-value
and single-value SARs, except for b2 of both Lomolino models, which was
significantly higher in the first case (not shown).

Nested-Plot SARs vs. Random-Plot SARs

The power function (S) fitted best according to AICc (S) in most cases, both for nested-
plot and for random-plot SARs, followed by the quadratic power function (S), but the
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relative proportion of the regular power function was higher for random plots (Table 5).
The average goodness-of-fit for the modelled range of areas (measured with AICc) was
better for data sampled with nested-plot design than for those sampled with random-
plot design (Table 7). This difference occurred for all SAR models and in both S-spaces
(except for AICc [log S] for the Michaelis-Menten function fitted in S), but was
significant only for the variants of the Lomolino function and the power function
(except for AICc [S] of the power function fitted in log S). For the relative goodness-of-
fit (ΔAICc), the converse is true (Table 7): For the logarithmic and Michaelis-Menten
models, distance toward the best model decreased significantly in the random case,
although they still fitted real data much less well than the respective best model (mostly
a variant of the power function). Regarding LEE, both sampling approaches showed no
systematic difference (Table 7). The same is true for estimates of all fitted parameters
(b0 … b2) in any of the models (not shown).

Discussion

General Characterization of the SACs

The finding that of the ten models tested, the regular power function (fitted for S) was
overall the best to describe small-scale SARs for the different Estonian dry grassland
communities is in line with results of other comparative studies for a much wider
range of community types (e.g. Fridley et al. 2005; Dengler, in press). Apart from the
regular power function, however, the quadratic power function also worked well and
was even the best for some stands and some goodness-of-fit measures (see Table 4),
particularly when assessed in log S-space where often a small but significant negative
quadratic term was found (see Results). Although the exponent z of the power-law
SARs showed an astonishingly high constancy within the analyzed wide range of
spatial scales (six orders of magnitude), some scale-dependency remained even when
avoiding methodological artifacts. The occurrence of scale-dependency is in line with
findings by, for example, Crawley and Harral (2001) and Fridley et al. (2005), and
theoretical suggestions by others (e.g. Rosenzweig 1995; Turner and Tjørve 2005).

Our finding that the logarithmic function performed very poorly throughout in
fitting our species-area data contrasts to the frequent assumption that specifically on
small spatial scales the logarithmic function should be the more adequate model
(Gleason 1922; Williams 1943; Hopkins 1955; He and Legendre 1996; van der
Maarel 1997). While some authors (Hopkins 1955; van der Maarel 1997) fitted
logarithmic functions to their data even though their graphs showed such deviations
from that curve type that a power model probably would have been more adequate,
in other cases, the selection of the logarithmic function as the best model may have
been correct but caused by methodological artifacts (Dengler 2008, this issue; see
also the next section). It is not surprising that the Michaelis-Menten function (as
representative of convex saturation models) generally performed very poorly in all
respects because real SARs do not have asymptotes (Williamson et al. 2001, 2002;
Dengler 2008, this issue). Given this argument, it is somewhat surprising that the
Lomolino function (as representative of sigmoid saturation functions) on average
performed only slightly worse than the variants of the power function but much
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better than the Michaelis-Menten function. According to Dengler (2008, in press),
this can be attributed to the high flexibility of the Lomolino function, which can
nearly perfectly “simulate” a power function over many orders of magnitude (compare
the practically indistinguishable curves of the two functions in Fig. 1 of Dengler 2008,
this issue). Thus, the generally good suitability of the Lomolino function is not due
to its basically sigmoid shape (because the power function is not sigmoid!), nor that
real SARs have an upper asymptote (both arguments brought forward by Tjørve
2003) but simply to the ability of this model to “mimic” the power function (see
Dengler, in press). Actually, Dengler (in press) demonstrated that while the
Cumulative-beta-P function (another highly flexible sigmoid saturation model)
showed similar performance as the Lomolino function, the sigmoid but less flexible
logistic function performed as badly as the convex Michaelis-Menten function.

The z values (log S) of power-function SARs with a mean of 0.229 (see Results)
and a rather small variance compare well to the situation in other European dry
grasslands as reviewed by Dengler (2005), who found a mean z value of 0.210
(range: 0.193–0.249) for similar plot size ranges as in the present study. Thus, dry
grassland communities, despite their pronounced differences in soil pH, soil depth,
and openness of the sward, behave similarly in this respect, whereas z values of other
temperate plant communities cover a much wider range of values. Hobohm (1998)
and Dolnik (2003), for example, reported values of 0.045–0.306 for a wide variety
of European vegetation types, and Fridley et al. (2005) found a 95% confidence
interval of z values from 0.217 to 0.538 in plant communities of SE United States.

As regards species densities on the analyzed spatial scales, the studied communities
in Estonia partly exceed even the maximum values compiled by Dengler (2005) for
European dry grasslands: 8 species is the new “record” on 1 cm2 (Dengler 2005: 6
species), and 140 species by far exceeds the maximum value of 69 given by Dengler
(2005) for 100 m2 (but only a few data of this plot size were included there; on 9 m2,
the maximum value was 84). Although we have intensively searched the literature for
extreme values of species densities worldwide, we did not find other records that
exceed either eight species on 1 cm2 or 140 species on 100 m2. At the larger scale,
some meadow steppe communities probably show equal total plant density because in
these just the vascular plants may sum up to 117 on 100 m2 (Walter and Breckle 1986:
meadow steppe in the Ukraine) or 103 on 24 m2 (Klimeš 1997: Brachypodio pinnati-
Molinietum arundinaceae in the Czech Republic; in both cases no records with
cryptogam treatment were available but bryophytes and lichens probably do not play
as large a role in such communities).

Effect of Sampling Design

We could not find the hypothesized decrease in goodness-of-fit when single-value
SARs are constructed from marginal instead of central subplots. This does not mean
that such an effect is non-existent but that in this case study was too small to be
detected with our relatively few replicates. Additionally, the 100-m2 plots were
chosen according to homogeneity criteria, and the centers of the marginal and central
9-m2 subplots were only approx. 5 m apart. The two approaches would probably
deviate more if the largest plot were bigger (thus the distances between marginal and
central subplots larger) and less homogeneous (as e.g. in the study of Dolnik 2003).
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By contrast, the two other aspects of sampling design had exactly the predicted
effects. Interestingly, the deviations of single-value vs. average-value and random-
plot vs. nested-plot were nearly identical (see the extensive similarities between
Table 6 and 7). Thus, we discuss them jointly. As hypothesized, both single-value
and random-plot design gave rise to an increase in stochasticity compared to the
preferred average-value nested-plot approach. This increase of stochasticity has
opposite effects for well fitting and poorly fitting models. Those SAR models that fit
the data well, namely the power function, the quadratic power function, and the
Lomolino function, showed a significantly decreased absolute fit in sampling
designs with more stochasticity, while their relative fit remained largely unaffected.
Those SAR models that fit the data poorly, namely the logarithmic and the
Michaelis-Menten function, did not, however, alter their absolute goodness-of-fit but
improved relatively to the six other models. Despite this relative improvement on
average by approximately 5–8 units on the log scale of AICc, the logarithmic
function only very rarely and the Michaelis-Menten function never could surpass the
variants of the power function in fitting quality even with “added stochasticity” (see
Table 5). As expected, sampling schemes that involve more stochasticity caused no
systematic bias either in estimated function parameters (except for one parameter of
the Lomolino function in one case, see Results) or in the tendency to over- or
underestimate richness values when used for extrapolation, though they sometimes
increased the variance.

To conclude, for two of the three pairs of different sampling approaches the
methodology that inherently encompassed more environmental stochasticity
caused a relative improvement in fitting quality of less suitable SAR models. This
is consistent with the theoretical prediction of Dengler (2008, this issue). This
tendency will increase the chance of erroneously selecting a certain SAR model.
However, the effect – at least in this case study – was so small that it is not likely a
major reason for the better fits of logarithmic than power models for small-scale
SARs that are sometimes reported in the literature, and which Dengler (2008, this
issue) assumes to be largely due to methodological artifacts. According to the
available data (see Dengler 2008, this issue), grid-point vs. any-part system and use
of incontiguous instead of contiguous areas seem to cause much stronger deviations
from the regular power function in small-scale SARs towards logarithmic and
saturation functions or power models with decreasing z value (e.g. quadratic and
Plotkin variants of the power function, cf. Dengler 2008, in press). For example,
Löbel (2002; also see Löbel et al. 2004), who with the grid-point system analyzed
dry grassland communities on the Swedish island of Öland very similar to those of
our study, reported an average value of the parameter b2 of the quadratic power
function (fitted in log S) of −0.056, which exceeds the value found in the present
study (−0.0066) by nearly one order of magnitude. Nevertheless, it seems
reasonable to avoid even such minor distorting effects in future studies and
therefore to apply nested-plot sampling with a sufficient number of subplots for the
smaller areas equally spread within the largest plot.
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