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1. Introduction

In recent years genetic tests have developed rapidly. These tests enable the

prediction of a higher than normal risk of developing specific diseases. For

insurers genetic tests constitute new possibilities for more precise risk classifi-

cation of their clients. However, these developments have started a debate on

whether insurance companies should be allowed to use genetic information to

calculate premia according to an applicant’s genetic risk: to many people it

seems unfair charging individuals identified with a higher than average risk of

developing severe diseases substantially higher insurance premia.

Despite the intensive political discussion, the theoretical literature on ge-

netic testing and health insurance has remained rather limited (Tabarrok

(1994), Doherty and Thistle (1996), Doherty and Posey (1998), Strohmenger

and Wambach (2000), Andersson (2001), Hoel and Iverson (2002), Hoy et al.

(2003), Hoel et al (2006)). All of these papers consider Rothschild and Stiglitz

(1976) type static one-period insurance markets and analyze the effects of

genetic testing on the risk categorization of individuals in the spirit of Hoy

(1982).

It is obvious, however, that genetic information may also allow inter-

temporal discrimination. Information about parents’ genes may allow an in-

surer to screen their offspring. If the parents carried the good gene, their

children are less likely to develop a disease than if the parents carried the bad

gene.1 For example, every child of a person with Huntington’s disease has a

50% chance of inheriting the gene mutation and developing the disease. In-

surers use information on family medical history in underwriting decisions for

children of Huntington’s sufferers. Because each child has a 50% chance of

early mortality, such children find it difficult to obtain insurance; and when

they do, premiums are typically quite high; see Manson and Conko (2007) and

Gutiérrez and Macdonald (2002). Obviously, such inter-temporal screening

based on family medical history can also be achieved by conditioning on the

parents’ genetic status. Accordingly, it may be profitable for insurers to quote

the offspring of good-gene carriers better rates than the offspring of bad-gene

carriers. The purpose of this paper is to analyze the impact of genetic testing

1Inheritance of genetic diseases refers to whether the condition is inherited from the
parents or “runs” in families. The level of inheritance of a condition depends on how im-
portant genetics are to the disease. Strongly genetic diseases are usually inherited, partially
genetic diseases are sometimes inherited, and non-genetic diseases are not inherited; see,
e.g., www.wrongdiagnosis.com/g/genetic/inherit.htm.
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when such inter-temporal discrimination is possible.

In our model agents carry a good or a bad gene. Agents with the bad

gene are more likely to develop a disease than agents with the good gene. We

normalize the cost of treating the disease to one so that the fair price for full

insurance equals the probability of developing the disease.

We consider successive generations of individuals carrying the good or the

bad gene. Reproduction is asexual. Daughters are more likely to inherit their

mother’s gene. The fractions of the good- and bad-gene carriers are constant

through time.

Risk averse individuals must purchase full insurance. They are not altru-

istic, i.e., they do not care about the well-being of their offspring. Agents do

not know which genes they carry. However, insurers can perform a test which

reveals an agent’s genes. Insurers quote prices for the mandatory insurance

which may be unconditional or depend on the agent’s or her ancestors’ test re-

sults. Test results and insurance rates are non-verifiable, i.e., it is not possible

that an agent passes on information from one insurer to another. Moreover,

descendants of a tested generation have no information about their ancestors’

test results. Insurers engage in price competition.

Insurers cannot attract agents with non-loss making quotes conditional on

the agents’ genetic status. Competition ensures that a fair one-period pooling

quote is available under which the individual is fully insured. Prices conditional

on the genetic status expose the agent to premium risk to which she is averse.

Accordingly, agents prefer the unconditional pooling contract; see Tabarrok

(1994) or Doherty and Thistle (1996).

Nevertheless, an insurer can exploit the fact that agents are not altruistic.

With a multi-period pricing strategy, the insurer can induce mothers to take

the test and then use this information to profitably screen their offspring.

Our equilibria have the following structure: An insurer bribes the first

generation to take the test with an unconditional quote which is below their

average probability to fall sick; the insurer makes losses on the first generation.

The insurer then uses this information about generation one to profitably

screen their offspring. The offspring of the bad-gene carriers get fair quotes;

the insurer breaks even on this group. By contrast, the offspring of the good-

gene carriers get unfair quotes, and the insurer makes a profit on them. Price

competition ensures that these profits equal the subsidy given to the first

generation so that the net present value of expected profits is zero. Moreover,

due to competition the price charged to the offspring of good-gene carriers is

2
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constant through time and equal to the price charged to the tested generation

one. Insurers use the information about generation one to profitably screen

a finite number of generations of their offspring. When the last offspring

generation has been screened, the process starts all over again with the testing

of the next generation.

Comparing these inter-temporal screening equilibria to fair unconditional

pooling in each period, one sees that the tested generation is clearly better off:

they pay a price below their average probability of contracting the disease. The

offspring of agents carrying good genes pay a price above their probability of

developing the disease; they subsidize the tested generation. Nevertheless,

they are still better off than under unconditional pooling. The offspring of

mothers with the bad gene are worse off than under unconditional pooling:

they pay the price reflecting their higher than average risk of developing the

disease. Since the information about a mother’s bad gene becomes less precise

as one moves down the family tree, daughters of tested mothers pay a higher

price than granddaughters and so on.

Our model is related to the set-up of Kunreuther and Pauly (1985).2 In

their model insurance firms learn about their customers’ risks by observing

claim records over time. An insurer has an information advantage on his

established customers compared to his competitors. Kunreuther and Pauly

analyze how the insurer can exploit this advantage in a competitive market.

In their model a consumer’s risk is constant through time. The insurer learns

the risk over time and adjusts premia accordingly. In our set-up the mother’s

risk is only an imprecise signal of her daughter’s risk. Through the test an

insurer precisely learns the mother’s risk. The content of this information

deteriorates over time, however. Kunreuther and Pauly’s equilibrium shares

with our equilibrium the lowballing feature: new customers are attracted at

a loss, while the insurer extracts rent from established customers.3 In our

framework mothers are induced to take the test at a loss; the offspring of

mothers with the good gene are exploited profitably.

The paper is organized as follows. The next section introduces the basic

model. In section three we introduce the genetic test. As a preliminary step we

first consider the scenario where information about the genes of mothers may

only be used to screen daughters. Granddaughters have to be tested anew.

In the next subsection we allow the genetic information to be used for any

2See also Nilssen (2000).
3The term lowballing is due to D’Arcy and Doherty (1990).
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number of generations of the offspring. Section 4 concludes.

2. The Model

We consider successive generations t = 1, 2, . . . of individuals. Each generation

lives for one period. Each member i ∈ [0, 1] of generation t (mother) has

exactly one offspring (daughter) also named i. The size of all generations is

thus the same. We normalize the size of the generations to 1, i.e., f([0, 1]) = 1,

where f is Lebesgue measure.4

An individual’s health status H can be good g or bad b, i.e., H(i, t) ∈ {g, b}.
The health status, in turn, is determined by the genetic status G, which can be

of type ` or h, i.e., G(i, t) ∈ {`, h}. If an individual is of type h, the probability

of being in health status b is h ∈ (0, 1); if she is of type `, the probability is

` ∈ (0, h), i.e., lower than for the h-types. Denote the members of generation

t with the `-gene by `t and the ones with the h-gene by ht. Let the fraction

of the h-types in generation 1 be f(h1) < 1/2, and the fraction of the `-types

accordingly f(`1) = 1− f(h1).

Let us now turn to the passing on of genes. Denote by φ`` the transition

probability that the daughter is of type ` given her mother is of type `, by φh`

the probability that the daughter is of type h if her mother is of type `, and

accordingly, φ`h and φhh for the h-type mothers. These transition probabilities

are constant through time.

A daughter is more likely to be of type ` if her mother is of this type;

likewise, she is more likely to be of type h if her mother is as well. A daughter

can, however, also be of the opposite genetic type as her mother. Formally,

1 > φ`` > φh` > 0 which implies φ`` > 1/2; 1 > φhh > φ`h > 0 so that

φhh > 1/2.

Let φh` = φ`hf(ht)/f(`t), t = 1, 2, . . . . Then we have f(ht+1) = f(ht) :=

f(h) and f(`t+1) = f(`t) := f(`), t = 1, 2, . . . ; that is, the fraction of `- and

h-gene carriers are constant through time.5

To illustrate, consider the following example: f(`) = 3/4, φ`` = 8/9, and

φhh = 2/3. We will use this example throughout the text. A summary of the

example with explicit derivations is given in the Appendix.

To sum up: We consider generations of size 1 in which the fractions of

`- and h-gene carriers are constant through time. The average probability to

4For the sake of simplicity we consider a society with asexual reproduction; see, e.g.,
Becker and Tomes (1979).

5To see this, consider, e.g., f(ht+1) = f(ht+1∩ht)+f(ht+1∩`t) = f(ht)φhh +f(`t)φh` =
f(ht)φhh + f(`t)φ`hf(ht)/f(`t) = f(ht).
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develop the disease is the same in each generation and equals p(H(i, t) = b) =

f(h)h+ f(`)` := p̄. Let h = 1/2 and ` = 1/4 so that in our example p̄ = 5/16.

If an individual is in bad condition b, she is sick and needs treatment. We

normalize the cost of treating the disease to 1. Individuals are risk averse

which is represented by their utility function U(·) over income with U ′ > 0

and U ′′ < 0.6 Individuals have initial income M > 1. To keep matters simple

we assume that insurance is mandatory and equal to the size of the treatment,

i.e., individuals must purchase full insurance.7 Individuals do not know which

genes they carry. We further assume that agents are not altruistic, i.e., mothers

do not care about the well-being of their offspring.8

Let us now turn to the insurers. We want to focus on equilibria in the spirit

of Rothschild and Stiglitz (1976): The contracts that are offered in equilibrium

make zero profits, and there exists no other contract that can generate positive

profits given the equilibrium ones. We therefore set up a game having a Nash-

equilibrium with the Rothschild and Stiglitz characteristics.

The mandatory insurance of 1 is provided by n > 2 insurance companies.

Insurer j, j = 1, . . . , n, quotes qj
t (·) for the mandatory insurance in period t

or remains inactive. The quotes may be unconditional or they may depend

on the result of a genetic test which we describe in the next section. We

will specify the contracts we allow for in detail below. In each period insurer

1 moves first; insurer 2 observes 1’s choice and then moves second, and so

on. Finally, consumers choose the most attractive contract; if consumers are

indifferent between the offers of two insurers, they buy from the first mover.

Insurers are risk neutral. They maximize the sum of expected profits over

time. For the ease of exposition we set the discount rate to zero. Due to

price competition equilibrium profits will be zero. If an insurer is indifferent

between being inactive yielding zero profits or being active having customers

and making zero profits, he opts for being active; moreover, a firm prefers to

be inactive to offering contracts that attract no customers.9

6Our utility function is thus state independent. For an analysis with state contingent
utility functions see Strohmenger and Wambach (2000).

7Note that our mandatory insurance differs from the compulsory insurance in Hoel and
Iversen (2002). There all agents pay the same price but the insurance may be less than
complete. In our set-up insurance is full, yet prices may depend on individual risk.

8For our results to hold it is sufficient that mothers care less about their daughters’
well-being than their own; see the discussion in the Conclusions.

9Under these assumptions along the equilibrium path insurer 1 offers a quote generating
zero profits while the other insurers remain inactive. Since insurer 1 serves the entire market,
in equilibrium the other insurers have no customers and thus opt to be inactive. If insurer 1
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Without the genetic test neither the first generation’s insured know which

genes they carry nor do insurers, implying that any discrimination among

agents of generation 1 is impossible. From the second generation on insurers

could try to condition their quotes on the medical history of an agent’s an-

cestors. To focus on the role of genetic tests, we rule out this possibility.10

Therefore, without the genetic test the insurers can offer only unconditional

quotes in each period. We also rule out history-dependant strategies which

might support collusion. Each period insurer j, j = 1, . . . , n, will offer an

unconditional quote qj
t for the mandatory insurance of 1 or remain inactive.

Proposition 1: Along the equilibrium path insurer 1 offers q1
t = p̄, t =

1, 2, . . . while insurers 2, . . . , n are inactive in each period.

Proof: In equilibrium insurer 1 serves the whole market in each period and

makes zero profits. Since we rule out history-dependant strategies, it suffices

to consider possible deviations in one period, say period 1. Insurer 1 will not

charge a lower price because this entails losses. If insurer 1 quotes q1
1 > p̄,

insurer 2 quotes q2
1 = p̄. To see this, consider insurer n − 1. If he charges a

price above p̄, he will be undercut by insurer n and end up with no customers.

Since firm n − 1 prefers being active, he will charge p̄. Working backwards

yields that firm 2 charges p̄, and so does insurer 1. Therefore, insurer 1 has no

incentive to deviate. Given insurer 1’s equilibrium quote, the other insurers

cannot attract consumers with a non-loss-making quote. Thus they’d rather

stay inactive. �

In our example insurer 1 offers the pooling rate of 5/16 each period. Under

perfect information the `-types would pay 1/4 while the h-types would be

charged 1/2. Accordingly, the h-types benefit from asymmetric information:

they are subsidized by the `-types.

deviates from his equilibrium contract, insurer 2’s equilibrium strategy specifies a contract
generating zero-profits given insurer 1’s out-of-equilibrium offer. See, e.g. the proof of
Proposition 1. Kunreuther and Pauly (1985) also use this Stackelberg leader-follower model
to derive Rothschild and Stiglitz type of equilibria.

10See, e.g., Kunreuther and Pauly (1985) for an analysis of such an experience rating.
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3. Genetic Test

Now assume a genetic test becomes available that reveals an individual’s genes.

We consider the case where only insurance companies can perform the test.11

Let the test be costless. If an agent is tested, the insurer can condition his quote

on her genetic status. Moreover, the quotes for the individual’s descendants

can also depend on the agent’s test result. The test results and the insurance

quotes are non-verifiable. This means that a consumer cannot use test results

and quotes from, say, insurer 1 to get favorable rates from another insurer. To

put this differently, if insurer 1 has tested an agent, he has a monopoly on this

information which he can try to exploit over time. Moreover, we assume that

descendants of a tested generation have no information about the test result,

be it directly or indirectly through the quotes they get. Each generation has

the same priors about its genetic status as generation 1.12

If, say, a period 1 agent accepts a conditional quote by an insurer, she

commits to buy the insurance from this insurer even when the test shows that

she carries the h-gene. It is thus not possible for a consumer to take the test

with one insurer and switch to another insurer offering, say, a pooling contract

if the test result is unfavorable.13 Note that this assumption does not imply

that the agent’s descendants must buy insurance from this company. They

are free to choose from all offers on the market. The only constraint a period

2 agent faces is that if she accepts a conditional quote in period 2, she has to

buy this contract.

First note that it is not possible to attract individuals with a one-period

contract conditional on the test results qj
t = (qj

t (G(i, t) = `), qj
t (G(i, t) =

h)) := (qj
t (`

t), qj
t (h

t)) with qj
t (`

t) 6= qj
t (h

t). In particular, prices q1
t (`

t) < p̄ <

11If the agents can take the test, the test results will also become known to the insurers.
If the test shows the `-gene, an agent will happily release this information to the insurer. If
the test result is h, the information will be kept secret. Accordingly, those individuals who
do not reveal their test are potentially at high risk. See Tabarrok (1994) and Doherty and
Thistle (1996).

12If, say, agents of generation 2 are aware of their mother’s genetic status, they know
whether they have a high or a low probability of falling ill. An insurer who doesn’t know
the mothers’ test results can screen the two groups by offering, e.g., contracts exposing
agents to some price risk as described in Lemma 1; daughters of ` mothers are more willing
to accept the risk than daughters of h mothers. To keep the model tractable, we rule out
this possibility.

13If this kind of shopping were allowed for, unconditional pooling offers are not possible:
only h-gene carriers would demand the pooling contract rendering it unprofitable. See, e.g.,
Emons (2001) for an analysis of such a shopping behavior by consumers in the presence of
imperfect tests.
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q1
t (h

t) where the agent gets a better quote if she has the `-gene than if she

carries the h-gene attract no customers.

Lemma 1: No firm offers a one-period contract qj
t = (qj

t (`
t), qj

t (h
t)) with

qj
t (`

t) 6= qj
t (h

t) in equilibrium.

Proof: Suppose insurer 1 tries to attract individuals with prices q1
t (`

t) 6= q1
t (h

t)

conditional on the test outcome. If consumers accept this contract, they have

to buy insurance from firm 1. Since all agents of generation t have the same

priors, they either all buy the contract or nobody does. If they accept the

offer, firm 1 thus has customers of both types and will offer only quotes that

do not yield expected losses, i.e., f(h)q1
t (h

t) + f(`)q1
t (`

t) ≥ p̄.

Then insurer 2 will offer the unconditional contract q2
t = p̄. With insurer

2’s quote the individual’s utility is U(M − p̄): the agent is fully insured and

bears no risk at all. With 1’s conditional prices the expected utility amounts

to f(`)U(M−q1
t (`

t))+f(h)U(M−q1
t (h

t)): the agent is fully insured but bears

the price risk generated by the genetic test. Jensen’s inequality together with

the fact that the conditional prices do not yield losses imply that the agents

are better off with the fair pooling quote p̄. �

Conditional pricing introduces risk to which the agents are averse. Consumers

prefer unconditional pooling; see Tabarrok (1994).

Given that a one-period pricing strategy conditional on the test results

does not work out, an insurer can try to exploit the fact that agents are not

altruistic. With a multi-period pricing strategy he can try to induce mothers to

take the test and then use this information to profitably screen their offspring.

To induce agents of generation t to take the test, insurer 1 must offer them

terms generating at least the expected utility of U(M− p̄); otherwise insurer 2

can attract this generation with an unconditional pooling offer. Since agents

are risk averse and insurers risk neutral, the best way to achieve this is by

requiring to take the test and then quoting q1
t ≤ p̄ which is not conditional on

the test outcome. For the agents’ daughters the insurer then quotes q1
t+1 =

(q1
t+1(G((i, t) = `), q1

t+1(G(i, t) = h)) := (q1
t+1(`

t), q1
t+1(h

t)), for their grand-

daughters q1
t+2 = (q1

t+2(G(i, t) = `), q1
t+2(G(i, t) = h)) := (q1

t+2(`
t), q1

t+2(h
t)),

and so on.

3.1 Two-period Pricing Strategy

To fix ideas, suppose insurer j induces generation 1 to take the test and then

uses the genetic information about mothers to make a profit on their daughters.

8
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The insurer may not use the information about mothers to screen granddaugh-

ters. He has to start the process again by testing granddaughters. We consider

at the moment only such two-period pricing strategies (qj
t ,q

j
t+1) together with

the one-period pricing strategy qj
t , i.e., unconditional pooling. We will drop

this assumption in the next section.

We will now construct an equilibrium where insurer 1 offers the same two-

period contract in each odd period. The contract breaks even over the two

generations. The other insurers remain inactive. Given insurer 1’s offer, they

cannot profitably enter with a one- or two-period contract.

Company 1 offers quotes q1
1 and q1

2 = (q1
2(`

1), q1
2(h

1)). Here q1
1 is the

quote for generation 1 given they take the test; q1
2(`

1) [q1
2(h

1)] is the quote

for daughters whose mothers were of type ` [h]. To determine profits we need

to define the daughter’s probability of falling ill conditional on the mother’s

genetic status p(H(i, 2) = b|G(i, 1) = `) = `φ`` + hφh` := p(b2|`1) and

p(H(i, 2) = b|G(i, 1) = h) = `φ`h + hφhh := p(b2|h1). In our example

p(b2|`1) = 5/18 and p(b2|h1) = 5/12.

With this two-period pricing strategy, the insurer’s profits amount to

π1
1 = q1

1 − p̄ and

π1
2 = [q1

2(`
1)− p(b2|`1)]f(`) + [q1

2(h
1)− p(b2|h1)]f(h).

The second period profit is explained as follows: There are f(`) [f(h)] daugh-

ters whose mothers had the `- [h]-gene. The insurer’s profits on the first group

is the quote q1
2(`

1) minus the expected probability of developing the disease

conditional on the mothers’ `-genes p(b2|`1); for the second group profits are

the quote q1
2(h

1) minus the expected probability of developing the disease con-

ditional on the mothers’ h-genes p(b2|h1).

Let us first consider the quote q1
2(h

1) the insurer charges daughters whose

mothers were of type h. Recall that in our equilibrium we construct the quote

q1
2(`

1) in such a way that the agents with type `-mothers buy from firm 1.

Insurer 1 will not charge q1
2(h

1) < p(b2|h1) because this reduces his period two

profit. If q1
2(h

1) > p(b2|h1), firm 2 will offer q2
2 = p(b2|h1). Given daughters

with `-mothers buy from insurer 1, insurer 2 attracts only daughters of h-

mothers and breaks even with his quote. Accordingly, q1
2(h

1) ≥ p(b2|h1). If

the equality holds, the insurer serves this group while making zero profits; if

the inequality is strict, he loses this group and also makes zero profits. Thus,

quoting q1
2(h

1) = p(b2|h1) and serving this group is an equilibrium action.

Hence, insurer 1 can only make a profit on agents with type `-mothers.

This profit is constrained, however. First note that q1
2(`

1) ≤ p̄. If this were

9
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not the case, company 2 will offer the unconditional quote q2
2 = p̄. He attracts

the whole generation 2 and makes zero-profits. Firm 1 would end up with no

customers in period 2.

Yet q1
2(`

1) is further restricted by q1
1. To see this, suppose insurer 1 makes

zero profits with his two-period pricing strategy (q1
1,q

1
2 = (q1

2(`
1), p(b2|h1))),

i.e., π1
1 + π1

2 = 0. Now let q1
2(`

1) > q1
1. Then insurer 2 offers (q2

2,q
2
3 =

(q2
2, p(b3|h2)) where q2

2 is such that π2
2+π2

3 = 0. Since both two-period contracts

break even and q1
2(`

1) > q1
1, we have q2

2 < q1
2(`

1)). Thus insurer 2 attracts both

groups in period 2 who happily take the test, and breaks even over the two

periods. Insurer 1 has no period-two customers and overall suffers losses.

Consequently, the equilibrium contract has the feature q1
2(`

1) = q1
1 and

must generate expected zero profits. Formally, π1
1 = q1

1 − p̄, π1
2 = [q1

1 −
p(b2|`1)]f(l), and π1 + π2 = 0. Solving for q1

1 yields

q1
1 =

p̄ + f(`)p(b2|`1)

1 + f(`)
. (1)

If insurer 1 offers this contract, no other insurer can attract customers in period

1 or 2 with a non-loss making offer. If insurer 1 deviates he either makes losses

or has no customers.

To summarize our findings:

Proposition 2: Suppose firms are restricted to one- and two-period pricing

strategies. Then there exists an equilibrium where along the equilibrium path

firm 1 charges generation 1 q1
1 as defined by (1) and generation 2 q1

2(`
1) =

q1
1, q1

2(h
1) = p(b2|h1). The process starts all over again with generations

3, 5, . . . . Firm 1 serves the entire market and the other firms are inactive.

The quote q1
2(`

1) = q1
1 is unfair and the insurer makes a profit on the

daughters whose mothers had the good gene. This group is free to switch to

another insurer. Yet no other insurer can make a better offer to them. The

competition has no information about the second generation and thus can only

offer unconditional pooling or the equilibrium set of contracts. Unconditional

pooling is worse for this group. Offering the equilibrium set of contracts, i.e.,

offering the subsidized rate conditional on taking the test and exploiting the

information in the next generation doesn’t attract customers either. By testing

the first generation, insurer 1 obtains a monopoly for the information about

their genetic status which he uses to exploit the daughters of the good-gene

mothers. Bertrand competition ensures that the price the insurer pays for
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obtaining this monopoly equals the profit it makes in the second round having

this monopoly. The equilibrium is thus of the lowballing type.

In each odd period, say period 1, firm 1 induces all agents to take the test

at a quote q1
1 below the average probability to fall sick p̄. In our example

q1
1 = 75/252 < 5/16 = p̄ and π1

1 = −15/1008. In each even period the insurer

recoups his investment with the daughters whose mothers had the `-gene,

p(b2|`1) < q1
2(`

1) = q1
1. In our example p(b2|`1) = 5/18 and π1

2 = 15/1008.

Let us use the example to show that in equilibrium indeed q1
2(`

1) = q1
1.

Suppose on the contrary that insurer 1 charges, e.g., q1
1 = 291/1008 < 75/252

and q1
2(`

1) = 78/252. With these prices π1
1 + π1

2 = 0. Yet now insurer 2

will offer the equilibrium contract q2
2 = 75/252 and q2

3 = (75/252; 5/12). He

attracts both groups in period 2 and everybody takes the test. His profits in

period 3 on daughters of `-mothers compensate his losses from period 2.

Let us compare this two-period pricing equilibrium with the one-period one

where firms charge p̄ in each period. The tested generations are clearly better

off because they pay a price below their average probability of becoming sick.

By paying the price q1
1 above their probability of falling ill p(b2|`1), daughters

of type `-mothers cross-subsidize the entire preceding generation. Yet they

are still better off than under one-period pooling. By contrast, daughters of

type h-mothers are worse off than in the one-period pooling equilibrium. To

summarize: In the two-period pricing equilibrium the tested generations and

their offspring with type `-mothers gain at the expense of their descendants

with type h-mothers.

3.2. Arbitrary Pricing Strategies

We have seen that the two-period pricing strategy drives out the one-period

one. The next question to ask is whether insurer 1 should use his informational

advantage about generation 1 for generations 3, 4, . . . as well. To answer this

question we allow now for arbitrary pricing policies.

As a first step we define k-period pricing policies starting from generation

1 on. Under such a policy generation 1 is tested and their genetic information

is then used on (k − 1) generations of their offspring. Define p(H(i, t) =

b|G(i, 1) = `) := p(bt|`1), t = 2, . . . .

Definition 1: A k-period pricing policy is given as follows. For k = 2, 3, . . .

the quotes q1,k, qt,k = (q1,k, p(bt|h1)), give rise to profits π1 = p̄ − q1,k and

πt = [q1,k − p(bt|`1)]f(`), t = 2, . . . , k. The zero profit condition
∑k

t=1 πt = 0
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then gives us

q1,k =
p̄ + f(`)

∑k
t=2 p(bt|`1)

1 + (k − 1)f(`)
. (2)

Let q1,1 = p̄; with one-period pricing only unconditional pooling is possible.

We have defined k-period pricing rather narrowly. We have already taken

into account that k-period pricing must lead to zero profits. Moreover, we have

determined q1,k such that it is an equilibrium if only one-period and k-period

pricing are allowed for. A firm offering q1,k as defined by (2) cannot be driven

out of the market by the one-period pooling price q1,1 = p̄. We have q1,k < p̄

because p(bk|`1) < p̄ for all k = 2, 3, . . . .

It is, however, unclear which k-period pricing policy firms will follow. If,

e.g., q1,3 > q1,4, a firm with the 3-period pricing policy will be driven out of

the market by a firm using the 4-period one. In a second step we analyze,

therefore, the prices q1,k, k = 1, 2 . . . in detail. It turns out that these prices

are U-shaped in k.

Lemma 2: The set of quotes {q1,k}, k = 1, 2, . . . , defined by (2) is U-shaped

in k and attains its minimum at some finite κ ≥ 2.

Proof: Straightforward computations show that q1,1 = p̄ > q1,2. Next note

that

q1,k < (≥) q1,k+1 ⇔

p̄− p(bk+1|`1) < (≥) f(`)[(k − 1)p(bk+1|`1)−
k∑

t=2

p(bt|`1)], k = 2, 3, . . . .

The LHS is positive and monotonically decreasing in k with limk→∞ LHS = 0.

The RHS is positive and increasing in k. Consequently, either κ = 2 or it is

defined by the k where the strict inequality first holds. q1,k is decreasing in k

for k < κ and increasing for k > κ. �

Lemma 2 states that a κ-period pricing strategy leads to the lowest price

q1,k that can be charged to the tested generation 1 and all (k − 1) descen-

dant generations of the `1-types. In our example κ = 3. We have p̄ =

5/16, p(b2|`1) = 5/18, p(b3|`1) = 95/324, p(b4|`1) = 220/729, q1,1 = 5/16, q1,2 =

75/252, q1,3 = 8/27, and q1,4 = 2820/9427 > q1,3.

Increasing the pricing strategy from k to k + 1 increases profits by πk+1 =

(q1,k+1 − p(bk+1|`1))f(`). If πk+1 > 0, the profits made on the descendants of
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types `1 increase. Hence, q1,k+1 < q1,k. The tested generation gets a larger

cross-subsidy so that total profits sum up to zero.

Conversely, if πk+1 < 0, q1,k+1 > q1,k. The profits made on the offspring of

types `1 decreases and so does the subsidy for the tested generation. Straight-

forward computations show that πk+1 < 0 is equivalent to q1,k < p(bk+1|`1).

If the price q1,k charged under k-period pricing is lower than the conditional

probability of falling ill of generation k+1, adding this cohort lowers the profits

made on the descendants of types `1’s. The existence of such a critical cohort

is ensured because p(bk+1|`1) converges to p̄ as k becomes large.

To put it differently: The informational advantage of having tested gener-

ation 1 dissipates with successive generations: p(bk+1|`1) increases with k and

converges to p̄. Adding additional generations to the pricing strategy becomes

less and less attractive as one moves down the family tree.

As long as it is profitable to add a generation to the pricing policy, the price

q1
1 falls. If the additional generation adds to profits made on the offspring of

the tested generation 1, the price q1
1 has to fall so that overall profits sum up to

zero. Yet, there is some generation (κ + 1) where p(bκ+1|`1) exceeds the price

q1,κ charged under the κ-period pricing policy. Adding this generation to the

pricing policy lowers profits made on the offspring and actually increases q1.

This reasoning is similar to the well-known textbook result that average costs

are decreasing as long as they are higher than marginal costs and increasing

when the are smaller than marginal costs.

It is now clear what an equilibrium looks like:

Proposition 3: Suppose firms are restricted to k-period pricing policies as

defined in Definition 1. Then there exists an equilibrium where along the

equilibrium path firm 1 follows a κ-period pricing policy with κ defined by

Lemma 2. It charges the first generation q1
1,κ as defined by (2) and its off-

springs q1
t,κ(`

1) = q1
1,κ, q1

t,κ(h
1) = p(bt|h1), t = 2, . . . , κ. The procedure starts

all over again with generations κ + 1, 2κ + 1, . . . . Firm 1 serves the entire

market and the other firms are inactive.

If firm 1 charges q1,κ, it cannot be driven out of the market by another

pricing policy because they all command higher prices. Let us compare the

κ-period pricing equilibrium to the one-period pooling equilibrium q1,1 = p̄.

The advantage of the tested generation 1 and the descendants of the types

`1 is greatest because q1,κ is minimal. Bertrand competition ensures that the

surplus of these groups is maximized.
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What about the offspring of the types h1? They are worse off than under

under pooling because p(bt|h1) > p̄, t = 2, 3, . . . . Note that p(bt|h1) is de-

creasing in t. Generation (t + 1) gets a lower quote than generation t because

the information about them from their ancestor is less precise. Accordingly,

daughters of tested h-mothers suffer more than granddaughters and so on if

genetic tests become available.

4. Conclusions

The purpose of this paper is to analyze inter-temporal screening through ge-

netic tests. We show that generation one is bribed to take the test with

an unconditional quote. The insurer then uses this information to profitably

screen a finite number of generations of their offspring. The offspring of good-

gene carriers subsidize the tested generation. Yet they are still better off than

under unconditional pooling. The offspring of bad-gene carriers lose compared

to pooling because they have to pay a price reflecting their higher than average

risk of developing the disease.

In this paper we abstract from many important aspects of genetic tests in

health insurance markets. We assume that only insurers can take the test. The

test results and the insurance rates are non-verifiable so that the information

cannot be passed on to other insurers. The testing insurance company thus

has a monopoly on the information, which it can exploit over time. Agents

cannot take the test themselves so that we do not run into the problems of

strategic revelation of the results.14 Moreover, the assumption of compulsory

complete insurance rules out further screening possibilities of the insurers.

Finally, since we discuss generations, the time dimension will be measured

in terms of decades. Technological advances will likely occur over this kind

of epoch of time which may render the informational advantage of the test

obsolete.

The assumption that agents are non-altruistic is, on the other hand, not

critical; all we need is that they care about their own more than the well-

being of their offspring. To be more precise, if a mother takes the test, she

reduces her offspring’s ex ante expected utility by exposing them to premium

risk. This reduces an altruistic mother’s utility. Yet she gains directly from

her reduced premium. As long as the gain from the lower premium is higher

14Agents may also wish to take the test because they are concerned about their health
and optimal treatment; see, e.g., Doherty and Posey (1998).
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than the loss she experiences from making her offspring worse off, our results

continue to hold.

The cost of the test may also be positive. As long as the test cost is below

the profits made on the screened generations, our results still hold qualitatively.

Only when the test cost exceeds these profits, does inter-temporal screening

not pay.

We hope that despite these simplifying assumptions we shed some light

on how inter-temporal screening with genetic tests might work. We are able

to identify the winners and the losers compared to the unconditional pooling

situation. We highlight the assumptions necessary to support inter-temporal

screening. If, e.g., test results and insurance rates are verifiable and given

to the consumer, the process as described no longer works: Daughters of

good-gene carriers have proof of their low probability of becoming sick and

competition ensures that they get a fair rate. Thus, if one wants to rule out

inter-temporal screening, it suffices to give agents this information in a ver-

ifiable way. This might be another argument to give agents access to their

health records.

Appendix

In this Appendix we repeat the example scattered over the text in more detail.

We assume the following primitives: f(`) = 3/4, φ`` = 8/9, φhh = 2/3, ` = 1/4,

and h = 1/2; all other values follow from these primitives.

Agents are either of type ` or type h. This gives us immediately f(h) =

1/4, φh` = 1/9, and φ`h = 1/3.

The average probability of developing the disease in each generation is

p̄ = `f(`) + hf(h) = 5/16.

The probability that a daughter develops the disease given her mother was

of type ` is

p(b2|`1) = `φ`` + hφh` = 5/18;

if the mother was of type h, we compute

p(b2|h1) = `φ`h + hφhh = 5/12.

The probability that a granddaughter develops the disease given her grand-

mother was of type ` is

p(b3|`1) = `[φ``φ`` + φ`hφh`] +

h[φh`φ`` + φhhφh`] = 95/325;
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if the mother was of type h, we get

p(b3|h1) = `[φ``φ`h + φ`hφhh] +

h[φh`φ`h + φhhφhh] = 10/27.

Finally, the probability that a grand-granddaughter develops the disease

given her grand-grandmother was of type ` is

p(b4|`1) = `[φ``φ``φ`` + φ`hφh`φ`` +

φ``φ`hφh` + φ`hφhhφh`] +

h[φh`φ``φ`` + φhhφh`φ`` +

φh`φ`hφh` + φhhφhhφh`] = 220/729.

References

Andersson Frederik. 2001. “Adverse Selection and Bilateral Asymmetric In-

formation.” Journal of Economics 74: 173-195.

Becker, Gary and Nigel Tomes. 1979. “An Equilibrium Theory of Income and

Intergenerational Mobility.” Journal of Political Economy 87: 1153-1189.

D’Arcey, Stephen and Neil Doherty. 1990. “Adverse Selection, private In-

formation, and Lowballing in Insurance Markets.” Journal of Business 63:

145-164.

Doherty, Neil and Paul Thistle. 1996. “Adverse Selection with Endogenous

Information in Insurance Markets.” Journal of Public Economics 63: 83-102.

Doherty, Neil and Lisa Posey. 1998. “On the Value of a Checkup: Adverse

Selection, Moral Hazard and the Value of Information.” Journal of Risk and

Insurance 65: 189-211.

Emons, Winand. 2001. “Imperfect Tests and Natural Insurance Monopolies.”

Journal of Industrial Economics 49: 247-268.

Gutiérrez, Christina and Angus Macdonald. 2002. “Huntington’s Disease and

Insurance.” www.ma.hw.ac.uk/ angus/papers/hd3a.pdf

Hoel, Michael and Tor Iverson. 2002. “Genetic Testing when there is a Mix of

Compulsory and Voluntary Health Insurance.” Journal of Health Economics

21: 253-270.

Hoel, Michael, Iverson, Tor, Nilssen Tore, and Jon Vislie. 2006. “Genetic Test-

ing in competitive insurance Markets with repulsion from Chance.” Journal of

Health Economics 25: 847-860.

16

The B.E. Journal of Economic Analysis & Policy, Vol. 9 [2009], Iss. 1 (Contributions), Art. 26



Hoy, Michael. 1982. “Categorizing Risks in the Insurance Industry.” Quarterly

Journal of Economics 97: 321-336.

Hoy, Michael, Fabienne Orsi, François Eisinger, and Jean Paul Moatti. 2003.

“The Impact of Genetic Testing on Health Care Insurance.” The Geneva Pa-

pers on Risk and Insurance 28: 203-221.

Kunreuther, Howard and Mark Pauly. 1985. “Market Equilibrium with pri-

vate Knowledge: An Insurance Example.” Journal of Public Economics 26:

269-288.

Neil Manson and Gregory Conko. 2007. “Genetic Testing and Insurance: Why

the fear of “Genetic Discrimination Does not Justify Rgulation.”

cei.org/pdf/5855.pdf

Nilssen, Tore. 2000. “Consumer Lock-in with Asymmetric Information.” In-

ternational Journal of Industrial Organization 18: 641-666.

Rothschild, Michael and Joseph Stiglitz. 1976. “Equilibrium in Competitive

Insurance Markets: An Essay on the Economics of Imperfect Information.”

Quarterly Journal of Economics 90: 630-649.

Strohmenger Rainer and Achim Wambach. 2000. “Adverse Selection and

Categorical Discrimination in the Health Insurance Markets: the Effects of

Genetic Tests.” Journal of Health Economics 19: 197-218.

Tabarrok, Alexander. 1994. “Genetic Testing: An Economic and Contractar-

ian Analysis.” Journal of Health Economics 13: 75-91.

17

Emons: Genetic Tests and Inter-Temporal Screening


	1

