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Synthesis of Bicyclo-DNA Nucleosides
with Additional Functionalization in the
Carbocyclic Ring
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Abstract: Two novel bicyclo nucleoside isomers carrying the base thymine in the furanose ring and an ester sub-
stituent in the carbocyclic ring were synthesized from a common bicyclic sugar precursor via a cyclopropanation/
fragmentation pathway in nine steps. The relative configuration of the ester substituent in both isomers as well as
the anomeric configuration in one nucleoside was determined by 1H-NMR difference NOE spectroscopy.
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also proven to increase siRNA efficacy.[5]

While chemistry has provided solutions to
increase duplex stability with target RNA
and to enhance resistance towards nuclease
induced degradation, there are still a series
of largely unsolved problems on the way to
effective oligonucleotide drugs, the most
prominent ones being cellular uptake and
distribution,[6] as well as, depending on the
mechanism of action, off target effects.[7]

The molecular scaffold of bicyclo- and
tricyclo-DNA is ideally suited to accommo-
date further functional groups. Such groups
can for example prove useful in cellular tar-
geting and cellular uptake when modified
with appropriate molecular entities. With
this background we became interested in the
bicyclo-DNA derivatives containing an ad-
ditional carboxyl substituent, such as 1 and
2 (bcalk-DNA, Fig. 1). From model building
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University of Bern
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CH-3012 Bern
Tel.: +41 31 631 4355
Fax: + 41 31 631 3422
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Introduction

The concept of conformational restriction[1]

has been successfully applied in the past in
nucleic acid chemistry and has produced
analogues such as the family of the locked
nucleic acids (LNA)[2] or tricyclo-DNA
(tc-DNA)[3] (Fig. 1) which show strongly
increased affinity to complementary RNA
without compromising base-recognition se-
lectivity. These analogues are currently con-
sidered as advanced generation antisense
agents and are expected to replace the phos-
phorothioate DNA and some of the simpler
2’-O-alkyl-RNA analogues in therapy.[4]

Besides this, some of these analogues have
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Fig. 1. Structures of selected examples of conformationally restricted DNA
analogues as well as of bcalk-DNA described in this paper
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it appears that these functional groups are
located on the rim of the backbone point-
ing away from the helical axis. Thus only
little or no interference with duplex forma-
tion as a consequence of a molecular entity
attached in this position can be expected.
In this preliminary communication we de-
scribe a convenient synthetic access to the
corresponding nucleosides carrying the
base thymine.

Results and Discussion

In our synthetic strategy we envisaged
the introduction of the functional group into
C(6’) of the sugar unit via a cyclopropana-
tion/fragmentation pathway on enol ether
4. This pathway also provides an entry into
functionalized tricyclo-DNA building blocks
and was therefore considered to be more ap-
propriate than direct alkylation strategies.
The synthesis started with ketone 3 which
is a known key intermediate in the synthe-
sis of tricyclo-DNA.[8] (Scheme). Ketone
3 was converted into the silyl enol ether 4
by standard reactions. Cyclopropanation of
4 with ethyldiazoacetate in the presence of
Cu(acac)2 yielded 5 as a mixture of three iso-
mers in a ratio of roughly 2:1:1 in a combined
yield of 80%. Desilylation with HF·pyridine
afforded under concomitant cleavage of the
cyclopropane ring a mixture of ketoesters 6
(81%) in a 1:1 ratio that was inseparable by

standard column chromatography. We as-
sume that this isomeric mixture reflects ther-
modynamic equilibrium although we did not
investigate this fact in detail. This mixture
of ketones 6 was subsequently reduced with
NaBH4/CeCl3 to the hydroxyesters 7 and 8
that could be isolated as pure isomers. The
relative configuration of 7 and 8 was unam-
biguously assigned by 1H-NMR NOE spec-
troscopy (Fig. 2).

In the light of previous results in the syn-
thesis of tricyclo-nucleosides[9] we planned
the introduction of the nucleobase in a two-
step procedure via NIS induced nucleosida-
tion[10] of enol ether 9 and 10, followed by
radical dehalogenation, as this promised to
yieldstereoselectivelyonlytheβ-nucleosides
and thus seemed superior to the standardVor-
brüggen procedure,[11] in which a mixture of
anomers had to be expected. To this end the
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isomers 7 and 8 were separately converted
into enol ethers 9 and 10 by treatment with
TMSOTf. Subsequent reaction with persily-
lated thymine and N-iodosuccinimide (NIS)
followed by radical reduction with Bu3SnH/
AIBN gave the corresponding nucleoside 1
as a single β-isomer while nucleoside 2 was
obtained as a 1:1 mixture of anomers. We ra-
tionalized the mixture of anomers in the NIS
mediated addition to 9 as the consequence of
the ester substituent at C(6’). In the concave-
shaped intermediate after iodine addition,
this substituent protects the β-face at the
anomeric center from nucleophilic attack by
the nucleobase, thus leading to partial syn
addition. The relative configuration at the
anomeric center in 1 was again assigned on
the basis of 1H-NMR NOE spectroscopy
(Fig. 2).

Conclusions

We have successfully synthesized two
novel bicyclo-nucleoside modifications
with an additional ester function on the car-
bocyclic ring. These nucleosides will now
be converted into the corresponding build-
ing blocks for automated DNA synthesis.
The next set of experiments will then be
devoted to the incorporation of these units
into oligodeoxynucleotides and the study
of the effect of the substituent at C(6’) on
the hybridization behavior towards comple-
mentary DNA and RNA.
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