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Abstract

Background: Obesity is a multifactorial trait, which comprises an independent risk factor for cardiovascular disease
(CVD). The aim of the current work is to study the complex etiology beneath obesity and identify genetic
variations and/or factors related to nutrition that contribute to its variability. To this end, a set of more than 2300
white subjects who participated in a nutrigenetics study was used. For each subject a total of 63 factors describing
genetic variants related to CVD (24 in total), gender, and nutrition (38 in total), e.g. average daily intake in calories
and cholesterol, were measured. Each subject was categorized according to body mass index (BMI) as normal (BMI
≤ 25) or overweight (BMI > 25). Two artificial neural network (ANN) based methods were designed and used
towards the analysis of the available data. These corresponded to i) a multi-layer feed-forward ANN combined with
a parameter decreasing method (PDM-ANN), and ii) a multi-layer feed-forward ANN trained by a hybrid method
(GA-ANN) which combines genetic algorithms and the popular back-propagation training algorithm.

Results: PDM-ANN and GA-ANN were comparatively assessed in terms of their ability to identify the most
important factors among the initial 63 variables describing genetic variations, nutrition and gender, able to classify
a subject into one of the BMI related classes: normal and overweight. The methods were designed and evaluated
using appropriate training and testing sets provided by 3-fold Cross Validation (3-CV) resampling. Classification
accuracy, sensitivity, specificity and area under receiver operating characteristics curve were utilized to evaluate the
resulted predictive ANN models. The most parsimonious set of factors was obtained by the GA-ANN method and
included gender, six genetic variations and 18 nutrition-related variables. The corresponding predictive model was
characterized by a mean accuracy equal of 61.46% in the 3-CV testing sets.

Conclusions: The ANN based methods revealed factors that interactively contribute to obesity trait and provided
predictive models with a promising generalization ability. In general, results showed that ANNs and their hybrids
can provide useful tools for the study of complex traits in the context of nutrigenetics.

Background
Cardiovascular disease (CVD) is a family of common
multifactorial diseases, e.g. coronary heart disease
(CHD), cerebrovascular disease, hypertension, and heart
failure, which develop as a consequence of interactions
between the “initial” conditions, coded in a person’s
genotype, and exposure to environmental factors (e.g.
nutrition, smoking) [1]. Latest statistics shows that

CVDs are the leading cause of death and morbidity
worldwide and according to the World Health Organi-
zation (WHO) an estimated 16.7 million - or 29.2% of
deaths - result from the various forms of CVD. How-
ever, many CVDs are preventable by action on the pri-
mary environmental risk factors such as unhealthy diet,
physical inactivity, and smoking [2]. Obesity comprises
one of the most important independent CVD risk fac-
tors and many large scale studies have shown a positive
relationship between CVD mortality and body mass
index (BMI), a widely used measure of human obesity
[3-6]. Nutritional changes towards westernized diet, high
in sugar and fats, and the sedentary lifestyle have led to
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increased obesity and CVD prevalence even in the
developing countries [7-9]. Although interventions on a
person’s nutrition can reduce BMI, it has been shown
that efforts towards BMI reduction can be affected by a
person’s genetic profile [10]. The synergy of genes and
nutrition is studied within the new fields of nutrige-
netics and nutrigenomics [11]. These new disciplines
establish new strategies for CVD control which tradi-
tionally has been limited to nutrition interventions (e.g.
fruits, vegetables, fish) and supplementation, the latter
being more popular in American population [12].
In order to reveal how genes and environmental fac-

tors, like nutrition, interact to perturb biological path-
ways that cause multifactorial diseases, advanced
computational methods able to indentify inter- and
intra-correlation on diverse sources of information can
be applied [13]. The methods usually applied in litera-
ture aim to identify gene-gene and/or gene-environment
interactions that contribute to the onset of a disease,
and develop predictive models which can assess a per-
son’s risk to be affected by the disease. A novel diagnos-
tic prediction method for allergic diseases (atopic
dermatitis, allergic conjunctivitis, allergic rhinitis and
bronchial asthma) that used SNP data and an artificial
neural network (ANN) architecture was proposed in
[14], resulting in a diagnostic prediction accuracy equal
to 78%. An ANN combined with a parameter decreasing
method (PDM-ANN) was utilized to analyze 25 SNPs
from 17 genes and select the most informative SNPs
combination related to childhood allergic asthma in
[15]. Ten SNPs were identified as the most informative
and were used by the ANN predictive model that
yielded an accuracy of 74.4%. An ANN optimized by
genetic programming (GP) [16] was used for the study
of Parkinson’s disease, revealing a strong correlation
between the DSTL gene and gender with the disease
[17]. Random forest is a collection of classification trees
able to build a high-dimensional non-parametric predic-
tive model and was applied to study associations
between asthma and various SNPs of ADAM33 gene
[18]. Multifactorial dimensionality reduction (MDR) is a
popular combinatorial method that uses a constructive
induction algorithm to convert two or more factors to a
single attribute and was successfully applied for the
detection of multi-locus interactions in prostate cancer
[19], breast cancer [20,21], and type 2 diabetes [22].
Finally, support vector machines (SVMs) were used
towards personalized risk assessment of type 1 diabetes
using SNP genotype data [23]. Research conducted for
revealing gene-environment interactions towards a dis-
ease trait is to our knowledge rather less than research
aiming to reveal gene-gene interactions. This can be due
to the lack of data on appropriate environmental factors
describing subjects and the high complexity that can

characterize such a study, i.e. a vast number of categori-
cal/continuous variables to analyze that require an
extensive subjects’ sample. Related research efforts esti-
mated the strength of associations of multiple SNPs and
environmental factors with diabetes using a combination
of a logistic regression (LR) model and genetic algo-
rithm (GA) [24], and support vector machines [25],
while a Bayesian mixture model was proposed for mod-
elling gene-environment interactions in the study of
lung cancer in [26].
Regarding the complex etiology of CVD, the MDR

approach was used in order to study gene-gene interac-
tions on the onset of hypertension [27]. The study
showed that two genes, ACE and GRK4, affecting blood
pressure are involved in hypertension onset and the cor-
responding genotype was sufficient to predict the dis-
ease’s phenotype with an accuracy of 70.5%. The CVD
risk factor of obesity, in particular, was studied using
monozygotic/dizygotic twin pairs and statistical analysis
[28-30]. It was shown that BMI is characterized by both
genetic susceptibility (without, though reporting specific
genes) and environmental factors, e.g. fiber intake and
physical activity [30]. Finally, statistical analysis in [31]
concluded that Pro12Ala polymorphism in peroxisome
proliferator-activated receptor and ghrelin Leu72Met
polymorphism affect interactively with dietary fat the
modulated waist circumference, which measures human
weight.
The aim of the present paper is to study the etiology

of obesity as an example of CVD risk factor and identify
its association with gender, genetic variations and nutri-
tion habits. To this end, a set of more than 2300 white
people that have participated in a nutrigenetics test
were used and two ANN approaches were applied. Obe-
sity was measured here using BMI, while nutrition
habits were quantified using daily intake through food
and supplements of various substances, e.g. cholesterol
and saturated fat. Genetic variations came from a panel
of 24 SNPs or Insertions/Deletions that are related to
human weight and cardiovascular health aspects. The
selected genetic variations have all been reported to
interact in some way with nutritional components, mod-
ifying the daily requirements for various micro and
macro-nutrients and affecting upper recommended lim-
its of potentially harmful components such as saturated
fats [10]. The multifactorial analysis of obesity was
approached using ANN based methods for the classifica-
tion of subjects into two classes related to human
weight: normal (BMI ≤ 25) and overweight (BMI > 25).
More specifically, PDM-ANN [13,15] and GA-ANN,
were used. PDM-ANN combines a backwards feature
selection method and an ANN in order to define the
most informative subset of factors. GA-ANN is an in-
house inspired and developed algorithm that permits
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automatic selection of i) the most important input vari-
ables and ii) the ANN architecture and training process
parameters, towards optimization of the ANN perfor-
mance in terms of classification accuracy. The GA-ANN
has been successfully used in various applications
towards landscape classification [32] and diagnosis of
carotid atherosclerosis from ultrasound images [33]. We
decided to approach the multifactorial trait of obesity
using ANN-based methods rather than simple statistics,
e.g. X2 independence test or analysis of variance
(ANOVA), aiming at revealing high dimensionality
interactions and constructing prediction models, since
in similar studies with smaller datasets the PDM-ANN
outperformed the X2 and ANOVA methods [34]. The
currnet work is to authors’ knowledge the first that pro-
cesses data which describe subjects’ genes and nutrition
using computational intelligence techniques, and shows
the importance of ANNs and their hybrids in the new
field of nutrigenetics in the post-genomic era.

Dataset
A set of 2341 white people that underwent a nutrige-
netic test was used. The test included the collection of
genotype and nutrient intake data for all subjects along
with the BMI measurement. The Sciona MyCellf™ kit
(Sciona Inc., Boulder, CO, USA) was used in order to
acquire data related to subjects’ genotype and nutrition.
More specifically, all subjects completed a comprehen-
sive diet and lifestyle questionnaire, while cheek cell
samples were taken for genetic testing purposes. Nutri-
ent intake measurements were determined from the
responses to the diet questionnaire and depicted their
average dietary habits. A total of 38 nutrition related
measurements were calculated. These included the total
calories intake per day and the daily intake, through
food or supplements, for various substances, i.e. calcium,
allium, caffeine, cruciferous, folic acid, cholesterol,
omega 3, refined carbohydrate, saturated fat, and vita-
mins A, B6, B12, C, D, E. For the substances that were
taken as supplements by at least one subject (e.g. cal-
cium and vitamins), two other measurements: “intake in
supplement” and “total intake"- were calculated apart
from “intake in food”. Nutrition intake measurements
were categorized into four classes. To this end, for
“intake in food” and “total intake” measurements the
quartiles were found, while for the “intake in supple-
ment” measurement, the first class corresponded to a
zero intake and the remaining classes corresponded to
the bottom 33.3%, middle 33.3% and top 33.3% of non-
zero values. The cheek cell samples underwent genetic
testing using a Sequenom Mass Array system for 24
genetic variations (SNPs or Insertion(I)/Deletion(D))
related to nutrition and CVD risk. The genetic varia-
tions set included ACE I/D, APOC3 C3175G, CBS

C699T, CETP G279A, COL1A1 G Sp1 T, GSTM1 dele-
tion, GSTP1 A313G, GSTP1 C341T, GSTT1 deletion, IL
6 G634C, IL 6 G174C, LPL 1595G, MTHFR C677T,
MTHFR A1298C, MTR A2756G, MS MTRR A66G,
NOS3 G894T, PPAR gamma 2 Pro12Ala, SOD2 C28T,
SOD3 C760G, TNF alpha G308A, VDR Fok1, VDR
Bsm1 and VDR Taq1 [10]. Each genetic variation was
featured one out of three forms (e.g. AA, GG and AG
for the CETP G279A SNP, and II, DD, ID for the ACE
I/D variation), resulting to a three-class variable. For
each subject, the gender was also known and was used
as a two-class variable (male/female). Finally, BMI, i.e.
weight (Kg)/height2 (m2), was calculated for all subjects:
877 out of 2341 were characterized as normal (BMI ≤
25), while the rest 1464 subjects as overweight (BMI >
25). The subjects comprised customers of the Sciona
service in the USA and had provided signed consent to
genetic testing and the anonymous use of their data for
research purposes. The chosen subjects were a mixture
of male (910 subjects or 38.9%) and female (1431 sub-
jects or 61.1%), all self-declared white ethinicity. Their
age was in the range of 20-78 (median = 51, mean ± std
= 50.56 ± 11.80) projected to the following age groups:
20-35:10.9%, 36-50: 36.6%, 51-65:43.1% and >65: 9.4%.
In order to justify the use of the ANNs, able to capture
complex relationships within data, we calculated in a
pre-processing step the linear coefficient (LC) values
between each nutrition intake measurement and BMI in
their continuous form. Only the measurements of total
cholesterol intake (LC = 10.84), cholesterol intake in
food (LC = 11.03), refined carbohydrate intake in food
(LC = 10.56), total saturated fat intake (LC = 16.33) and
saturated fat intake in food (LC = 16.45) featured an LC
with an absolute value greater than 0.1, showing a very
weak linear relationship.

Methods
PDM-ANN and GA-ANN were applied in order to
investigate the relation of the 63 factors that comprised
the categorical factors describing genotype (24), nutri-
tion habits (38) and gender, to BMI measurement. The
63 factors were fed as input variables to the ANN meth-
ods, while the BMI measurement was used as a catego-
rical two class output variable. Both methods
simultaneously performed feature selection, i.e. they
selected the most important factors that affect the out-
put variable, and constructed predictive models.

PDM-ANN
PDM-ANN is based on the combined use of a backward
feature selection method and an ANN [13,15]. Initially,
the full vector of input factors is applied as input to the
ANN and PDM eliminates serially the factors that are
less associated with the ANN output. The procedure is
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repeated until one factor remains in the feature vector.
In the present study, a feed-forward ANN [35] was
used, consisting of one input layer of input neurons
equal in number to the applied factors, one hidden layer
of adjustable number of neurons, and one output layer
of one neuron. The hyperbolic tangent sigmoid and log
sigmoid were used as activation functions in the hidden
and output layer, respectively. Due to the use of hyper-
bolic tangent sigmoid function, the labels of categorical
input variables were set to certain values in the range
[-1.0, +1.0], e.g. the labels [1st, 2nd, 3rd and 4th class] of a
4-class variable were set to [-1.000, -0.333, +0.333,
+1.000].The use of log sigmoid function in the output
neuron resulted in output values in the range [0.0,
+1.0]. A value of less than +0.5 corresponded to BMI ≤
25 (C1), while a value greater or equal to +0.5 corre-
sponded to BMI > 25 (C2). ANN was trained using the
back-propagation algorithm with adaptive learning rate
and momentum in order to control the ANN training
procedure in terms of convergence rate [35]. Initial
learning rate (lr) and momentum (mc) were set to lr =
0.01 and mc = 0.9, respectively, while several values for
the number of hidden neurons (number of hidden neu-
rons = 1, 2, 4, 6 and 8) were tested.
The PDM-ANN process is described in detail in the

following: It starts by constructing an ANN that uses all
N = 63 input factors. For proper ANN training and test-
ing the available data have been split into training and
testing sets following the 3- fold Cross Validation (3-
CV) resampling [36]. Training and testing is, thus,
repeated three times. Each time the ANN is trained
using 2/3 (~67%) randomly chosen cases of the available
dataset and tested using the remaining cases (~33%).
Each of the ANNs obtained by 3-CV (ANN1, ANN2,
ANN3) is evaluated, similarly as done in [15], using the
mean value of the classification accuracies
( , , )( ) ( ) ( )A A AN N N1 2 3 obtained in the corresponding
3-CV training and testing sets. It is noted that the accu-
racy achieved by an ANN in a set is the fraction of
cases that are correctly classified by the ANN. The
3-CV technique outputs a fitness value (%):

F A A AN N N N= + +( ) /( ) ( ) ( )1 2 3 3 (1)

for the initial ANNs that use all N = 63 input factors.
The procedure continues by deleting one factor from
the total number of factors and constructing the 3-CV
ANNs that use the remaining factors as input. In turn,
each factor is deleted from the total number of factors
and ANNs are constructed with the remaining ones.
The 62-dimensional input factors set that yields the best
average of mean accuracies ( , , )( ) ( ) ( )A A A1 62 2 62 3 62 in the
3-CV sets is assigned the fitness value FN = 62 (eq(1))
and is the one chosen at this dimensionality threshold.

As the procedure goes on, an ANN that uses N inputs
is derived from the one that uses N + 1 inputs by sub-
tracting the least informative factor by means of mean
accuracy in the 3-CV training and testing sets, and the
set of N factors is assigned a fitness value FN . This pro-
cess is repeated until one factor remains. The best set of
3-CV ANNs and the corresponding input factors set are
selected based on the values of fitness function F. The
factors that are included in the selected set of factors
are the most informative ones, while the ones left out
are either redundant or do not affect the output.

GA-ANN
GA-ANN combines the evolutionary optimization
method of GA [37] with an ANN classifier in order to
obtain an optimal ANN architecture [38]. A three layer
feed-forward ANN was again used, trained by the back-
propagation algorithm with adaptive learning rate and
momentum. The hyperbolic tangent sigmoid and log
sigmoid were used as activation functions in the hidden
and output layer, respectively, and the input values were
used after their encoding in the range [-1.0, 1.0] as
described for the PDM-ANN method. The GA was
applied in order to optimize the ANN architecture,
including the set of input factors to be used, and the fit-
ness function, used by PDM-ANN, was utilized.
The whole GA-ANN process is the following: An

initial generation of M = 100 random chromosomes is
created within the first step of the GA. Each chromo-
some is a binary mask of lchrom = 76 binary digits (0 or
1). The lchrom digits of each chromosome encode the
architecture of one ANN: i) the factors to be used as
input in the training procedure are encoded by the first
lf = 63 digits, ii) the number of hidden neurons by the
next lh = 4 digits, iii) the range of the initial weights by
the next lw = 3 digits, iv) the momentum term by the
next lm = 4 bits, and v) the initial learning rate by the
last ll = 2 bits. Three ANNs are constructed for each of
the M chromosomes according to its content and tested
within the 3-CV technique. The corresponding classifi-
cation accuracies in 3-CV training and testing sets are
measured and the fitness function value of each chro-
mosome is calculated. Four genetic operators, i.e. selec-
tion, crossover, mutation, and election, are then applied
to the initial generation of chromosomes. The selection
operator uses the elitist selection method [37] and
selects the chromosomes that will mate to produce the
offsprings for the next generation. Random pairs of the
selected chromosomes mate with probability Pc = 0.7
based on the two-point crossover operator [37] and bits
within a chromosome are mutated (switched from 0 to
1 or vice-versa) with probability Pm = 0.01. In order to
avoid that offsprings with a lower fitness value than
their parents are included in the next generation, the
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election operator is finally used [38]. For the sake of low
dimensionality of the selected subset of input factors,
“penalty” function is applied to chromosomes that
encode a subset exceeding a given dimensionality
threshold T. Thus, these chromosomes are assigned a
fitness value equal to 50% of the average population fit-
ness. The whole procedure is repeated for NG = 50 gen-
erations and results are stored. The algorithm yields to
the optimal ANN classifier, which corresponds to the
chromosome featured the maximum fitness value.
The GA-ANN method was applied for dimensionality

thresholds T = 30 and T = Inf, the latter corresponding
to the case where no penalty function is applied and the
method searches for the optimal set of factors with no
limitation in terms of dimensionality.
The finally selected predictive models of PDM-ANN

and GA-ANN were comparatively assessed using the
metrics of accuracy as well as, sensitivity, i.e. the discri-
minative power regarding positive cases (BMI > 25),
specificity, i.e. the discriminative power regarding nega-
tive cases (BMI ≤ 25), and area under Receiver Operat-
ing Characteristics (ROC) curve. ROC curves were
generated by thresholding the output neuron in the
range [0, 1], with a step equal to 0.02, and estimating
the true positive (sensitivity) and false positive (1-specifi-
city) rates for each threshold. All metrics were calcu-
lated for all 3-CV sets and mean values were computed
separately for the training and testing sets.
Furthermore, a permutation testing methodology

[39,40] was utilized in order to ascribe statistical signifi-
cance to all evaluation measurements (accuracy, sensi-
tivity, specificity, area under ROC curve) obtained for
each of the resulting models in the 3-CV testing sets.
The statistical significance p of the value obtained for an

evaluation measurement Q by a predictive model was
calculated as follows: The output class labels of all cases
in a 3-CV testing set were S(= 1000) times randomly
permuted. The value of Q was calculated for each of the
S sets, providing the distribution of Q under the null
hypothesis of no association between the input factors
fed to the ANN and the output. The number of times
any of these values exceeded the value of Q obtained for
the real testing set was denoted with R. The quantity

p= +( ) +( )R 1 S 1/ (2)

provides an unbiased estimate of the statistical signifi-
cance of the obtained value of Q in the 3-CV testing
set. The whole procedure was repeated for each 3-CV
testing set and the mean value of p was calculated.

Results and Discussion
In this section, the results of PDM-ANN method are
firstly reported followed by these obtained by GA-ANN.
Finally, both methods are comparatively assessed and
results are discussed.

PDM-ANN Results
The PDM-ANN method was firstly applied in order to
identify the most important factors among the afore-
mentioned genetic variations, nutrient intake measure-
ments and gender that affect BMI when used as a two
class output variable (C1 vs. C2). The obtained FN
values per number of selected factors N = 63, 62, ..., 1
are presented in Figure 1. Results show that the mean
accuracy obtained in the 3-CV training and testing sets
when using N factors was kept in the range 77.7%-79.6%
for N = 63,..,32 and it started to decrease for N < 32. It

Figure 1 Fitness (FN ) values obtained per number of selected factors (N) using the PDM-ANN method.
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continued to decrease up to N = 1, where a mean accu-
racy equal to 62.3% was obtained. The fact that the fac-
tors subtracted by the PDM up to the threshold N = 32
did not affect the FN values indicates that these certain
factors either do not have an important impact to BMI
measurement or are redundant with other factors kept
in the input variables set. The one by one subtraction of
factors after dimensionality N = 32 caused a progressive
reduction to FN values and it is inferred that the factors
subtracted after this dimensionality threshold have a
high information content towards BMI measurement.
Thus, the subset of 32 factors was considered as optimal
for the classification of subjects according to BMI mea-
surement in terms of obtained mean accuracy and num-
ber of used factors.
Table 1 presents the FN values and mean accuracies in

the 3-CV training and testing sets per number of
selected variables N = 1, 2, 3, 4, 5 and 30, 31, 32 (the
in-between cases are not reported here for room saving
purposes). FN values show the decrease of the mean
accuracy obtained in 3-CV sets as the dimensionality N
≤ 32 reduces, while the same happened for accuracies
obtained in the training sets. The selected 32-dimen-
sional subset of factors is presented in the bottom of
Table 1 and contained gender, 19 nutrition related fac-
tors e.g. calories and cholesterol with an obvious impact
on a subject’s BMI, and twelve genetic variations. Thus,
the final subset of factors selected by PDM-ANN con-
tained factors reflecting subject’s gender, lifestyle, i.e.
nutrition, and genetic profile. These interact with each
other (n-way interactions, n > 1) towards the complex
trait of BMI or act as factors that contribute solely to

the BMI trait (main interactions). It is important to note
here that even when training the ANNs with one vari-
able, i.e. the Cholesterol-Intake in Food, a high FN = 1

value (~62%) was obtained, as well. This can be
explained by the effect that the intake of cholesterol can
have on a subject’s BMI, and by that a high intake of
cholesterol is usually accompanied by a high intake of
saturated fats and calories. The ANN-based predictive
model that used the 32 selected factors as input
achieved a mean accuracy equal to 77.89% in the 3-CV
training and testing sets. Regarding its ability to general-
ize into totally unknown data, the corresponding mean
accuracy, achieved in the 3-CV testing sets, was 60.22%.

GA-ANN Results
GA-ANN was next applied in order to construct an
optimal ANN in terms of input factors, architecture and
training parameters (number of hidden neurons,
momentum and learning rate of the ANN), which leads
to a maximum classification accuracy. The procedure
was followed both for T = Inf and T = 30 and results
for the fitness value and mean accuracies in 3-CV
training and testing sets were stored while GA evolved.
Figure 2 presents the mean fitness value of all chromo-
somes obtained in each generation. Results show that
while GA evolved, the fitness function improved in aver-
age and thus better ANN architectures for discriminat-
ing subjects in terms of BMI were obtained. This is
more clear in the case T = 30 where the mean fitness
value improved from 58.4% to 74.24%. After GA-ANN
run for 50 generations, the ANN that corresponds to
the chromosome of the best fitness value was selected

Table 1 Selected factors, FN values and mean accuracies in the 3-CV training and testing sets obtained by PDM-ANN
for dimensionality N = 1,..5,30-32

Dimensionality
N

Selected Factors FN
(%)

Mean Training
Accuracy (%)

Mean Testing
Accuracy (%)

1 Cholesterol-Intake in Food 62.23 63.16 61.29

2 (N = 1) + Gender 64.24 64.17 64.32

3 (N = 2) + Vitamin A-Total Intake 65.52 65.71 65.34

4 (N = 3) + Omega 3-Intake in Supplement 66.12 67.37 64.87

5 (N = 4) + VDR Fok1 65.75 68.85 62.66

.. .... .... .... ....

30 (N = 31) -Vitamin B12-Intake in Food 77.29 94.74 59.83

31 (N = 32) - TNF alpha G308A 77.30 94.21 60.39

32 Gender, Calories, Calcium-Intake in Food, Calcium-Supplement Only, Allium- Intake in
Food, Folic Acid-Supplement, Cholesterol-Intake in Food, Cholesterol-Intake in

Supplement, Omega 3-Intake in Food, Omega 3-Intake in Supplement, Saturated Fat-
Intake in Supplement, Vitamin A-Total Intake, Vitamin A-Intake in Food, Vitamin A-
Intake in Supplement, Vitamin B6-Total Intake, Vitamin B6-Intake in Food, Vitamin B6-
Intake in Supplement, Vitamin B12-Total Intake, Vitamin B12-Intake in Food, Vitamin C-
Total Intake, CBS C699T, CETP G279A, COL1A1 G Sp1 T GSTM1 deletion, GSTP1 A313G,

GSTT1 deletion, IL 6 G634C, MTHFR C677T, SOD2 C28T, TNF alpha G308A, VDR Fok1, VDR
Bsm1 (32)

77.89 95.56 60.22
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as the optimal one. When no dimensionality threshold
was applied (T = Inf) the best ANN (fitness = 79.18%)
was obtained during the 47th generation and used 32
out of 63 factors as inputs. In case of dimensionality
threshold T = 30, the best ANN (fitness = 79.38%) was
obtained again during the 47th generation and was fed
by a selected subset of 25 factors. Thus, the application
of dimensionality threshold led to an input set of lower
dimensionality, as compared to the case of no dimen-
sionality threshold, provided though the same high fit-
ness value. Table 2 presents the subsets of factors fed as
inputs to the best ANNs for T = Inf and T = 30. The

selected subsets included gender and factors related to
nutrition and genetic variations, thus showing the multi-
factorial contribution of the studied factors to BMI.

Comparative Assessment and Discussion
The mean values of accuracy, sensitivity, specificity and
area under ROC curve obtained in the 3-CV training
and testing sets by i) PDM-ANN (32 factors), ii) GA-
ANN (T = Inf) (32 factors), and iii) GA-ANN (T = 30)
(25 factors), are presented in Table 3. Regarding perfor-
mance in the 3-CV testing sets, all finally selected ANN
architectures provided mean accuracies in the range
60%-62%, which can be considered quite satisfying. It is
important though to note that the trained ANNs pro-
vided a quite higher true positive rate (mean sensitivity
in the range 69%-71%) and a lower true negative rate
(mean specificity in the range 44%-49%). This is a desir-
able result since the aim of the constructed ANN-based
system is to predict a subject’s future BMI status using
information on his/her gender, nutrition habits and
genetic profile. Thus, it is more important for the sys-
tem to be able to predict a high BMI, characterized as
an independent risk factor for CVD, than to predict a
low BMI. The mean statistical significance of the
obtained values of all evaluation measurements (accu-
racy, sensitivity, specificity, and area under ROC curve)
in the 3-CV testing sets were found very high (p <
0.001) using the permutation testing methodology in the
context of expectation under the null hypothesis of no
association. To be more exact, the evaluation measure-
ments in all S(= 1000) randomly permuted sets were
found less than the value obtained in the 3-CV testing
sets, i.e. R = 0, and all p-values were found equal to p =
(0+1)/(1000+1) < 0.001 (see eq. (2) in Methods section).
The ANN obtained by GA-ANN (T = 30) was the best

performing architecture in the 3-CV testing sets in
terms of mean accuracy (61.46%), mean specificity
(48.63%), mean area under ROC curve (0.608), and sec-
ond best performing in terms of mean sensitivity
(69.80%) after the one obtained by GA-ANN (T = Inf).
It was also in favor of the specific architecture that it
was fed by the most parsimonious set of factors
obtained by the applied methods with a dimensionality
equal to 25. It is, thus, shown here that the stochastic
feature selection within the GA-ANN yielded better
results than the serial backward feature selection within
PDM-ANN.
For comparison reasons we used the linear discrimina-

tion analysis (LDA) method using the 38 continuous
nutrition intake measurements in order to predict the
status of the two class BMI output variable. Only con-
tinuous input variables can feed LDA and the factors
corresponding to gender and genetic variations, available
only as categorical variables, were discarded. The

Figure 2 Mean fitness value of chromosomes in each
generation during GA evolution within the GA-ANN method (T
= Inf and T = 30).

Table 2 Sets of factors fed as inputs to the optimal ANNs
obtained by GA-ANN (T = Inf and T = 30)

T = Inf T = 30

Gender, Calcium- Total Intake, Gender, Calories, Calcium-

Calcium- Intake in Food, Allium- Total Intake, Allium- Intake in

Intake in Food, Cruciferous-Intake in Food, Caffeine-Total Intake,

Food, Folic Acid- Intake in Food, Folic Acid-Intake in

Folic Acid- Intake in Supplement, Supplement, Cholesterol-

Cholesterol-Intake in Food, Intake in Food, Cholesterol-

Cholesterol-Intake in Supplement, Intake in Supplement, Omega

Omega 3-Total Intake, Omega 3- 3-Total Intake, Omega 3-

Intake in Food, Omega 3-Intake in Intake in Food, Refined

Supplement, Vitamin A-Total Intake, Carbohydrate- Intake in Food,

Vitamin A-Intake in Food, Vitamin Saturated Fat-Intake in Food,

B6-Total Intake, Vitamin B6-Intake in Vitamin A-Intake in

Food, Vitamin B12-Total Intake, Supplement, Vitamin B12-

Vitamin B12-Intake in Supplement, Intake in Supplement, Vitamin

Vitamin C-Intake in Supplement, C-Total Intake, Vitamin C-

Vitamin D-Total Intake, Vitamin D- Intake in Supplement, Vitamin

Intake in Food, Vitamin D-Intake in D-Total Intake, Vitamin D-

Supplement, Vitamin E-Total Intake, Intake in Food, Vitamin E-

Vitamin E-Intake in Supplement, CBS Food Only, IL 6 G174C, LPL

C699T, COL1A1 G Sp1 T, GSTP1 1595G, MTHFR C677T,

C341T, LPL 1595G, MTHFR C677T, MTHFR A1298C, MTR

MTHFR A1298C, MTR A2756G, A2756G, PPAR gamma 2

NOS3 G894T (32 factors in total) Pro12Ala (25 factors in total)
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method provided mean values of accuracy, sensitivity
and specificity equal to 58.2%, 58.3% and 58.1%, respec-
tively, in the 3-CV testing sets and was outperformed by
the selected models of PDM-ANN and GA-ANN in
terms of accuracy and sensitivity. This is due to that
PDM-ANN and GA-ANN can manipulate all factors
(gender, nutrition measurements and genetic variations)
after their transformation to categorical input factors,
and simultaneously capture non-linear relationships.
Even when LDA was fed with the sole factor selected by
PDM-ANN (N = 1), i.e. cholesterol intake in food, it
was outperformed by the corresponding PDM-ANN
model in terms of mean accuracy (52.7% versus 60.2%).
It is important to discuss the factor selection results

obtained here by the ANN-based methods. The studied
factors may have a similar impact on the BMI trait, e.g.
calories and cholesterol intake measurements, or intake
of a vitamin in food and intake of a vitamin in supple-
ment, and the selected ones may depend on the selec-
tion method used. Thus, the applied methods (PDM-
ANN, GA-ANN (T = Inf), GA-ANN (T = 30) resulted
to three overlapping subsets of factors suggested to con-
tribute to BMI. Moreover, the selected subsets include
common factors, e.g. the genetic variation of MTHFR
C677T, Gender and Cholesterol-Intake in Food were
suggested by all methods, while the genetic variations of
CBS C699T, MTR A2756G and calories measurement

were suggested by two out of three methods (CBS
C699T by PDM-ANN and GA-ANN (T = Inf), MTR
A2756G by GA-ANN (T = Inf and T = 30) and calories
by PDM-ANN and GA-ANN (T = 30)). The consistency
of these factors shows their strong impact. Nutrition
related factors like calories and cholesterol intake have
an obvious impact on BMI and are well known from
daily life to trigger the onset of obesity. However, the
current study showed the existence of other factors, i.e.
intake of vitamins and genetic variations that complete
the optimal sets of factors that can discriminate subjects
with high or low BMI. It is worth noting that the poly-
morphisms of PPAR gamma 2 Pro12Ala, selected by
GA-ANN (T = 30), and TNF alpha G308A, selected by
PDM-ANN, have been related to obesity in [41] and
[42], as well, respectively. Further research on the bio-
chemical pathways in which the selected genes are
involved could enlighten the way they solely affect BMI
or how they interact with nutrition towards the complex
BMI trait. Related examples include that the recom-
mended intake of folic acid required to keep homocys-
teine (independent CVD risk factor) levels normal
depends on the MTHFR gene variation, while the upper
limits of saturated fat intake depend on the CETP, LPL
and APOC3 genes.
The optimal ANN architecture yielded by GA-ANN

has been integrated with a remotely located rule-based

Table 3 Mean Accuracy, Sensitivity, Specificity and Area under ROC curve in the 3-CV sets for the ANN architectures
obtained by the PDM-ANN and the GA-ANN (T = Inf and T = 30)

Measurement ANN architecture Mean Value in 3-CV Training Sets Mean Value in 3-CV Testing Sets

PDM-ANN
(32 factors)

95.56 60.22

Accuracy (%) GA-ANN, T = Inf
(32 factors)

97.67 60.69

GA-ANN, T = 30
(25 factors)

97.10 61.46

PDM-ANN
(32 factors)

98.14 69.15

Sensitivity (%) GA-ANN, T = Inf
(32 factors)

99.39 70.79

GA-ANN, T = 30
(25 factors)

98.90 69.80

PDM-ANN
(32 factors)

91.15 46.08

Specificity (%) GA-ANN, T = Inf
(32 factors)

94.73 44.62

GA-ANN, T = 30
(25 factors)

94.54 48.63

PDM-ANN
(32 factors)

0.941 0.580

Area under ROC curve GA-ANN, T = Inf
(32 factors)

0.969 0.574

GA-ANN, T = 30
(25 factors)

0.964 0.608
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module that provides personalized information on
required modifications of a subject’s lifestyle habits in
order to reduce the risk of complications related to the
cardiovascular system. The proposed modifications are
based on existing knowledge in the literature, regarding
mostly the combined impact of genes and nutrition on
cardiovascular health. The ANN architecture and the
module for personalized advice provision communicate
through web-services technology and have been inte-
grated into a web-based platform [43].
Future work includes the use of MDR method [44] in

order to reveal certain main effects or interactions
within the factors selected here, and construct rules that
describe these. Furthermore, we intend to use the hybrid
ANN methods presented here in the analysis of other
multifactorial CVD risk factors, e.g. hypertension and
the fasting level of the measurements of TG and LDL-C,
and include other factors that describe a subject’s life-
style, e.g. related with physical activity and smoking.
Furthermore, the optimization of ANNs used for the
analysis of multifactorial disease traits is an open
research area in terms of both ANN architecture and
ANN training. Our final scope is to construct an ensem-
ble of predictors that estimate the risk of developing
CVD and develop methods able to assess the reduction
of CVD risk after certain lifestyle interventions. The
resulting panel of ANNs could be used to derive an
overall predictive risk score to CVD based on genetics
and lifestyle. Furthermore, since the overall risk is based
on genes and lifestyle, and lifestyle is modifiable, it
would be possible to create lifestyle scenarios where any
high risk is reduced by means of “reverse engineering”.

Conclusions
In the current study, two ANN-based methods, namely
the PDM-ANN and GA-ANN, an in house developed
method for selecting the optimal set of input factors
and architecture of an ANN, were used to study the
multifactorial trait of obesity on the basis of a dataset of
almost 2300 people. Associations beneath obesity, used
here as an example of CVD risk factor, were searched
within an set of 63 factors describing subjects’ gender,
genes and nutrition habits. Both methods concluded to
parsimonious subsets of the original set of factors that
affect BMI, a popular human weight measurement, and
constructed appropriate predictive models for two BMI
related classes. The most optimal set of factors was
yielded by GA-ANN when a dimensionality threshold
was applied during the stochastic process within the
GA. The selected factors included gender, six genetic
variations and 18 nutrition related variables and fed
ANNs characterized by a promising generalization abil-
ity. The current work showed the importance of ANNs
and their hybrids for the parallel processing of lifestyle

and genetic data towards the analysis of modern disease
related multifactorial traits.
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