
Time series modeling and central European temperature impact

assessment of phenological records over the last 250 years

Christoph Schleip,1 This Rutishauser,2 Jürg Luterbacher,3,4 and Annette Menzel1

Received 3 November 2007; revised 15 April 2008; accepted 7 August 2008; published 9 December 2008.

[1] Long-term spring and autumn phenological observations from Switzerland and
Burgundy (eastern France) as well as long-term Swiss monthly and seasonal temperature
measurements offer a unique possibility to evaluate plant phenological variability and
temperature impacts over the last 250 years. We compare Pearson correlation coefficients
and linear moving window trends of two different lengths with a Bayesian correlation
and model comparison approach. The latter is applied to calculate model probabilities,
change-point probabilities, functional descriptions, and rates of change of three selected
models with increasing complexity and temperature weights of single months. Both
approaches, the moving window trends as well as the Bayesian analysis, detect major
changes in long-term phenological and temperature time series at the end of the 20th
century. Especially for summer temperatures since the 1980s, Bayesian model-averaged
trends reveal a warming rate that increased from an almost zero rate of change to an
unprecedented rate of change of 0.08�C/a in 2006. After 1900, temperature series of all
seasons show positive model-averaged trends. In response to this temperature increase,
the onset of phenology advanced significantly. We assess the linear dependence of
phenological variability by a linear Pearson correlation approach. In addition we apply the
Bayesian correlation to account for nonlinearities within the time series. Grape harvest
dates show the highest Bayesian correlations with June temperatures of the current year.
Spring phenological phases are influenced by May temperatures of the current year
and summer temperatures of the preceding growing season. For future work we suggest
testing increasingly complex time series models such as multiple change-point models.

Citation: Schleip, C., T. Rutishauser, J. Luterbacher, and A. Menzel (2008), Time series modeling and central European temperature
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1. Introduction

[2] Phenology has traditionally consisted of the study of
the rhythm of biological phenomena mainly related to
climate [e.g., Schnelle, 1955; Schwartz, 2003]. In many
European countries, National Meteorological Services have
organized phenological recordings since the second half of
the 20th century [Menzel, 2003a]. Some networks already
existed at the beginning of the 20th century [Schnelle, 1955;
Menzel, 2003a]. In earlier centuries, phenological knowl-
edge improved the understanding of the variability of life
cycle events for agricultural purposes [e.g., Pfister, 1999;
Burri and Rutishauser, 2009]. The longest written pheno-
logical record is probably the record of the beginning of
flowering of cherry at the royal court of Kyoto, Japan,

which dates back to AD 705 [Sekiguti, 1969; Menzel, 2002;
Aono and Kazui, 2008]. One of the oldest and longest
European sets of phenological observations is the Marsham
family record in Norfolk, UK (1736–1947) [Sparks and
Carey, 1995]. The Economical Society of the State of Bern
(Switzerland) established the first longer-running phenolog-
ical network comparable with present monitoring networks
in 1759 [Pfister, 1975; Burri and Rutishauser, 2009]. The
first European-wide phenological networks were initiated
and installed by the Societas Meteorologica Palatina at
Mannheim (1781–1792) and by Hoffmann and Ihne
(1881–1941) [Schnelle, 1955].
[3] Phenological information from documentary sources,

such as dates of grape harvests, sea-ice-free periods in
harbors and diaries describing the occurrence of frost or
heat waves, have been included in multiproxy climate
reconstructions [e.g., Luterbacher et al., 2004, 2007;
Xoplaki et al., 2005; Guiot et al., 2005; Intergovernmental
Panel on Climate Change, 2007] and indicate warm or cold
periods in particular regions (see Brázdil et al. [2005] for a
review). Recently, records of grape harvest dates from
Burgundy [Chuine et al., 2004; Menzel, 2005; Guiot et
al., 2005; Le Roy Ladurie et al., 2006] and from Switzer-
land [Pfister, 1992; Meier et al., 2007] were used to
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reconstruct late spring-summer temperatures for the last
couple of centuries. The timing of agricultural work, such
as grape harvest, is tightly related to temperatures over the
preceding months [Menzel, 2005; Chuine et al., 2004;
Pfister, 1999; Bradley et al., 1999]. For this reason harvest
dates are used as a climate indicator for summer and
growing season temperatures. Grape harvest dates provide
very long, precisely dated and uninterrupted series of
regional temperature anomalies without chronological
uncertainties and thus, provide a good method for under-
standing interannual temperature variability. Grape harvest
dates are precisely documented but underlie changing
viticultural traditions, war times that attracted mercenary
soldiers from farmer communities, diseases and other envi-
ronmental influences than temperature (see discussion and
references in the work of Meier et al. [2007]).
[4] For spring season, Rutishauser and Studer [2007]

compared reconstructed temperature measurements and a
unique compilation of cherry tree flowering dates for the
Swiss Plateau region 1721–2003. The flowering record was
used to assess the impact of spring temperature on phenol-
ogy. Subsequently, Rutishauser et al. [2007] reconstructed a
so-called statistical ‘‘spring plant’’ from several spring
phenological phases back to 1702 in order use the large
number of historical phenological records in archives.

2. Trends and Changing Trends in Phenological
Time Series

[5] Methodologically, trends in time series are often
analyzed using simple linear regression where phenological
dates or temperatures are plotted against time (for phenol-
ogy, see, e.g., Menzel and Fabian [1999], Walther et al.
[2002], Parmesan and Yohe [2003], Root et al. [2003], and
Menzel et al. [2006]). The slope of the linear regression
equation indicates the average rate of change in phenology
(days/a) or temperature (�C/a). This method can be easily
applied to a large number of sites to compare differences
between species and sites. The main disadvantages of this
least squares method are their restriction to time series
exhibiting more or less linear performance, possibly poor
extrapolation properties, and sensitivity to outliers/extremes
and boundary values. For inherently nonlinear processes it
becomes difficult to find a linear model that fits the data well
as the range of the data increases. Finally, while the method
of least squares often provides optimal estimates of unknown
parameters, it is very sensitive to the presence of outliers in
the data used to fit a statistical model. One or two outliers
can sometimes seriously skew the results of a least squares
analysis [von Storch and Zwiers, 2001] (NIST/SEMATECH,
e-Handbook of Statistical Methods, 2006, available at http://
www.itl.nist.gov/div898/handbook/index2.htm).
[6] Tomé and Miranda [2004] identified change points in

several climatological time series by the least squares
method and determined the most appropriate continuous
set of straight lines. Their method fitted a given time series
with the conditions of a minimum 15-year interval between
breakpoints and of changing sign of slope between two
consecutive trends. Since their results strongly depend on
the selected length of each linear segment, Tomé and
Miranda [2004] tested the best continuous set of straight

lines also with conditions of a minimum year period of 10,
20 or 30 years. Moving linear trend window analysis [e.g.,
Menzel et al., 2004; Rutishauser et al., 2007] was another
attempt to overcome the shortages of a priori decisions of
window length for linear trend analyses.
[7] In consequence, Dose and Menzel [2004] introduced

a Bayesian approach of model comparisons to evaluate the
fit of a constant, a linear regression, and a change-point
model on time series. The Bayesian analysis has the great
advantage of analyzing varying changes, model probabili-
ties and change-point probabilities of time series. Along
with rates of change, rigorously calculated uncertainties of
model-averaged rates of change and linear trends can be
described.

3. Temperature Impact on Changing Phenology

[8] Environmental impact on plant phenology has been
studied by correlation and regression analysis [e.g., Menzel,
2003b,Menzel et al., 2006, Rutishauser et al., 2008]. Studies
of Sparks and Carey [1995], Sparks et al. [2000], Menzel
[2003b], Dose and Menzel [2006], and Rutishauser and
Studer [2007] also pointed to the fact that the timing of
spring phenophases such as the date of first flowering, bud
break, unfolding of first leaf or first bird migration is clearly
correlated with climate variables and responds mainly to
temperature (for review, see also Rosenzweig et al. [2007]).
Dose and Menzel [2006] used a conceptually new Bayesian
correlation approach that was methodically improved by
Schleip et al. [2008]. In this method, the coherence of long-
term temperature and phenological time series is estimated to
determine andweight singlemonthly and seasonal 3-monthly
averaged temperature impacts. They used a simulated anneal-
ing optimization algorithm to receive a coherence factor and
temperature weights [Schleip et al., 2008].
[9] In this paper we apply the linear trend analysis and

Bayesian model comparison to an investigation of three
unique, multidecadal, phenological time series from Swit-
zerland and France from 1753 to the present [Rutishauser et
al., 2007; Chuine et al., 2004; Meier et al., 2007]. Addi-
tionally we compare the phenological records with inde-
pendent Swiss instrumental temperature measurements
starting in 1753 in order to assess the monthly temperature
impact on phenological variability of the past three centuries
by Pearson and by Bayesian correlation. We compare the
ability of different methods of analysis to describe variation
in temperature measurements from Switzerland. Our unique
analysis of three long phenological records starting in the
middle of the 18th century allows us to study the temporal
evolution of the phenological records and to assess the key
environmental factor affecting phenology, namely tempera-
ture. Whereas grape harvest dates have already figured
prominently in historical phenology and provide a proxy
record for climate reconstruction, the statistical ‘‘spring
plant’’ is the first homogenized compilation of a long-term
phenological record from different plant species that spans
several centuries. We aim to show detailed analyses of past
ecological information that provide an important source for
understanding long-term ecological change [Cheke, 2007].
Our analysis not only applies unique long-term phenolog-
ical records but also uses rigorous, robust statistics to assess
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temperature as the main environmental forcing factor for the
first time.

4. Material

[10] We selected long-term phenological observations
and temperature measurements from Switzerland and
Burgundy (eastern France) for the time period 1753–
2003/2006. All phenological dates were transformed into
Julian days: 1 January = 1. The altitudes of observation
and measurement sites are between 200 and 800 m above
sea level.

5. Phenological Observations

5.1. Swiss ‘‘Spring Plant’’ 1753–2006

[11] We use a sub period (1753–2006) of a reconstructed
statistical ‘‘spring plant’’ that describes Swiss plant pheno-
logical spring variability for 1702–2006 [Rutishauser et al.,
2007]. The ‘‘spring plant’’ is defined as the weighted mean
of apple and cherry tree flowering and first leaves of beech.
Each selected phase represents a spring event within 2 weeks
at the end of April and beginning of May. Historical
observations were extracted from the Euroclimhist database
[Pfister and Dietrich-Felber, 2006] and from Vassella
[1997]. For 1951–2006 the phenological data were extracted
from the Swiss Phenological Database [Defila and Clot,
2005]. To construct the ‘‘spring plant,’’ a mixed linear
modeling approach [Schaber and Badeck, 2002] was applied
to estimate a representative averaged index value out of up to
23 Swiss phenological observation sites. This method
accounts for systematic differences when averaging several
single phenological series into a regionally representative
mean chronology. Subsequently, linear regression models
were calibrated as transfer functions to estimate the ‘‘spring
plant’’ from single phenological series. The availability of
the historical phenological records varies from year to
year (see Rutishauser et al. [2007] for details). Finally,
Rutishauser et al. [2007] provide an annual estimate of the
onset of spring including an uncertainty range at interan-
nual timescales of ±10 days and of ±3.6 days at decadal
timescales.

5.2. Swiss and Burgundy Grape Harvest Dates

[12] The Swiss grape harvest date records were compiled
from 15 single village series with a total number of 1435
records for the 1480–2006 period [Pfister and Dietrich-
Felber, 2006; Meier et al., 2007]. Annual median values
were selected as representative values for the Swiss plateau
region following the methodology of Chuine et al. [2004].
There are missing observations in 1876, 1927, and between
1879 and 1884. The longest period is the consequence of
severe, wide spread grape diseases [Mullins, 1992], such as
the phylloxera which also heavily affected Swiss vineyards
[Meier et al., 2007].
[13] The Burgundy series 1370–2003 was taken from

Chuine et al. [2004] (downloaded from http://www.ncdc.noaa.
gov/paleo/pubs/chuine2004/chuine2004.html). The Burgundy
phenological data set is not regularly updated (I. Chuine,
personal communication, 2007). We used the post-1753 data
of both time series, which were overlapping with the instru-
mental temperature data from Switzerland.

5.3. Temperature Measurements

[14] Monthly and seasonal mean temperature measure-
ments from Geneva (starting in 1753) and Basel (starting in
1755; Schüepp [1961] and Begert et al. [2005], updated)
were averaged into a Swiss mean series. After 1864 the data
can be considered as homogeneous [Begert et al., 2005].
Three monthly means represent the traditional climatolog-
ical seasons winter (December/January/February), spring
(March/April/May), summer (June/July/August) and autumn
(September/October/November).
[15] We used our derived Swiss temperature measure-

ments also for an analysis of the impact on the phenology of
Burgundy harvest. Comparisons of monthly and seasonal
means reveal that Swiss temperatures explain approximately
90% of the temperature variability at Burgundy station at
Dijon (climate explorer; climexp.knmi.nl) [van Oldenborgh
et al., 2005] for the overlapping period 1951–2000, except
for October (76%), most likely because of an erroneous
outlier in the Dijon record (not shown).

6. Methods

6.1. Time Series Models

[16] Analogous to the procedure of Dose and Menzel
[2004] we use the Bayesian approach to describe long-term
phenological and temperature time series with three imple-
mented models. We refer to Dose and Menzel [2004, 2006]
for computational and mathematical formulae details. In
addition, Schleip et al. [2006, 2008] demonstrated the
flexible application of the Bayesian procedure on different
climate change detection issues.
[17] The simplest model is a constant model associated

with no rate of change and represents just the mean value of
the data. The second model used in this study is a linear
regression with a constant rate of change over time. The
third model, the change-point model, involves the selection
of two linear segments matching at a particular time. The
change-point model provides a time varying rate of change.
We calculate the model probabilities of the three models
with the Bayesian approach of Dose and Menzel [2004].
However, our inferences are derived from the results of the
individual models weighted by their respective model
probability.

6.2. Model-Averaged Rate of Change, Change-Point
Probability Distribution, and Moving Linear Trend

[18] We aim to find the most probable functional descrip-
tion and rate of change given by three models. This is
obtained from a marginalization over the constant, linear
and change-point model. Marginalization is a very powerful
device in data analysis because it enables us to deal with
nuisance parameters; that is, quantities which necessarily
enter the analysis but are of no intrinsic interest [Dose and
Menzel, 2004]. While the more complicated model, i.e., the
change-point model, certainly provides a better fit, it does
not necessarily have a higher model probability. Bayesian
probability theory selects a model by considering the trade-
off between lower misfit and higher complexity, also known
as Ockham0s razor [Garrett, 1991]. This means that the
chosen model should be as complex as required to explain
the data and as simple as necessary to avoid fitting the
model to noise. The model average for the rate of change is
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calculated by averaging the rates of change of the three
models weighted by their respective probabilities.
[19] The change-point model allows for nonlinearities in

the description of functional behavior and rate of change.
The change-point model is made up of triangular functions
consisting of two linear segments defined by the endpoints
of the series and a change point in between. The variables of
these triangular model functions are the unknown functional
values at the endpoints and at the change point as well as the
temporal position of the change point. Bayesian probability
theory estimates the probabilities of all possible change-
point positions by marginalization over the functional values
at the endpoints and the change point of the series. Most
often there is no change point with overwhelming probabil-
ity, but the range of substantial change-point probabilities
extends over several years. Change-point probability distri-
butions exhibit the change-point probabilities as a function
of time for a temperature or a phenological time series.
[20] Finally our Bayesian results are compared to moving

linear trend analysis as used by Menzel et al. [2004], Matti
et al. [2008], Rutishauser et al. [2007], and Rebetez and
Reinhard [2008]. Slopes of linear regression are calculated
for each 30-year and 60-year period around a center year
that is shifted with a 1-year time step. For the trend
estimation within each window, we also estimate the error
probability (p-value) of the linear trend at the 95% signif-
icance level. This indicates the statistical certainty of
artificially assumed trends for the selected window length.
We arbitrarily choose two window lengths of 30 and
60 years in order to distinguish between shorter and longer
timescales. The selected window lengths are applied to both
phenological and temperature series in order to detect
periods of common trends and matching trend signs.
Periods with positive phenological trends (trend toward later
spring onset / harvest dates) are expected to be synchronous
to periods with negative temperature trends or cooling
periods.

6.3. Temperature Impact Model

[21] For the analysis of the coherence of long-term
temperature and phenological time series, we use a Bayes-
ian correlation approach, proposed by Dose and Menzel
[2006] and recently used by Schleip et al. [2008]. The
calculation of the coherence factor relates to the change-
point distributions of the temperature and phenological time
series. We use the long-term time series to test whether the
temporal evolution of the phenological observations can be
attributed to temperature changes. This is a simple case of
Bayesian model comparison. We compare two alternative
models Ma: temperature and blossom onset time series
evolved independently and Mb: temperature and blossom
onset time series exhibit coherence. The results are the
probabilities for Ma and Mb or alternatively the odds ratio
of the two probabilities.
[22] Following the procedure of Dose and Menzel [2006]

we calculate the ratio of probabilities p (coherent)/p (inde-
pendent), also called coherence factor henceforth. A coher-
ence factor above one signifies that the synchronous
evolution of the two time series is more probable than the
independent one. We determine temperature weight coef-
ficients with an implemented simulated annealing algorithm
by maximizing the coherence between temperature and

phenology time series [Dose and Menzel, 2006; Schleip et
al., 2008]. The higher the estimated temperature weights for
a certain month, the more overlap can be expected in the
change-point distributions of temperatures and the pheno-
logical event. For the Swiss ‘‘spring plant’’ we considered
monthly mean temperature of June of the previous year until
May of the actual year. This is the last month of the
observed phenological spring onset. For grape harvest dates
we chose the mean temperatures of the previous November
until October of the current year of harvest. As initial
months we selected June and November temperatures
because they mark the end of the same phenological process
in the previous year.
[23] Finally we compared our results to the results of a

traditional statistical analysis. The traditional statistical
analysis quantifies the relation between temperature and
phenological data by a correlation coefficient r. The corre-
lation coefficient between a variable y and a variable x is a
measure for the linear dependence between x and y. r2, the
square of the correlation coefficient, describes the degree of
explained variance. The range of values of r2 is 0 � r2 � 1
with r2 = 1 signaling perfect linear dependence. Values of
r2 < 1 arise for different reasons. If the data, neither x nor y
are affected by noise then r2 < 1 indicates a more compli-
cated relationship. If the noise on the data is non-negligible,
then r2 < 1 is even if the data generating mechanism a linear
relation. In general, therefore, r2 < 1 includes both, the
noise and deviation from a linear interdependence [Dose
and Menzel, 2006].

7. Results

7.1. Model Selection Results
[24] The by far highest model probabilities (from 51% to

100%) are generally found for the change-point model, when
describing phenological and temperature data (Figure 1). It is
thus the most suitable model to describe the long-term
evolution of phenology and temperature. The linear model
is an appropriate alternative to describe mean Swiss winter
and autumn temperature (50% model probability for time
series of these variables). The constant model is the least
preferred one to describe temperature and phenological time
series (maximum of 6%, ‘‘spring plant’’).

7.2. Time Series Models

[25] Figures 2a–2c and 3a–3d present the functional
descriptions of the constant, linear and change-point models
for each selected phenological and temperature series,
respectively. In Figures 2a–2c, we plotted the functional
description of each model for the ‘‘spring plant’’ and the
grape harvest records. The constant model represents the
mean of the time series. The functional description is shown
as a straight line which intercepts the y-axis at the mean
value of the time series. For the period 1753–2006 the
mean onset of the ‘‘spring plant’’ is on day 118 (Julian day),
Swiss grape harvest dates on day 284, and Burgundy mean
grape harvest dates (1753–2003) on day 270. The mean
values for the winter, spring, summer and autumn temper-
atures 1753–2006 are 0.8�C, 9.0�C, 17.7�C and 9.3�C,
respectively (Figures 3a–3d).
[26] The linear model of the ‘‘spring plant’’ reveals a

positive slope of 0.005 ± 0.004 days/a over the whole record
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(Figure 2a) indicating a delay of spring onset over the
whole record. Both Swiss and Burgundy grape harvest
dates (Figures 2b and 2c) show a consistent negative slope
of �0.04 ± 0.007 days/a and �0.03 ± 0.007 days/a. For
long-term temperature trends (1753–2006) the winter
season exhibits the strongest positive slope of 0.01 ±
0.001�C/a. In comparison, spring, summer and autumn
season show a less pronounced slope of 0.004 ± 0.001�C/a,
0.003 ± 0.001�C/a and 0.006 ± 0.001�C/a, respectively
(Figures 3a–3d).
[27] The functional description of the change-point model

shows a sharp decline at the end of the 20th century for all
three phenological time series (Figures 2a–2c). The decline
is stronger in the grape harvest date records (more than
10 days for 1980–2003/6) than in the ‘‘spring plant’’ (about
5 days 1980–2006). In the case of the ‘‘spring plant’’ we
find rising functional values over centuries before a bend
down at the end of the 20th century. For Swiss and
Burgundy grape harvest dates, the change-point function
estimation is very close to the linear model function
estimation for almost two and a half centuries except at
the end of the 20th century.
[28] The function estimation for winter and autumn

temperatures describes increasing values with a slower
temperature increase until 1850 and since then, a steep
temperature increase until 2006 of approximately 2�C
(Figures 3a–3d). The function estimation for spring tem-
perature declines from 1753 until 1850 and then from 1850,
onward a warming of about 1.5�C is detected. The change-

point function estimation for summer exhibits a very sharp
increase of about 2.5�C from the 1980s until 2006.

7.3. Model-Averaged Rates of Change

[29] All phenological time series exhibit increasingly
negative rates of change (Figures 2d–2g, top lines, right
scale). For comparison to the Burgundy grape harvest dates,
we additionally calculated for the Swiss grape harvest dates
model-averaged trends for the shorter time period 1753–
2003 (Figure 2f). Note that for the shorter time series
model-averaged rates of change at the end of the time series
are associated with high uncertainty intervals that are as
high as or higher than the absolute point estimate itself. For
the Swiss grape harvest time series these high uncertainties
are reduced substantially. In the longer time series the
estimation of rates of change and associated change-point
probabilities is supported by further years of data (Figure 2e).
Swiss and Burgundy grape harvest dates exhibit for 2003
exceptional early harvest dates (Figures 2b and 2c).
[30] All investigated temperature records show an in-

creasingly positive rate of change from 1753 to 2006
(Figures 3e–3h). In 2006, winter, spring and autumn season
exhibit a rate of temperature change of approximately
0.01�C/a. The most abrupt change that was significantly
different form zero occurred in the summer season. How-
ever, continuing warming trends significantly different from
zero can also be found in winter, spring and autumn after
1772 (Figure 3e), 1882 (Figure 3f) and 1900 (Figure 3h),
respectively. Since the 1980s, the positive rate of change
increased from almost zero to 0.08�C/a in 2006 (Figure 3g).

7.4. Moving Linear Trend Analysis

[31] Moving linear trend analysis for the three phenolog-
ical time series show alternating periods of positive and
negative trends throughout the period 1753–2003/6 for
30-year time windows (Figures 4a–4c, top). The phenolog-
ical trends (bold lines) follow the temperature trends of the
spring season (March/April/May, thin lines) of the current
growing season. The decisive temperature period for the date
of grape harvest lies between the flowering and véraison
development stage occurring in late spring. Summer tem-
perature however influences the sugar content of the grape
and not the vintage date [Mullins, 1992; Meier et al., 2007].
Significance tests (F test) show that there is a high
proportion of low or nonsignificant phenological trends
(Figures 4a–4c, bottom). There is a distinct trend toward
earlier harvest and spring dates in all series at the end of
the 20th century but only highly significant with a window
length of 30 years.
[32] The ‘‘spring plant’’ shows two distinct periods with

trends toward earlier spring development of up to�0.3 days/a
for the center year of the 30-year windows between 1976–
1991 and 1939–1954 both with low error probabilities
(Figure 4a). Periods of trends toward later spring development

Figure 1. Bayesian model comparison of the constant,
linear, and one-change-point model. From left to right:
Swiss ‘‘spring plant’’ (1753–2006), Swiss grape harvest
dates (1753–2006), Burgundy grape harvest dates (1753–
2003), mean Swiss seasonal winter (December–February),
spring (March–May), summer (June–August), and autumn
(September–November) temperatures for 1753–2006.

Figure 2. (a–c) Functional behavior of the constant, linear, and change-point model to describe the Swiss ‘‘spring plant’’
(1753–2006), Swiss grape harvest dates (1753–2006), and Burgundy grape harvest dates (1753–2003). Legend is
shown as inset in Figure 2b. The thin black line indicates mean onset day. (d–g) Bayesian model-averaged rates of change
in days/a (top thin black line) and confidence intervals (dashed lines, right y-axis). Probabilities of change-point model
(bottom circles and line, left y-axis). Legend is shown as inset in Figure 2g. Figure 2f shows the Swiss grape harvest dates
comprising the same data length as the Burgundy grape harvest dates (1753–2003).
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Figure 2
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Figure 3. As in Figure 2 but for winter (a, e) December–February, spring (b, f) March–May, summer
(c, g) June–August, and autumn (d, h) September–November temperatures in the period 1753–2006.
Functional model behavior is shown in Figures 3a–3d, and model-averaged trend and change-point
probability is shown in Figures 3e–3h.
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of +0.1 to +0.2 days/a can be seen for the center years between
1955–1975, 1916–1929 and around 1870 with only the latest
showing high significance. Applying a 60-year window,
significant negative slopes are found at the end of the 20th
century (not shown). However, error probabilities are gen-
erally higher and trend signs may differ except at the end of
the 20th century. Applying a 30-year window the Swiss
grape harvest record reveals trends toward earlier dates of
�0.4 days/a or more at the end of the 20th century, between
1830–1860, around 1810 and in the 1760s (Figure 4b).
These periods all show very low error probabilities with a
30-year window. The 1800s show a very long period of
significant delay and advance when using a 60-year win-
dow (not shown).
[33] The Burgundy series largely corresponds to the

Swiss grape harvest record (Figure 4c). The exception is a
more pronounced delay around 1880 and a less pronounced
peak in 1960. The longest period of low error probability is
seen before 1800.

7.5. Change-Point Analysis

[34] The most likely change point for the ‘‘spring plant’’
time series is found in 1984 (probability = 2%) (Figure 2d,
bottom line). In comparison, the most likely change point
for Swiss grape harvest dates is 1986 (probability = 7%)
(Figure 2e). Burgundy grape harvest dates show an ex-
tremely high probability (24%) of having a change point in
the year 2002 and a smaller probability (2%) in 1812. If we
cut the Swiss grape harvest dates to the same length as the
Burgundy grape harvest dates ending in 2003, Swiss grape
harvest dates exhibit an extremely high probability (14%) of
having a change point in the year 2002 and a smaller
probability in 1987 (Figure 2f).
[35] Winter and spring temperatures exhibit the highest

probability for a change at the beginning of the 1850s
(Figures 3e and 3f). Within the summer season, the highest
probability for a change is found in 1978 with a maximum
probability of 10% (Figure 3g). The autumn season reveals
the highest probability of a change point in 1912 (Figure 3h).

7.6. Coherence Factors, Temperature Weights, and
Linear Correlation

[36] Swiss ‘‘spring plant’’ and Swiss grape harvest dates
reveal a high coherencewith temperature time series (Figures 5a
and 5b). The monthly resolution exhibits high coherence
factors for both Swiss and Burgundy grape harvest dates
with the highest temperature weight in June (Figure 5b). For
Burgundy grape harvest dates the highest temperature
weights are seen in the months of June and September.
For Swiss grape harvest dates, high temperature weights
are revealed for February to June of the current year
(Figure 5b). Remarkable is that for Swiss grape harvest
dates (1753–2003) June temperatures exhibit the highest
and only weight. Linear correlations after Pearson indicate
the same result (Table 1). Mean temperatures of March to
July increasingly explain more variance of the grape harvest
date records from 10 to around 25%. Afterward temperature
explains only about 5% of the variance until the date of the
grape harvest. Unlike the coherence factors, linear correla-
tion does not indicate an impact of mean September temper-
atures. Seasonal averages of spring and summer temperature
explain one third of the variance whereas autumn temper-
atures are statistically not relevant for the date of grape
harvest.
[37] For the ‘‘spring plant’’, the highest temperature

weights are found within the spring of the current year and
of the previous summer. July of the previous year and May
of the harvest year exhibit the highest weights (Figure 5a).
Linear correlation indicates significant temperature impact
of single months only from February to April.

8. Discussion

8.1. Linear Regression Approach

[38] Simple approaches such as the description of linear
trends derived from regression models have proven to be a
valuable tool for initial descriptions of phenological time
series behavior [e.g., Root et al., 2003; Parmesan and Yohe,
2003; Menzel et al., 2006]. The simplicity of the least

Figure 4. Moving linear trend analysis for (a) Swiss ‘‘spring plant’’, (b) Swiss grape harvest dates, and
(c) Burgundy grape harvest dates showing slope coefficients of the linear regression of phenology against
time for 30-year periods. Bold lines show phonological trends, and thin lines show corresponding spring
temperature trends. Note that the left axis represents the phenological trend, and the right axis represents
the temperature trend. The values are plotted at the middle year of the respective windows. The lower
panels are the error probability estimates (p-values) from the regression of the phenological records.
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squares linear regression model makes it possible to com-
pare linear trends from around the world and gathered from
previously published literature [Root et al., 2003; Parmesan
and Yohe, 2003]. For example, Menzel et al. [2006] rean-
alyzed 125,000 European phenological time series for the
period 1971–2000. We conducted a moving trend window
approach as applied by Rutishauser et al. [2007]. Applying
the moving window technique on multicentury phenologi-
cal records (Figure 4), the trends of the last and 20th century
are put in the long-term perspective back to 1753. The three
phenological records all show clear trends toward earlier
spring onset and grape harvest dates at the end of the 20th
century respectively. However, grape harvest trends at the
beginning of the 19th century indicate even stronger ad-
vancing trends than in the recent decades. Here significant
negative trends are seen from 1940 to 1950 and with end
years after 1990. Positive trends, however, are statistically
significant only for a small number of periods. But different
results are calculated if we choose different window lengths
as we demonstrated with an additional 60-year window. The
rate of change strongly depends on the underlying time

period and no distinct rate of change for single years can be
given [Dose and Menzel, 2004].

8.2. Bayesian Model Comparison

[39] Bayesian analysis offers the possibility to overcome
the shortcomings of linear regression models. To assess the
potential value of the estimated records we applied a
Bayesian model averaging approach to detect changes in
temperature and phenology by estimating different model
probabilities, functional behaviors and model-averaged rates
of change. The Bayesian model comparison provided an
excellent opportunity to judge and compare different model
estimates. The results of our Bayesian time series analysis
are more informative than results based on single model
approaches. The description of the data in terms of only one
model is often unsatisfactory [Dose and Menzel, 2004;
Schleip et al., 2006, 2008]. Our Bayesian model comparison
showed that if we had concentrated on just a single model
such as the commonly used linear model our final infer-
ences may be incorrect.
[40] For example on one hand our results reveal that for

the winter temperatures the linear model has the strongest

Figure 5. (a) Temperature weights estimated by the simulated annealing process for the Swiss ‘‘spring
plant’’ (1753–2006) and corresponding coherence factors and weights for monthly temperatures from the
previous June (pJune) until the current year’s May. (b) Temperature weights estimated by the simulated
annealing process for the Swiss and Burgundy grape harvest (1753–2006 and 1753–2003) and
corresponding coherence factors and weights for monthly mean temperature from November of the
previous year (pNov) until October of the present year.
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positive slope of 0.01�C/a compared to the other seasons.
On the other hand, if we look at the summer season, the
linear model fails to reflect the real nature of the time series
especially at the end of the 20th century. The functional
behavior of the change-point model suggests a considerable
increase in summer temperatures since 1978. Compared to
the other seasons, model-averaged rates of change of
summer temperatures show the most pronounced warming.
Since the 1980s the model-averaged rate of change increased
from almost zero to a rate of change of 0.08�C/a in 2006
(Figure 3g).
[41] The functional behavior of the change-point model

and the model-averaged rates of change of the corresponding
phenological phases show that these phases have advanced
considerably, particularly at the end of the 20th century. This
abrupt nonlinear advance of the onset of spring and harvest
dates does not appear in the linear model when it is used on
multidecadal timescales longer than 30 years. The change-
point function allows for more detail. The change-point

function of the ‘‘spring plant’’ shows that the onset of spring
tended to occur progressively later from 1753 to approxi-
mately 1940 and progressively earlier from the 1980s
onward (Figure 2a). The Swiss and Burgundy grape harvest
dates show a continuous advance of the onset of harvests
from 1753 onward (Figures 2b and 2c).
[42] In the case of the Swiss and Burgundy grape harvest

dates extreme onset dates at the end of the time series cause
high trend uncertainties. The beginning of the 21st century
and especially the summer of 2003 was extremely warm
[Luterbacher et al., 2004; Schär et al., 2004]. The extreme
early grape harvest date after the widespread European heat
wave summer in 2003 had a noticeable impact on the Swiss
and Burgundy record. Despite the robustness of the Bayes-
ian statistic method, these findings suggest that extreme
outliers at the end of the time series can also lead to large
uncertainties. Outliers at the end of the time series do not
have more corresponding observational data and therefore
exhibit a rapid widening of the confidence range (Figures 2f
and 2g). For Swiss and Burgundy grape harvest dates this
rapid widening is far too large to make any reliable
conclusion at the end of the time series. Note that the
available updated Swiss grape harvest dates until 2006
exhibit a better model-averaged calculation of the advancing
(Figure 2e).

8.3. Bayesian Change-Point Probability Distributions

[43] All investigated 250-year phenological time series
reveal the highest change-point probability at the end of the
20th century (Figures 2d–2f and 3e–3h). These findings
suggest that three spring and autumn phenological records
from close spatial origin all show concurrent and unique
changes at the end of the 20th century. Accumulation of
pronounced change points can also be found in many
phenological time series [Schleip et al., 2006, 2008]. The
change-point analysis of seasonal temperatures exhibits a
more dispersed pattern of high change-point probabilities
indicating a greater variability of temperature data com-
pared to phenological data. The summer season exhibits a
change-point probability distribution, which is relatively
narrow with a clear single peak at the end of the 20th
century. A clear narrow single peak indicates a very strong
abrupt temperature change within a defined time period.
Change-point probability curves for winter, spring and
autumn temperature reveal much broader change-point
distributions. A broad multimodal change-point distribution
indicates that several major nonlinear changes occurred
consecutively in a certain time span. Our results do not
reveal change-point distributions with several separated
high change-point peaks within one time series. Only
Burgundy grape harvest and spring temperatures show a
second minor peak.
[44] Analysis of the change-point probabilities provides

the advantage of visualizing and quantifying major changes
in our long-term time series. Thus it filters out low-frequency
variations in the long-term time series. Our one-change-
point model is capable of identifying the major relevant
changes in long time series. In the future, a multiple change-
point model would be capable of modeling a more detailed
structure in a time series and therefore would mirror several
minor changes within the last 250 years. But each added
change point adds two more variables, which may make the

Table 1. Pearson Correlation and Associated Error Probabilities

Between Phenological Series and Preceding Monthly Mean

Temperaturesa

‘‘Spring Plant’’ cor p-val R2 [%]

pJun �0.13 0.045 2
pJul �0.07 0.301 0
pAug �0.15 0.017 2
pSep 0 0.098 0
pOct �0.01 0.923 0
pNov 0.04 0.558 0
pDec �0.07 0.271 0
Jan �0.05 0.0448 0
Feb �0.33 <0.001 11
Mar �0.46 <0.001 21
Apr �0.56 <0.001 31
May �0.18 <0.004 3

Swiss Grape Harvest Dates
pNov �0.17 0.009 3
pDec �0.26 <0.001 7
Jan �0.10 0.120 1
Feb �0.13 0.046 2
Mar �0.28 <0.001 8
Apr �0.31 <0.001 10
May �0.47 <0.001 22
Jun �0.48 <0.001 23
Jul �0.45 <0.001 20
Aug �0.24 <0.001 6
Sep �0.25 <0.001 6
Oct �0.23 <0.001 5

Burgundy Grape Harvest Dates
pNov �0.23 <0.001 5
pDec �0.28 <0.001 8
Jan �0.11 0.095 1
Feb �0.13 0.035 2
Mar �0.29 <0.001 8
Apr �0.36 <0.001 13
May �0.46 <0.001 21
Jun �0.54 <0.001 29
Jul �0.46 <0.001 21
Aug �0.28 <0.001 8
Sep �0.25 <0.001 6
Oct �0.19 0.002 4

aR2 indicates the percentage of variance in the phenological records
explained by temperature for the periods 1753–2006 (Swiss spring plant
and grape harvest dates) and 1753–2003 (Burgundy grape harvest dates).
Cor, Pearson correlation; p-val, associated error probabilities.
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model unnecessarily complex. Whether the complex multi-
ple change-point model will really provide a better descrip-
tion of temperature and phenological time series should be
tested in future work.

8.4. Temperature Impact

[45] Our phenological and temperature time series exhibit
nonlinear changes, so we applied the Bayesian correlation
approach of Dose and Menzel [2006]. Many publications of
recent years have pointed to the coherence of phenological
spring phases and temperature using classical statistical
methods such as correlation analysis, linear and multiple
regression methods [Sparks and Carey, 1995; Sparks et al.,
2000; Menzel, 2003b; Luterbacher et al., 2007; Rutishauser
et al., 2008]. Additional experiments have shown the link
between temperature and phenology to be causal in many
plant species: that is, warmer temperatures generally lead to
earlier spring phenology [e.g., Saxe et al., 2001]. Plant
phenophases may also respond to many other meteorolog-
ical and environmental factors such as light, photoperiod,
temperature, precipitation, humidity, wind, soil conditions,
etc. [Schnelle, 1955; Menzel, 2002].
[46] The analyses by Dose and Menzel [2006] assumed

that temperatures of the previous year of the phenological
event can be neglected with regard to the phenological onset
in the year of interest. Our results show that summer
temperatures very likely influence not only summer phases
of the current year but also spring phases of the following
year as seen in the onset of the Swiss ‘‘spring plant’’
(Figure 4). For ‘‘spring plant’’ phenology, temperatures
during the spring season of the year of budburst and
temperatures during the summer season of the previous
year appeared particularly important, especially tempera-
tures in the previous July and the following May. With
simple linear approaches (Table 1) [e.g., Sparks and Carey,
1995], this result is statistically much less evident and has
never been discussed.
[47] The summer phases of Swiss and Burgundy grape

harvest are mainly influenced by the season’s spring and
early summer and less by temperatures in the autumn
(Figures 5a and 5b). Only in the case of Burgundy grape
harvest did the monthly resolution show the influence of
September temperatures, which occurred simultaneously
with the grape harvest event. However, September still
seems a statistical artifact as seasonal temperature weights
(Figure 5a) and the majority of findings in the literature
[Pfister, 1981; Mullins, 1992] suggest that the harvest date
of the grape vine is hardly influenced by the 3 months
preceding the harvest. According to Alleweldt [1967], the
development of the grapevine is shut down in August,
meaning that the temperature of this month and thereafter
does not carry weight for the harvest date of the grapevine.
During maturation, solar irradiance mainly acts to control
the amount of sugar accumulation in the grapes [Jones,
2003], and temperature signal is moreover stored in the
accumulated sugar content in the grape [Pfister, 1981].
Grape harvest dates are most strongly influenced by temper-
atures between flowering and ripeness of the grape devel-
opment [Pfister, 1981; Meier et al., 2007]. This finding is
also supported by simple linear correlations (Table 1). Swiss
grape harvest reveals the increasing influence of temper-
atures from February to June, as shown by temperature

weights (Figure 5b) and linear correlation (Table 1). Bur-
gundy grape harvest dates do not show such a continuous
increase from February to June but exhibit the highest
temperature weight in June. Swiss grape harvest (1753–
2003) identifies June as the highest temperature weight, too,
indicating the importance of June temperatures for grape
harvest phenology. Afterward, July shows lower correla-
tions and a dramatic decrease in August and September. In
general we assume that the process of maturation is also
promoted by temperature sums which are accumulated in
the preceding months of June. However, temperature
weights for Burgundy (Figure 5b) indicates a September
temperature impact on the harvest date. We hypothesize that
different viticultural traditions in France and Switzerland
such as vintage ban [Meier et al., 2007, and references
therein] might contribute to Bayesian statistical findings.
[48] Menzel’s [2005] estimates of the correlation between

dates of grape harvest and monthly mean temperatures
differed from our own with no significant correlations
between temperatures of the winter months January to
March as well as of temperatures of the summer months
June and August and the grape harvest dates. Menzel [2005]
mentioned that the low correlations of the summer months
may have been due to the ‘‘biologically artificial’’ separa-
tion of the growing season into single calendar months. In
our analysis the earliest harvest in Switzerland started in
August. The entire month August is not always part of the
growing season and mean temperatures might be not
relevant in all years. In further investigation it would be
interesting to examine the influence of biweekly rather than
monthly temperatures on plant phenology. In addition, we
suggest the application of a phenology model developed for
the Pinot Noir grape variety by Chuine et al. [2004] also to
Swiss grape harvest date observations.

9. Conclusions

[49] Unique long-term temperature and phenological data
series for central Europe back to 1753 were analyzed with
different approaches. A simplistic linear approach illustrates
valuable information regarding the impact of temperature on
multidecadal phenological records despite the well-known
limitations: e.g., a priori selection of window lengths. We
used a Bayesian model comparison to provide for the first
time a detailed description of preferred models, change-
point probabilities, functional behaviors and estimates of the
rate of change of the Swiss temperature and phenological
time series as well as of the Burgundy grape harvest dates.
Results show that the model-averaged rates of change of the
phenological phases show a considerable advance of the
onset of spring and harvest dates. Additionally, the summer
temperature time series shows an abrupt temperature in-
crease at the end of the 20th century. For all phenological
time series the change-point model is the preferred model to
describe the time series. The linear model provides an
adequate alternative for describing the temperature time
series for winter and autumn. In the context of the last
250 years the end of the 20th century represents a period
with unique major increases in temperatures of all seasons
and earlier grape harvest phenology as derived from model-
averaged trends.
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[50] For the first time we also investigated the relation-
ship of phenological records with temperatures of the
previous year by Bayesian methods. Coherence factors
and temperature weights indicate that spring phenological
variability is not only influenced by forcing temperatures of
the current year but also by temperatures of the preceding
June and October. For grape harvest dates, we could not
detect temperature impacts of the termination of the previ-
ous growing season. However, June temperatures of the
year of harvest appear significantly related to harvest dates.
[51] Future work should address the assessment of in-

creasingly complex time series models such as multiple
change-point models in addition to the simplistic linear
approaches. Following the Bayesian coherence approach
of Dose and Menzel [2006] analyses of the impact of
temperature on phenology should include temperature
forcing periods other than calendar months, e.g., shifting
4-week period, or should include precipitation and drought:
e.g., PDSI (Drought severity indices). It would also be
intriguing to investigate the possible role of temperatures
in the previous year to influence future plant phenology.
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