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Abstract
Background: Recent work on the complexity of life highlights the roles played by evolutionary
forces at different levels of individuality. One of the central puzzles in explaining transitions in
individuality for entities ranging from complex cells, to multicellular organisms and societies, is how
different autonomous units relinquish control over their functions to others in the group. In
addition to the necessity of reducing conflict over effecting specialized tasks, differentiating groups
must control the exploitation of the commons, or else be out-competed by more fit groups.

Results: We propose that two forms of conflict – access to resources within groups and
representation in germ line – may be resolved in tandem through individual and group-level
selective effects. Specifically, we employ an optimization model to show the conditions under which
different within-group social behaviors (cooperators producing a public good or cheaters exploiting
the public good) may be selected to disperse, thereby not affecting the commons and functioning
as germ line. We find that partial or complete dispersal specialization of cheaters is a general
outcome. The propensity for cheaters to disperse is highest with intermediate benefit:cost ratios
of cooperative acts and with high relatedness. An examination of a range of real biological systems
tends to support our theory, although additional study is required to provide robust tests.

Conclusion: We suggest that trait linkage between dispersal and cheating should be operative
regardless of whether groups ever achieve higher levels of individuality, because individual selection
will always tend to increase exploitation, and stronger group structure will tend to increase overall
cooperation through kin selected benefits. Cheater specialization as dispersers offers simultaneous
solutions to the evolution of cooperation in social groups and the origin of specialization of germ
and soma in multicellular organisms.

Background
Cooperation is central to transitions in individuality [1-
4]. Full individuality is achieved when components coop-

erate and relinquish their autonomy to the larger whole.
Depending on the type of transition, this may necessitate
the division of labor in growth, reproduction, develop-

Published: 19 August 2008

BMC Evolutionary Biology 2008, 8:238 doi:10.1186/1471-2148-8-238

Received: 4 March 2008
Accepted: 19 August 2008

This article is available from: http://www.biomedcentral.com/1471-2148/8/238

© 2008 Hochberg et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18713461
http://www.biomedcentral.com/1471-2148/8/238
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Evolutionary Biology 2008, 8:238 http://www.biomedcentral.com/1471-2148/8/238
ment, feeding, movement, and protection against external
aggression and internal conflict [5,6]. In the evolution of
multicellularity, the chain of events from autonomous
individuals at one level to the incorporation of these indi-
viduals into a more complex entity remains unclear [5].
However, some of the putative forces are likely to be gen-
eral, since multicellularity has arisen many different times
in evolutionary history [7,8]. Moreover, that many group-
ings do not show sophisticated specialization and are
characterized by substantial levels of internal conflict
[9,10], suggests that incomplete multicellularity may be a
frequent outcome. What mechanisms are essential to gen-
erate individuality? We believe that a general theory needs
to explain both full and incomplete transitions towards
multicellular individuals.

Previous work highlights group and kin selection
[5,10,11], organism size [12,13], and the reorganization
of fitness and specialization tradeoffs [14] as playing roles
in the evolution of multicellularity. A feature common to
these mechanisms is the establishment and maintenance
of cooperative behaviors amongst subunits through, for
example, conflict mediation (e.g. [15,16]). Based on a
recent literature review, Grosberg and Strathmann [8]
argued that for cooperation to emerge and favor the spe-
cialization of subunits, groups of cells need to reduce
genetic conflicts arising in cell lineages [10]. They con-
clude that several mechanisms can limit such conflicts,
perhaps the most important being development from a
single cell (e.g., [5,16]).

A key type of subunit specialization in multicellular
organisms is the separation of germ and soma
[1,5,10,17,18]. Separating germ and somatic functions
amongst individual cells or cell lineages requires that each
sacrifice autonomy. Theory predicts that such specializa-
tion is promoted by non-mutually exclusive mechanisms
such as cooperation and relatedness amongst cell lineages
[10], cheater control [1,19,20] and adaptive responses to
tradeoffs between survival and reproductive functions, i.e.
a covariance effect augmenting the fitness of the group
over the average fitness of its members [14]. It is not
known whether the alignment of fitness interests in
emerging soma and germ lines tends to occur before, dur-
ing or after other types of specialization characteristic of
multicellular organisms [12].

A pervasive feature in a diverse array of social systems is
that individuals not contributing to the common good
either act as dispersers, or are either rewarded for, or
coerced into, cooperating. Examples range from bacteria
(e.g. Pseudomonas fluorescens) through protozoa (e.g. Vol-
vox carteri) to metazoans, like eusocial insects and mam-
mals (see Additional file 1). For example, in naturally
occurring Dictyostelium slime molds prespores secrete a

chlorinated hexaphenone (DIF-1) inhibiting redifferenti-
ation of prestalk cells into prespores, which would trans-
pose them from "cooperative" stalk building to "cheating"
spore production (i.e. a transition into the dispersing and
perennial germ line; [21,22]). Cheating is further curtailed
by pleiotropic effects of a gene required to permit receipt
of this signal, which affects also the probability of spore
formation [23]. In tunicates such as Botryllus schlosseri, nat-
ural chimeras consisting of genetically nonhomogenous
organisms often show reproducible germ cell parasitism
that is sexually inherited, with "parasitic forms" being
expressed only in the germ line, i.e. in the dispersing enti-
ties [24]. In the cooperatively breeding cichlid fish Neo-
lamprologus pulcher, brood care helpers of both sexes are
forced to pay rent for being tolerated in a safe territory
[25,26]. To avoid being punished they preemptively
appease dominants by cooperative and submissive behav-
ior [27]. Typically, in these cichlids and in cooparatively
breeding meerkats Suricata suricatta, subordinates prepar-
ing for dispersal reduce helping [28,29], which might be
explained by reduced costs of potential punishment by
eviction [30,31]. In eusocial mole rats (Heterocephalus gla-
ber and Cryptomys damarensis) non-reproductive helpers
and hardly helping dispersers coexist [32-34]. Policing of
subordinates by dominant breeders may simultaneously
maintain social order and stimulate cooperative behav-
iors [35,36]. This distinction of roles between individuals
is particularly obvious in the separation between soma
and germ that has apparently evolved many times inde-
pendently [7]. Nevertheless, there are examples where
cooperative behaviors are associated with enhanced group
dispersal (see Additional file 1). For example, in the soil-
dwelling social bacterium Myxococcus xanthus, individual-
istic cell movement ('A-motility') promotes swarming on
hard surfaces, whereas swarming on soft surfaces is a
group function driven primarily by individually costly S-
motility [37].

These empirical patterns merit explanation, and we take a
first step by employing optimization techniques to evalu-
ate the conditions leading to associations between disper-
sal and social strategy. Sociality in our models takes the
form of cooperation in the production of a public good.
Previous study of public goods has shown how cheating,
if left unchecked, potentially leads to a "tragedy of the
commons" [38,39], whereby individual selection tends to
favor exploitation of the public good at some concurrent
or future detriment of the group. Several non-mutually
exclusive mechanisms may promote cooperation and
group persistence, including kin selection (e.g., [40-42]),
rewards and sanctions (e.g., [43,44]), spatial and network
structure (e.g., [45-47]), and signals involving kin or non-
kin (e.g., [48-50]). Recent reviews and perspectives can be
found in Crespi [51], Sachs and colleagues [52], Lehmann
and Keller [53], and West and coworkers [54].
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We develop a model based on kin selection that incorpo-
rates dispersal specialization, as suggested by the case
studies in Table S1 (see Additional file 1). We employ the
terms "soma" and "germ" to represent the functions of
within-group growth and dispersal leading to the found-
ing of new groups, respectively. Our use of the terms
"cooperators" and "cheaters" refers to social behaviors
within the commons (e.g., soma), and this should be dis-
tinguished from the frequent usage of "cheaters" as coop-
erative somatic lineages trying to gain access to germ line
(e.g., [1,5,8,10,22]). Specifically, cooperators contribute
to the public good within a distinct group at an individual
cost, and cheaters exploit the public good. Cooperators
and/or cheaters may be selected to either remain in a
group, or to disperse (potentially founding new groups).
Our theory proposes a mechanism leading to high overall
cooperation, based on dispersal specialization. In addi-
tion to increasing our understanding of cooperative and
dispersal behaviors, it could apply to the evolution of
multicellularity in a range of contexts, including physio-
logically integrated organisms [55,56], organisms with
both solitary and integrated life-styles (e.g., [57]), and
complex societies [58].

Methods
We formalize our verbal arguments given above by devel-
oping and analyzing a model of coevolution between
exploitation of the commons and dispersal. From the out-
set, we stress that our model is a highly simplified repre-
sentation of this process, and not aimed to make
quantitative predictions for any given system. Rather, our
goal is to identify the qualitatively important drivers in
the coevolution of individual strategies and the evolution
of multicellularity.

In our model the focal units of selection are individuals
themselves, rather than the higher-level unit. A transition
to multicellularity is favored when the interests of the
individual and the higher-level (the group) are aligned
[5,8,15]. Previous models investigating the transition to
multicellularity invoke a framework where the group is
the focal unit of selection (see, for example [15]). How-
ever, focusing on the higher-level as the focal unit does
not easily allow the investigation of optimization at the
lower level [59], and the individually-selected conditions
leading to a major transition [60]. Grosberg and Strath-
mann [8] have argued that many of the requirements for
transitions to multicellularity exist in unicellular organ-
isms (for social groups, see [61]). Once a transition is in
progress, and the "group" begins to behave as an individ-
ual entity, one can begin to treat this unit as an evolving
individual in itself.

We analyze an optimization model that takes into
account the effect of both the phenotype of the focal indi-

vidual and the average phenotype of the group in which it
lives, on the fitness of the focal individual (see Table 1 for
descriptions of parameters and variables). The approach is
based on the direct fitness method [42,62] in that, by con-
sidering the effects of both individual and average group
phenotypes on the fitness of a focal individual, we can
apply the Price Equation to partition these effects as
weighted by the relatedness of the focal individual to
other members of the group [42]. We can then assess the
relative impacts of (1) costs and benefits of individual
behaviors and (2) kin structure, on associations between
exploitative strategy within a group, and dispersal to
found new groups. Nevertheless, our model oversimpli-
fies the complexity of social behavior and dispersal deci-
sions (for review, see [63]), and should thus be viewed as
a preliminary attempt to identify patterns.

Our model makes several assumptions. First, we do not
explicitly consider dynamics, such as group founding,
group numbers, individual emigration and immigration,
and competition for limiting resources within or between
groups. Rather, we assume negligible variation in inter-
group competition. Second, our model does not explicitly
incorporate genetic polymorphisms, meaning that the
heritable traits are probabilities to adopt alternatives of
each strategy (disperse or stay; cooperate or cheat)
depending on environmental and/or social conditions
[1,10,32,64-66]. Third, there is a simple direct tradeoff
between an individual's viability (growth, survival and
reproduction) within the group and its ability to disperse
and found new groups. This is based on the well estab-
lished life-history trade-off between reproduction and dis-
persal (see [67]), probably best studied in insects (on the
physiological scale e.g. [68-70]; on the ecological scale e.g.
[71,72]). Whereas growth and reproduction within the

Table 1: Parameters and variables used in this study.

w Individual fitness
r Relatedness between any two randomly selected individuals in 

the group
s Individual cost to cooperator growth in the group
k Number of individuals in a group (an inverse measure of kin 

selection)
c Individual cost to cooperator dispersal
e Individual cost to cheater dispersal
Q Impact of sedentary cheaters on the individual fitness of group 

members (via consumption of the public good)
P Impact of sedentary cooperators on the individual fitness of 

group members (via production of the public good)
n Relative frequency of cooperators in the group (1-n is the 

proportion of cheaters)
z Relative frequency of cheaters dispersing
y Relative frequency of cooperators dispersing
d Overall investment in dispersal. d = yn + z(1-n)
Φ Overall cooperation with respect to the public good. Φ = n*(1-

y*)+(1-n*)z*
σ Association between dispersal and cooperation. σ = y/(y+z)
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group impacts the production and consumption of the
public good, the tendency to disperse reduces these
impacts because of the limited presence of dispersers in
the source group.

Life cycle and fitness equations
We assume that a group's life-cycle has three sequential
stages: colonization, growth, reproduction and survival of
individuals within the group; exhaustion of resources; and
the dispersal of survivors. Some of the survivors may stay
at the same site of the source group, and others disperse as
colonists to other sites.

The model tracks the fitness contribution of a mutant
individual i, within group j [42,62]. Fitness effects are par-
titioned between cooperators and cheats–who have posi-
tive and negative impacts on the public good,
respectively–and amongst dispersal strategies. Thus four
strategies are possible: (1) cooperate and remain in group,
(2) cooperate and disperse, (3) cheat and remain in
group, and (4) cheat and disperse. Only the first and third
strategies affect the public good.

The proportion of cooperators in the group is ni (for sim-
plicity, hereafter we denote individual i within group j
using the subscript i only), which can take continuous val-
ues between 0 and 1. Moreover, our model incorporates
two dispersal strategies based on whether the dispersing
individual is a cooperator or a cheater. We define yi as the
investment of a cooperator in dispersal and zi as the
investment of a given cheater in dispersal. Both of these
quantities take on continuous values between zero and
one. The mean proportions of dispersing cooperators and
cheaters in group j are  yjnj and zj(1-nj), respectively and
overall investment in dispersal is dj = yjnj + zj(1-nj).

The fitness equation takes the form

wi = D(ni, yi, zi) E(ni, yi, zi) G(ni, yi, zi), (1)

where the functions D and E, respectively, represent the
contribution of selection on dispersal and the exploita-
tion of the public good of individual i in group j to its own
fitness. Function G is the overall investment in the public
good in group j.

Dispersal is modeled by considering the fitness contribu-
tions of both individuals that stay at the site previously
occupied by the group and others that disperse [73]. We
assume that the costs of dispersal may differ between
cooperators (c) and cheaters (e). Small costs would indi-
cate abundant new sites for group establishment and high
disperser survival. Although we consider different cases in
the analysis, our general expectation is that the costs of
cooperation will extend to dispersal, such that c > e.

The function, D, takes the form

D(ni, yi, zi) = [(1 - zi (1-ni) - yi ni)/(1 - zj (1-nj) - yj nj + (1-e) 
z (1-n) + (1-c)y n)] + [((1-e) zi (1-ni) + (1-c)yi ni)/(1 - e z (1-
n) - c y n)].                                                                      (2)

The first term in square brackets describes the fitness of a
non-disperser (1 - zi (1-ni) - yi ni) relative to the average
non-disperser (1 - zj (1-nj) - yj nj) and immigrants ((1-e) z
(1-n) + (1-c)y n). The second term describes the fitness of
a disperser ((1-e) zi (1-ni) + (1-c)yi ni) given the competi-
tion it faces with residents (1 - z (1-n) - y n) and migrants
((1-e) z (1-n) + (1-c)y n) in another group. The terms n, z
and y (i.e., without subscripts) are population-wide
means. The denominator in both terms represents the
amount of competition faced either in the original group,
in the case of a non-disperser, or in a new group, in the
case of the disperser. Note that in the limit of no dispersal,
individual fitness can still be positive under the assump-
tion that groups survive indefinitely.

All non-dispersing individuals are selected to exploit, but
given our assumption that there is a cost of cooperation
(s), this will weight selection to favoring cheaters, all else
being equal. The function, E, describes the contribution of
individual i to its own fitness through exploitation of the
public good and is given by

E(ni, yi, zi) = [(1-zi) (1-ni) + (1-s) (1-yi) ni]/[(1-zj) (1-nj) + 
(1-s) (1-yj) nj],                                                                (3)

where the subscript j indicates mean group levels, and the
constant s measures the cost to individual cooperators in
producing the public good.

The overall effect of group investment in the public good
on individual fitness is described by

G(ni, yi, zi) = 1 + P (1-yj) nj - Q (1-zj) (1-nj),  (4)

where it is assumed that non-dispersing cooperators have
a positive effect on the public good (scaled by P) as their
frequency, nj, increases [74,75], whereas cheaters have a
net negative effect on the public good (scaled by Q) as
their frequency, 1-nj, increases. Note that in the absence of
cooperators, cheats can persist as long as their impact on
the commons is sufficiently low (z Q< 1). Alternatively,
when group effects are nil (i.e. P = Q = 0), the notion of a
group is a collection of autonomous individuals.

Relatedness and numerical simulation methods
We analyze the model by employing the Price Equation,
which enables us to express possible fitness maxima as a
function of constant parameters and variables, and the
relatedness, r, between individuals. Taylor and Frank [62]
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give methods for finding the equilibrium, such that for
any trait v we have

dwi/dvi = ∂wi/∂vi + r ∂wi/∂vj (5)

from which we can find a steady state(s) when dwi/dvi = 0
to find any or all v* = y*, z*, n*.

In our model, r can either be a parameter (referred to as an
"open model" by Gardner and West [76]) or can emerge
from the underlying structure of the population (referred
to as a "closed" model in [76]). In the latter case, we may
derive r from the dispersal of individuals in the popula-
tion with the recursion relation (e.g., [39,76])

r(t+1) = 1/k + (k - 1)/k (1 - d)2 r(t). (6)

This recursion tracks the probability that a given focal
individual is identical by descent to another randomly
picked individual at time t. The parameter k is the effective
number of individuals in the group, and can be viewed as
a measure of genetic diversity due to individual aggrega-
tion in group founding and habitat structure. [Note how-
ever that our model does not explicitly track the actual
number of individuals in the group]. Low k is indicative of
group founding by single individuals, group resistance to
immigration, and abundant open sites for group found-
ing [10,77].

In the recursion above, the term 1/k represents the proba-
bility that the randomly picked individual is the focal
individual itself. The second term represents the probabil-
ity that the randomly picked individual is different to the
focal individual, and that neither have dispersed (repre-
sented by (1-d)2). This is multiplied by the relatedness
from the previous round. Solving this recursion relation
yields the equilibrium relatedness, which is

r = 1/(k - (k - 1) (1 - d)2). (7)

As we assume weak selection, the probability that a given
individual disperses depends on the probability that it is
a cooperator and disperses, plus the probability that it is a
cheater and disperses, so d = yn+z(1-n) in this case. Under
the assumptions of weak selection, we evaluate this recur-
sion for the case when vi = vj = v, where v is the trait in ques-
tion.

Optimal strategies were solved numerically. This con-
sisted of iterating equation (5) with steps of 0.05 or
smaller for a total of 100,000 steps, which was sufficient
to identify the steady state in all cases. We found that
whereas initial levels of evolving variables did not affect
the optimal solution when only dispersal frequencies y
and z evolved, initial conditions could indeed affect the

optimal solution when all three variables evolved. Closer
examination showed that alternative stable states were
possible, one with either all cheaters (n* = 0) or all coop-
erators (n* = 1), and a second with both strategies persist-
ing (0 <n* < 1). Although we cannot exclude the existence
of alternative interior equilibria, our numerical studies
always yielded at most a single interior solution.

Results
We consider two scenarios. In the first (Model 1) only dis-
persal in cooperators (y) and cheaters (z) evolves, but not
cooperation (n). This situation would be obtained if
mechanisms not explicitly included in the model (e.g.,
policing, [44]) controlled the level of cooperation, or if
the frequencies of cooperative behaviors were either not
subject to evolution, or labile to it over much longer time
scales than dispersal. More generally however, empirical
study suggests that cooperative behaviors are subject to
selection [78-80] and we consider the case (Model 2) in
which dispersal and the frequency of cooperators (n) and
cheaters (1-n) co-evolve.

In addition to optimal levels of dispersal (Model 1), and
of cooperation and dispersal (Model 2), we examine the
effects of model parameters on dispersal specialization σ
= y*/(y*+z*), and for Model 2 only, overall cooperation Φ
= n*(1-y*)+(1-n*)z* (i.e., the sum of cooperators not dis-
persing and of cheaters dispersing). Note that when σ = 0
(or σ = 1), although all cooperators (cheats for σ = 1) are
sedentary it is not necessarily true that all cheats (cooper-
ators for σ = 1) disperse.

Model 1
Optimal solutions always yielded partial or complete spe-
cialization, with cooperators tending to disperse more
than cheaters (i.e., σ > 0.5) for high costs of cooperation
(s) compared to public good's effect (P), and low cooper-
ator frequencies (n) (Figure 1). The reverse trends pro-
mote relative cheater dispersal (σ < 0.5; Fig. 1). The
impact of effective group size (k) is more complex. Higher
k tends to polarize dispersal to either cooperators (y* > 0,
z* = 0) or cheaters (y* = 0, z* > 0), and increases the
parameter space in which cooperators dominate dispersal
(areas with σ * = 1; Fig. 1).

Low effective group size (low k) should positively associ-
ate with kin competition, and in agreement with previous
work [81,82], we find that low k is associated with higher
overall dispersal, d* (Figure 2a). Not surprisingly, d*
increases with lower cooperator frequencies (n) and pub-
lic good effects (P) (Fig. 2a). However, the effects of k and
n on the separate cooperator (y*) and cheater (z*) disper-
sal frequencies are more complex (Figs. 2b, c). In particu-
lar, low k was always found to drive cheaters to disperse
(Fig. 2c), whereas the effect on cooperators depended
Page 5 of 14
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strongly on cooperator frequency (n) and public good
productivity (P) (Fig. 2b).

Cheater and cooperator dispersal can be understood as
follows. When the group is dominated by cheaters (low n)
and production of the public good (P) is small, increasing
cooperator sedentariness (1-y*) has little beneficial effect
on fitness (w), due to insufficient marginal gains via both
individual exploitation (E; eqn. 3) and the group effects
(G; eqn. 4). As a consequence, cooperators are selected to
disperse more, relative to cheaters. Cheaters may disperse
at high levels nonetheless (e.g., case of n = 0.1, k = 1.2 in
Fig. 2c), because in so doing, they lessen the effects of the
tragedy of the commons on individual fitness of their kin.
In contrast, when the group is dominated by cooperators
(high n) and public good production is high (P), marginal
fitness increases with cooperator sedentariness and, due
to kin competition (k), cheaters are selected to disperse
more, relative to cooperators.

Model 2
Permitting social evolution introduces the possibility that
the frequency of cooperators or cheaters fixes to zero or
one, in which case associations (σ) between dispersal and
social strategies are irrelevant. We find that depending on
parameter combinations, either only a single global opti-
mum is obtained, or two alternative local optima are pos-
sible. In the latter case, which state is obtained depends on
initial levels of y, z and n in the numerical simulations.
Figure 3 shows the fraction of simulations with random
initial levels of n, y and z, achieving either an internal
equilibrium (0 <n* < 1), or one with all cooperators (n* =
1), or one with all cheaters (n* = 0) for different costs of
cooperator dispersal (c; Fig. 3a) and effective group sizes
(k, Fig. 3b). For simplicity in the analyses below, we
employ a single arbitrary starting condition (n = y = z =
0.5).

We observed four basic outcomes (Fig. 4): (1) fixation of
cooperators (n* = 1), (2) fixation of cheaters (n* = 0), or
coexistence of cooperators and cheaters with (3) the
former only being sedentary (σ * = 0), or (4) the latter
only being sedentary (σ * = 1). When σ * = 0 or σ * = 1
(i.e., all cooperators or cheaters sedentary, respectively),
we further found outcomes in which all cheaters dispersed
(z* = 1) or all cooperators dispersed (y* = 1), respectively.
Parameter effects are generally similar to Model 1, but
with some notable contrasts.

Whereas in Model 1, the relative cost of cooperator (c)
and cheater (e) dispersal did not yield a simple threshold
condition for optimal outcomes (not shown), it did so for
Model 2. We found that when cooperators and cheaters
coexisted and e > c, cooperators dispersed and cheaters did
not (i.e., σ * = 1) (Figs. 4a, b). The reverse held when c >
e (Figs. 4c, d). Low effective group size (k) increases coop-
erator persistence (i.e., smaller areas in which n* = 0 in
Fig. 4), with the effects on cheater persistence contingent
on other parameters (i.e., differences in areas with n* = 0
in Fig. 4). More interestingly, whereas when e > c, lower k
shifts the parameter space permitting cooperators and
cheaters to coexist and has little effect on the area in which
all cooperators disperse (y* = 1), when c > e, it expands the
area of coexistence and that in which all cheaters disperse
(z* = 1) (Fig. 4). Finally, relatedness (r*) generally
increases with high P:s ratios, low k, and high costs to
cooperator dispersal, c, with respect to cheater dispersal, e
(Fig. 5). Interestingly, specialization in dispersal by cheat-
ers and in sedentariness by cooperators tends to associate
with high, but not the highest levels of relatedness (cf Figs.
4c, 5c).

If we define the functional role of a cooperator as contrib-
uting to the public good, and that well functioning groups
minimize the impact of cheats on the public good, then,

Globally optimal associations in dispersal and exploitation strategy for Model 1Figure 1
Globally optimal associations in dispersal and exploi-
tation strategy for Model 1. Axes: P measures the impact 
of the public good on individual fitness, and s is the individual 
cost to cooperators in contributing to the public good. σ * = 
y*/(z* + y*) indexes the tendency of cooperators to disperse 
(σ* > 0.5) or cheats to disperse (σ* < 0.5). Thick curves 
demarcate areas of parameter space yielding different levels 
of σ, whereas thin lines show areas in with either y* = 1 or z* 
= 1. Caption a: k = 1.2, n = 0.1; caption b: k = 10, n = 0.1; 
caption c: k = 1.2, n = 0.9; caption d: k = 10, n = 0.9. Note 
that for legibility, very thin areas parallel to thick lines are 
omitted, in which 0.5 < σ* < 1 for caption c, and 0 < σ* < 1 
for caption d. Unless otherwise noted, dispersal rates are 
greater than zero and less than unity. Other parameters: c = 
e = 0.2, Q = 0.2. See main text for numerical methods.
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trivially, specialization resulting in mobile cooperators
and sedentary cheaters corresponds to a non-social, indi-
vidualistic scenario, and cannot be considered a group
related phenomenon. There are however two ways in
which the impact of cheaters on the commons can be
reduced: either 1-n* decreases and/or z* increases. Figure
6 presents the effects of model processes on overall coop-
eration, defined as Φ = n* (1-y*) + (1-n*) z*. We see that
although high levels of Φ are generally promoted for high
P:s ratios, perfect overall cooperation (Φ = 1) is most read-

ily obtained at low k and intermediate P:s ratios (e.g. Fig.
6c).

Locally optimal associations between dispersal and exploita-tion strategyFigure 4
Locally optimal associations between dispersal and 
exploitation strategy. The frequency of dispersal in coop-
erators (y) and cheaters (z) evolves, and the frequency of 
cooperators (n) and cheaters (1-n) evolves. Initial frequencies 
in numerical studies: y = z = n = 0.5. As for Figure 1 except 
caption a: k = 1.2, c = 0.1; caption b: k = 10, c = 0.1; caption c: 
k = 1.2, c = 0.3; caption d: k = 10, c = 0.3.
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Effects of parameters on optimal dispersal levels for Model 1Figure 2
Effects of parameters on optimal dispersal levels for Model 1. Effects of public good production (P), frequency of coop-
erators (n) and effective group size (k). Caption a: overall dispersal d*; Caption b: investment in cooperator dispersal y*; Cap-
tion c investment in cheater dispersal z*. Thin line: k = 1.2, n = 0.1; dashed line: k = 10, n = 0.1; thick line: k = 1.2, n = 0.9; thick 
dashed line: k = 10, n = 0.9. Other parameters: c = e = 0.2, Q = 0.2, s = 0.6.
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The fraction of simulations in Model 2 leading to different local optimaFigure 3
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Discussion
Our results are in broad agreement with the tenets of kin
selection theory for explaining dispersal [45,81,82] and
the maintenance of cooperative behaviors [83-85]. Specif-
ically, we found that dispersal specialization leading to
high levels of overall cooperation (Φ) is promoted by suf-
ficient benefit to cost ratios (P : s) of cooperation and by
kin selection (low k). The one apparent discrepancy to
previous theory is, whereas higher benefit (P) to cost (s)
ratios promote cooperation, higher kin selection (low k)
was sometimes observed to reduce the relative frequency
of cooperators (n*) (cf. Figs. 4c, d). This can be explained
if we consider cheaters dispersing from the group as a type
of cooperative behavior. Dispersing cheaters are effec-
tively 'cooperative' because of the incurred individual cost
of dispersal (e), and the benefits to the group in having
less negative impact on the commons (Q) (cf. Figs 4c, d
with Figs. 6c, d). Moreover, we found that partial or total
specialization of otherwise somatic cheats as dispersing
germ line occurred without the need for costly modifiers
[86] or the repression of cheaters [[87,88], but see [22]],
suggesting that the mechanism identified here is applica-
ble to a wider range of organisms where these mecha-
nisms do not sufficiently reduce somatic cheating, or
cannot evolve. Conversely, control mechanisms such as
rewarding and punishment, which might be operating in
many systems (see examples in Additional file 1), do not
preclude the functionality of the mechanism demon-
strated in this study (cf. Model 1).

The examples presented in Table S1 (see Additional file 1)
and our theoretical findings suggest a common concep-
tual and mechanistic foundation for the evolution of
cooperation and individual functional specialization
within groups (e.g., multicellularity). Most of the empiri-
cal examples share the feature that cooperators are less
dispersive than more competitive individuals. For
instance, low dispersal coincides with physical binding in
bacteria that generate biofilms as a public good by poly-
mer production [79,89] (but see ref. [90] for an alternative
interpretation), with alloparental care of offspring in
cooperative breeding [91], or with complete genetic altru-
ism in certain eusocial insects [92]. It is worth noting that
a consistent differentiation of roles regarding sedentari-
ness and dispersal in relation to cooperation and cheating
may be much more common in nature than currently
believed (e.g. [93]). Because there is no prior formal the-
ory predicting such a relationship, empirical research on
this issue is rare and suitable data are therefore scant. We
stress that our theory does not elucidate the precise evolu-
tionary pathway leading to complete multicellularity
[16,77], but rather assesses the forces promoting or fore-
stalling different levels of specialization of cooperators
and cheaters as functional germ line and soma. As such,
the observations of biased dispersal in Table S1 (see Addi-
tional file 1) have alternative explanations, including
forced eviction [94] and individual-based habitat selec-
tion [95]. Experimental (e.g., [79,80,96-98]), phyloge-
netic (e.g., [6]), and theoretical (e.g., [13,22] and see
discussion below) approaches are fruitful avenues to
explore alternative explanations and pathways.

Overall cooperation, Φ = n *(1 - y*)+(1-n*)z*, associated with simulations in Figure 4.Figure 6
Overall cooperation, Φ = n *(1 - y*)+(1-n*)z*, associ-
ated with simulations in Figure 4.
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Transitions in individuality and social complexity are gen-
erally thought to require some form of reduction in
genetic variance during the reproductive process [20,77].
Genetic heterogeneity can emerge from many sources
[99], and the recursive equation 6 in our framework
greatly simplifies these, only explicitly including the
effects of dispersal. Our results confirm the importance of
relatedness in achieving multicellularity, but also show
that the highest levels of relatedness did not necessarily
yield full specialization of cooperators or cheaters as dis-
persers, and that complete specialization could occur at
relatedness levels as low as 0.7 (Fig. 4d). As such, our find-
ings could extend to some systems in which groups are
formed by the initial aggregation of non-kin
[10,74,87,99]. Further study is needed to explore this pre-
diction in detail, since our model did not explicitly
account for different lineages, and as such we do not know
how spatial heterogeneities in relatedness might influence
our results [100].

Our findings have precedent, both in the study of symbi-
otic associations, and investigations of cooperation
within species. With regard to host-parasite and symbiotic
interactions, previous research has considered how para-
site virulence (which is analogous to cheaters exploiting
cooperative groups) may evolve spatially (e.g., [101]; for
reviews see [102,103]). In the case of horizontal transmis-
sion in parasites, which is analogous to the level of disper-
sal in our model (see also [73]), theory generally predicts
that increased horizontal transmission (z in our model)
associates with higher parasite virulence (Q (1-n) in our
model) [103]. Despite allowing for relatedness between
potential cooperators and cheats we have a comparable
finding, whereby an increasing tragedy of the commons
pushes cheating individuals to disperse; this is both
because of increased individual fitness opportunities
through dispersal (z) and increased inclusive fitness
through lowered group effects for those related individu-
als that do not disperse (Q(1-n) (1-z)).

In a model investigating cooperation in spatially viscous
environments, van Baalen and Rand [45] suggested that
non-altruists should disperse more readily than altruists
and hypothesized that this could be viewed as a transition
towards multicellularity. Koella [104] studied the inde-
pendent dispersal of altruists and of cheaters in a spatially
explicit setting and found that a polymorphism could
arise in which altruists dispersed and interacted locally,
whereas cheaters evolved longer dispersal distances and
exploited altruistic clusters. Hamilton and Taborsky [95]
showed that when the propensities to cooperate by gener-
alized reciprocity and to disperse evolve independently,
under a wide range of conditions either cooperation or
defection is associated with dispersal, depending on the
probability of finding new groups and on the costs of

being alone. Over most of the range of mobility costs
examined, cooperation was negatively correlated with
mobility, while defection was not. Ultimately, this leads
to assortment between altruists and defectors in the pop-
ulation (see also [105]), which secondarily can generate
group selection effects [106,107]. Hamilton and Taborsky
[95] did not check for linkage effects, however. In another
study of the joint evolution of altruism and mobility, Le
Galliard and coworkers [108] found that more altruism
enhancing local aggregation can select for increased
mobility. The synergistic selective interaction between
altruism and mobility may cause dispersal to be consider-
ably higher than that predicted in a purely selfish popula-
tion, if altruism costs accelerate slowly and mobility costs
are moderate. However, their model did not reveal a pol-
ymorphism to occur between selfish-mobile and altruis-
tic-sessile phenotypes as found so often in nature, from
microbes and unicellular algae to mammals (e.g.
[18,32,109]; Additional file 1). Queller [10] argued that
the resolution of within-organism conflicts could occur if
an altruism allele is expressed conditional on the environ-
ment, the altruistic act being an individual removing itself
from the germ line in order to perform an enhanced
somatic activity. Rainey [110] verbally proposed an idea
similar in some respects to these studies, in which group
selection acts to promote the functional separation of
germ and soma in bacterial biofilms through the dispersal
of cheats (see also [79]). Finally, Michod [14] showed
how the specialization of lower level units into germ and
soma could be associated with the transfer of fitness from
lower units to the new higher individual. A critical feature
of his model is the tradeoff between the viability and
fecundity of lower level units, which, for convex relation-
ships, creates disruptive selection for cooperative germ
and soma. Our study, whilst generating congruent results,
is to our knowledge the first to demonstrate that the evo-
lution of lower level units based on their effects on the
commons can yield dispersal specialization, one of the
precursors for selection at the group level and the evolu-
tion of full multicellularity.

Conclusion
Our results suggest that the establishment of trait linkage
between dispersal and the propensity of within-group
cheating may be a general phenomenon promoting com-
plex social organization and multicellularity. Importantly,
we cautiously suggest this should be operative regardless
of whether groups ever achieve higher levels of individu-
ality, because selection on individual components will
always tend to increase exploitation, and stronger group
structure will tend to increase overall cooperation through
kin selected benefits [42,84]. Partial or full reduction in
the negative effects of cheaters on the commons through
their specialization as dispersers offers partial solutions to
two problems: the evolution of cooperation in social
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groups and the origin of the specialization of germ and
soma in multicellular organisms. Our model is, neverthe-
less, a highly simplified caricature of real systems and
future theoretical and empirical study is needed to explore
its robustness.
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