Dextran sulfate modulates MAP kinase signaling and reduces endothelial injury in a rat aortic clamping model

Banz, Yara; Gajanayake, Thusitha; Matozan, Katja; Yang, Zhihong; Rieben, Robert (2009). Dextran sulfate modulates MAP kinase signaling and reduces endothelial injury in a rat aortic clamping model. Journal of vascular surgery, 50(1), pp. 161-70. Amsterdam: Elsevier 10.1016/j.jvs.2009.01.067

Full text not available from this repository. (Request a copy)

OBJECTIVE: Mitogen-activated protein kinases (MAPKs), including JNK, p38, and ERK1/2, noticeably influence ischemia/reperfusion injury (IRI). The complement inhibitor dextran sulfate (DXS) associates with damaged endothelium denudated of its heparan sulfate proteoglycan (HSPG) layer. Other glycosaminoglycan analogs are known to influence MAPK signaling. Hypothetically therefore, targeted intravascular cytoprotection by DXS may function in part through influencing MAPK activation to reduce IRI-induced damage of the vasculature. METHODS: IRI of the infrarenal aorta of male Wistar rats was induced by 90 minutes clamping followed by 120 minutes reperfusion. DXS (5 mg/mL) or physiologic saline (NaCl controls) was infused locally into the ischemic aortic segment immediately prior to reperfusion. Ninety minutes ischemia-only and heparinase infusion (maximal damage) experiments, as well as native rat aorta, served as controls. Aortas were excised following termination of the experiments for further analysis. RESULTS: DXS significantly inhibited IRI-induced JNK and ERK1/2 activation (P = .043; P =.005) without influencing the p38 pathway (P =.110). Reduced aortic injury, with significant inhibition of apoptosis (P = .032 for DXS vs NaCl), correlated with decreased nuclear factor kappaB translocation within the aortic wall. DXS treatment clearly reduced C1q, C4b/c, C3b/c, and C9 complement deposition, whilst preserving endothelial cell integrity and reducing reperfusion-induced HSPG shedding. Protection was associated with binding of fluorescein labeled DXS to ischemically damaged tissue. CONCLUSIONS: Local application of DXS into ischemic vasculature immediately prior to reperfusion reduces complement deposition and preserves endothelial integrity, partially through modulating activation of MAPKs and may offer a new approach to tackle IRI in vascular surgical procedures. CLINICAL RELEVANCE: The purpose of the present study was to determine the role of dextran sulfate (DXS), a glycosaminoglycan analog and complement inhibitor, in modulating intracellular MAPK signaling pathways, reducing complement activation and ultimately attenuating ischemia/reperfusion injury (IRI) in a rat aortic-clamping model, in part a surrogate model to study the microvasculature. The study shows a role for DXS in ameliorating endothelial injury by reducing IRI-mediated damage and intravascular, local inflammation in the affected aortic segment. DXS may be envisaged as an endothelial protectant in vascular injury, such as occurs during vascular surgical procedures.

Item Type:

Journal Article (Original Article)


04 Faculty of Medicine > Service Sector > Institute of Pathology > Clinical Pathology
04 Faculty of Medicine > Pre-clinic Human Medicine > BioMedical Research (DBMR) > Forschungsbereich Mu50 > Forschungsgruppe Herz und Gefässe
04 Faculty of Medicine > Department of Cardiovascular Disorders (DHGE) > Clinic of Angiology

UniBE Contributor:

Banz Wälti, Yara Sarah, Matozan, Katja, Yang, Zijiang, Rieben, Robert








Factscience Import

Date Deposited:

04 Oct 2013 15:13

Last Modified:

02 Mar 2023 23:23

Publisher DOI:


PubMed ID:


Web of Science ID:


URI: (FactScience: 197062)

Actions (login required)

Edit item Edit item
Provide Feedback