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Abstract. Water is an important resource for plant life. Since
climate scenarios for Switzerland predict an average reduc-
tion of 20% in summer precipitation until 2070, understand-
ing ecosystem responses to water shortage, e.g. in terms of
plant productivity, is of major concern. Thus, we tested
the effects of simulated summer drought on three managed
grasslands along an altitudinal gradient in Switzerland from
2005 to 2007, representing typical management intensities at
the respective altitude. We assessed the effects of experimen-
tal drought on above- and below-ground productivity, stand
structure (LAI and vegetation height) and resource use (car-
bon and water). Responses of community above-ground pro-
ductivity to reduced precipitation input differed among the
three sites but scaled positively with total annual precipita-
tion at the sites (R2=0.85). Annual community above-ground
biomass productivity was significantly reduced by summer
drought at the alpine site receiving the least amount of an-
nual precipitation, while no significant decrease (rather an
increase) was observed at the pre-alpine site receiving high-
est precipitation amounts in all three years. At the lowland
site (intermediate precipitation sums), biomass productivity
significantly decreased in response to drought only in the
third year, after showing increased abundance of a drought
tolerant weed species in the second year. No significant
change in below-ground biomass productivity was observed
at any of the sites in response to simulated summer drought.
However, vegetation carbon isotope ratios increased under
drought conditions, indicating an increase in water use ef-
ficiency. We conclude that there is no general drought re-
sponse of Swiss grasslands, but that sites with lower annual
precipitation seem to be more vulnerable to summer drought

Correspondence to:A. K. Gilgen
(anna.gilgen@ips.unibe.ch)

than sites with higher annual precipitation, and thus site-
specific adaptation of management strategies will be needed,
especially in regions with low annual precipitation.

1 Introduction

Water availability is among the strongest limitations to plant
productivity globally, even in temperate or boreal regions
(Lambers et al., 1998). Annual above-ground productivity
of vegetation strongly depends on mean annual precipitation
(for grassland: Paruelo et al., 1999; Knapp and Smith, 2001).
Water stress for plants can arise from low precipitation in-
puts, high rates of water loss due to high atmospheric vapour
pressure deficit (VPD) or from drying soil, all mechanisms
ultimately reducing plant productivity. Such effects might
become more pronounced since water stress is predicted
to increase in the future in certain regions due to climate
change, e.g. in Central Europe, for which decreasing sum-
mer precipitation is expected (Christensen et al., 2007). Pro-
jections for Switzerland indicate that by 2070 the mean de-
crease of summer precipitation (June through August) might
be around 20% compared to 1990 with a maximum decrease
of 40% (Frei et al., 2006). Thus, we expect ecosystem pro-
cesses, from microbial activities to plant performance, to be
strongly affected. At the same time, the response to drought
of terrestrial ecosystems might vary dependent on vegetation
composition and local environmental conditions.

While research on drought effects on grassland species has
often been carried out under controlled conditions (e.g. Arp
et al., 1998; Karsten and MacAdam, 2001), research at the
ecosystem level in the field used two approaches: (1) natu-
rally occurring droughts and their impact on the long-term
field trials (Weaver et al., 1935; Gibbens and Beck, 1988;
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Table 1. Description of the three experimental grassland sites in Switzerland.

Chamau Fr̈ueb̈uel Alp Weissenstein

Political community Ḧunenberg, ZG Walchwil, ZG Bergün, GR
Coordinates WGS84 47◦12′37′′ N, 8◦24′38′′ E 47◦6′57′′ N, 8◦32′16′′ E 46◦34′60′′ N, 9◦47′26′′ E
Elevation 393 m a.s.l. 982 m a.s.l. 1978 m a.s.l.
Growing season length mid-April to October May to mid-October mid-June to September
Soil

Type cambisola gleysola humous sandy loamb

C-horizon starts at (approx.) 120 cma >120 cma 30 cm
Sand/silt/clay fraction (approx.)a 35/40/25% 30/40/20% NA

Annual precipitation sumc 1179 mm 1632 mm 918 mm
Mean annual temperaturec 9.8◦C 7.7◦C 2.3◦C
Vegetation type (dominant species) artificial grass-legume mixture permanent managed pasture permanent alpine pasture

(Trifolium repens, Lolium perenne, (Dactylis glomerata, Alopecurus (Festuca rubra, Phleum rháeticum,
Poa pratensis) pratensis, Taraxacum officinale)d Trifolium repens)e

Number of species (approx.) 25 35 around 20
Management

type of usage silage; sheep grazing in autumn silage/hay; cattle grazing in autumn cattle and horse grazing
intensity intensive intermediate extensive
number of cuts per year 6 1–2 0
type of fertiliser liquid manure solid manure none

a Roth (2006)
b Scḧarer (2003)
c data from Zeeman (2008) adapted with data from MeteoSwiss
d Sautier (2007)
e Keller (2006)

Bollinger et al., 1991; Stampfli and Zeiter, 2004) and (2)
field experiments manipulating rainfall amounts. Such ma-
nipulation studies have been carried out in arid or semi-arid
regions where drought is occurring frequently (e.g. Sternberg
et al., 1999; Greco and Cavagnaro, 2003; Köchy and Wilson,
2004; English et al., 2005; Schwinning et al., 2005; Heisler-
White et al., 2008; Sherry et al., 2008) but also in temperate
grasslands where drought is not a severe problem today (e.g.
Grime et al., 2000; Morecroft et al., 2004; Kahmen et al.,
2005; Mikkelsen et al., 2008). A number of studies focused
on the effects of changes in precipitation timing and amounts
on C4 dominated grasslands (e.g. Knapp et al., 2001; Fay et
al., 2002, 2003; Nippert et al., 2009). In most of these ma-
nipulation studies, productivity of common grassland species
was greatly reduced, carbon (C) allocation to below-ground
parts increased and deep rooted species were more drought
resistant, supporting studies carried out with single species
under controlled conditions. However, detailed information
on the drought response of C3 dominated temperate grass-
lands in Europe is still rare.

This study therefore aimed to assess the responses to simu-
lated extreme summer drought of three temperate grasslands
at different altitudes in Switzerland. We excluded precipi-
tation with transparent rain shelters and focused on the fol-
lowing questions: (1) How does community above-ground
biomass productivity of these three grasslands respond to
simulated summer drought? (2) Is community below-ground

biomass productivity affected by simulated summer drought
as well? (3) Do different plant functional types differ in their
response to the drought treatment? We hypothesised that (1)
the simulated summer drought decreases community above-
ground productivity because water is one of the key resources
for plant growth, (2) root biomass productivity increases with
drought because of increased foraging for water, (3) different
plant functional types differ in their response to simulated
summer drought due to their different rooting patterns.

2 Materials and methods

2.1 Experimental sites and setup

The study was conducted at three different temperate grass-
land sites across Switzerland, representing Swiss grassland
systems at the respective altitudes (Table 1). The experi-
ment was established by the end of June 2005 at the two
lower sites, Chamau and Früeb̈uel, and in July 2006 at the
alpine site, Alp Weissenstein, and was continued until 2007,
thus during three and two growing seasons, respectively. At
each site, we installed five portable rain shelters and excluded
rainfall in spring/summer to simulate a pronounced drought.
In 2006, two additional rain shelters and control plots were
installed at Chamau and one each at Früeb̈uel. The tunnel-
shaped rain shelters had an area of 3×3.5 m and were about
2.1 m high at the highest point. During the entire drought
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Table 2. Dates of rain exclusion period and amounts of precipitation excluded during the three years of experiment and average long-term
annual precipitation sum at all sites. The fraction of annual precipitation is given in brackets.

2005 2006 2007

Treatment Amount Treatment Amount Treatment Amount Annual
period [mm] period [mm] period [mm] precipitation

[mm]a

Chamau 24 June–19 Sep 491 (42%) 31 May–17 Aug 271 (24%) 2 May–10 July 403 (33%) 1159
Früeb̈uel 23 June–19 Sep 763 (52%) 31 May–17 Aug 388 (24%) 7 May–20 July 589 (33%) 1534
Alp Weissenstein – – 6 July–24 Aug 248 (29%) 20 June–23 Aug 311 (32%) 975

a data from MeteoSwiss stations Cham (1972–2000, for Chamau), Zugerberg (1972–2008, for Früeb̈uel) and Preda (1961–1974,
for Alp Weissenstein)

treatment period, the steel frames were covered with trans-
parent plastic foils (200µm; Geẅachshausfolie UV 5, fo-
litec Agrarfolien-Vertriebs GmbH, Westerburg, Germany).
To ensure sufficient air circulation, the rain shelters were not
closed down to the ground and the main opening of the shel-
ters was oriented towards the main wind direction. Based
on regional climate model projections (e.g. Frei et al., 2006),
we determined that reducing May to August precipitation by
45% compared to today would simulate an extreme summer
drought in the future. A period of eight to ten weeks begin-
ning in May at Chamau and Früeb̈uel and six to eight weeks
at Alp Weissenstein was required to achieve this target re-
duction. Due to the very variable weather conditions, the
amounts of precipitation excluded varied over the three years
of treatment but relative amounts at the three sites were com-
parable within years (Table 2). We established a core area
of 1×2 m in the middle of the rain shelters to exclude any
direct rain input on plots. All rainfall removed by the shel-
ters was lead away from the respective plots. Control plots
(equal number of replicates as for the shelters) located next
to the sheltered plots received natural rainfall amounts. The
same plots were used throughout the three years of the exper-
iment. During the three years of the experiment, no fertiliser
was applied to the plots and no grazing was allowed on the
plots. In autumn 2006, the weed speciesRumex obtusifolius
L. had to be removed manually from the experimental plots
at Chamau due to Swiss regulations (Gilgen et al., 2010),
overseeding took place in early March 2007 to re-establish a
closed vegetation cover.

2.2 Micrometeorological measurements

Microclimatic variables were continuously monitored close
to the centre of two drought and control plots per site, start-
ing in autumn 2005 at Früeb̈uel, spring 2006 at Chamau and
summer 2006 at Alp Weissenstein. Soil temperature (Pre-
cision IC Temperature Transducer AD592AN, Analog De-
vices, Norwood, MA, USA), soil moisture at three soil depth
(5, 15 and 30 cm) using 20 cm long ECH2O probes (EC-

20, Decagon Devices, Inc., Pullman, WA, USA) and soil
heat flux (HFP01, Hukseflux Thermal Sensors B.V., Delft,
Netherlands) close to the soil surface were recorded. We also
monitored air temperature at 60 and 160 cm (using the same
sensors as for soil temperature but with ventilation) and pho-
tosynthetically active radiation (PAR LITE, Kipp & Zonen
B.V., Delft, Netherlands). The air temperature sensors were
disconnected in winter and spring 2006/2007 due to technical
modifications in the setup. After mid-October 2007, the air
temperature sensors were not ventilated any longer to save
battery lifetime. Measurements were made every 10 s while
ten minute averages were logged with a CR10X data logger
(Campbell Scientific Inc., Logan, UT, USA).

In addition, we assessed soil moisture by taking additional
measurements of gravimetric soil water content in 2007. We
therefore sampled 15 cm deep soil cores from the centre of
the plots and divided them into three 5 cm pieces. Samples
were stored in tightly sealed plastic bags and fresh weight
was measured immediately after returning from the field.
The soil cores were dried to weight constancy at 100◦C
(some days) and dry weight was measured afterwards. Gravi-
metric soil water content was then calculated as the differ-
ence of the fresh and the dry weight (weight of the water)
divided by the dry weight (weight of the soil).

2.3 Above-ground productivity

Above-ground biomass was harvested at the cutting dates
of the surrounding farm, i.e. six times per year at Chamau
(three times in 2005), two times per year at Früeb̈uel (once
in 2005) and once at the end of the growing season (end
of September) at Alp Weissenstein. Biomass was collected
using 20×50 cm frames that were randomly placed on the
plots in 2005 and installed at fixed locations starting spring
2006. Cutting height of the vegetation was approximately
7 cm above the soil according to the common management
practice on the farms. Two samples per plot were taken and
then pooled for the analyses (representing 0.2 m2). Biomass
was stored in plastic bags at 4◦C for a maximum of one week
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until it could be separated into species (plant functional types
for Alp Weissenstein) and dried at 60◦C until weight con-
stancy. Dry matter was then determined for each species
sample, and the sum of all samples from the same plots was
used as an estimate for community above-ground biomass
productivity. Each species was assigned a plant functional
type (grass, forb (i.e. non-leguminous forb) or legume). The
dead biomass (often also referred to as necromass) was con-
sidered its own plant functional type and was never separated
into species (i.e. biomass of the other three functional types
was alive by definition). It was however included in commu-
nity above-ground productivity estimates (often also called
phytomass).

2.4 LAI and vegetation height

During the growing seasons 2006 and 2007 (only 2007 at Alp
Weissenstein), leaf area index (LAI) was measured approx-
imately 7 cm above soil (cutting height) using an LAI-2000
Plant Canopy Analyzer (LI-COR Biosciences, Lincoln, NE,
USA). Five measurements distributed over the plot were av-
eraged to represent the plot LAI. A 270◦ view cap was used
to reduce plots size required for measurements, i.e. only 90◦

of the sensor view were used for measurements. Vegetation
height was estimated at the same dates as LAI using a stick
and a falling styrofoam plate (0.5×0.5 m, 1 cm thick). Two
to four measurements were averaged for each plot.

2.5 Root biomass productivity

Root biomass productivity at the community level over the
complete growing season was determined at Chamau and
Früeb̈uel in 2007 and over nearly two growing seasons (2006
and 2007) at Alp Weissenstein using ingrowth cores (4.4 cm
diameter, 30 cm length). Cores were positioned in an angle
of approximately 45◦. All ingrowth cores were filled with
root-free, sieved (2 mm) soil from the corresponding site. In-
growth cores were installed from 13 March 2007 to 1 Decem-
ber 2007 at Chamau (263 days), from 15 December 2006 to
1 December 2007 at Früeb̈uel (351 days), and from 14 July
2006 to 25 September 2007 at Alp Weissenstein (438 days).
One ingrowth core per plot was buried at Alp Weissenstein
while two cores per plot were used at the two other sites. Af-
ter removal from the soil, cores were stored at 4◦C until fur-
ther analysis. The ingrown roots were washed from the soil
cores in the laboratory, roots were dried to weight constancy
at 60◦C and the dry weight was determined. Where two in-
growth cores had been installed and recovered, root biomass
of two cores was pooled to calculate root productivity of the
plot. In some cases, part of the soil was lost when removing
the ingrowth cores from the soil. Therefore, the actual length
of the soil core was used to calculate the amount of roots per
unit soil depth. As the ingrowth cores remained in the field
for different time periods at the three sites, the root weight
was divided by the number of days that roots had been al-

lowed to grow into the cores and then multiplied by 365 to
represent the root mass per m2 and year.

2.6 Carbon isotope and nitrogen concentration
measurements

To determine carbon isotope ratios (δ13C) and nitrogen con-
centrations, the most abundant species were sampled at
Chamau (Agrostis stoloniferaL., Alopecurus pratensisL.,
Dactylis glomerataL., Lolium multiflorumLAM ., Phleum
pratenseL. AGG., Poa pratensisL. AGG., Poa trivialis
L. S.L ., Rumex obtusifoliusL., andTrifolium repensL.) and
Früeb̈uel (Agrostis capillarisL., A. stolonifera, A. praten-
sis, Anthoxanthum odoratumL., P. pratense, P. pratensis,
P. trivialis, Rumex acetosaL., R. obtusifolius, andT. repens),
while the four plant functional types were analysed at Alp
Weissenstein. Biomass was ground to a fine powder and
analysed using a Flash EA 1112 Series elemental analyser
(Thermo Italy, former CE Instruments, Rhodano, Italy) cou-
pled to a Finnigan MAT DeltaplusXP isotope ratio mass spec-
trometer (Finnigan MAT, Bremen, Germany) via a 6-port
valve (Brooks et al., 2003), a ConFlo III (Werner et al.,
1999) and an additional Nafion-trap backed by a conven-
tional Mg(ClO4)2-trap followed by a 4-port valve (Werner,
2003) between reduction tube and GC column. Post-run off-
line calculations (blank, offset and possibly drift corrections)
were performed to assign the finalδ-values on the V-PDB
and AIR-N2 scales according to Werner and Brand (2001).
The long-time precision for the lab’s quality control standard
tyrosine (∼2.5 years) was 0.05‰ forδ13C. Precision for N
concentrations was 0.05%. For statistical analyses, isotope
and nitrogen data were weighted by biomass to calculate a
vegetation and functional group mean for each plot.

2.7 Statistical analysis

Due to the rather small number of replicates (n=5–7), all
plots were included in the statistical analyses of biomass,
vegetation height,δ13C and N concentrations, i.e. no out-
liers were excluded. LAI values were excluded only if the
standard error of the five measurements per plot was higher
than a third of the mean LAI of the plot or if MTA (mean
tilt angle) was below 30% (criteria used for 2007 since this
information was not available for 2006).

Statistical analyses were performed using R 2.5.0 (R De-
velopment Core Team, 2007). Community above-ground
and functional type biomass, LAI, vegetation height and iso-
tope signatures were generally all analysed with the same
ANOVA model. In a first step, the full datasets were analysed
(all sites over all years), using an ANOVA model consider-
ing site, harvest date, treatment (control vs. drought treat-
ment) and all interactions, including the triple interaction.
In a second step, datasets were analysed for each year sep-
arately using the same model. In a third step, the dataset was
analysed for each site separately and finally for each harvest
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Fig. 1. Micrometeorology during the experiment at Chamau: daily precipitation sum(a), difference of daily average air temperature at
160 cm between drought and control plots(b), proportion of total photosynthetically active radiation (PAR) relative to the control plots(c),
difference of daily average soil temperature at 5 cm depth between drought and control plots(d), and relative development of soil moisture
at 15 cm depth (relative to the soil moisture at the beginning of the drought treatment in 2006;e). Solid lines: control plots, dashed lines:
drought plots. Measurements of gravimetric soil water content in soil cores from 10–15 cm are given as points (open symbols for drought
plots). The periods of drought treatment are shaded in grey. Averages of two plots per treatment are shown.

date separately. The model structure remained the same but
the terms site and then also harvest date were removed. Root
biomass data were analysed using an ANOVA model testing
site, treatment and their interaction.

3 Results

3.1 Micrometeorological measurements

Annual precipitation sums were quite similar in 2005
(1170 mm and 1481 mm at Chamau and Früeb̈uel, re-
spectively) and 2006 (1136 mm, 1649 mm and 867 mm at
Chamau, Fr̈ueb̈uel and Alp Weissenstein, respectively), but
around 100 mm higher at all three sites in 2007 (1232 mm,
1765 mm and 969 mm at Chamau, Früeb̈uel and Alp Weis-
senstein, respectively, Zeeman et al., 2009, adjusted with
data from nearby MeteoSwiss stations). While in 2006, July

was naturally dry, spring 2007 started with very low pre-
cipitation but was followed by a rather wet summer 2007
(Fig. 1a).

The rain shelters had no substantial effect on daily aver-
age and minimum air temperatures at 160 cm height (shown
for Chamau; Fig. 1b): at Chamau, the average tempera-
ture change during the drought treatment was−0.03◦C, at
Früeb̈uel 0.2◦C and at Alp Weissenstein 0.1◦C. The rain shel-
ters increased daily maximum temperatures at Chamau and
Früeb̈uel (by around 0.8◦C) while no effect was seen at Alp
Weissenstein. The plastic foils reduced average daily PAR
sums by 20% at Chamau and Früeb̈uel and by 26% at Alp
Weissenstein (Fig. 1c). The effect of the shelters on soil tem-
perature was also small: in general, there was an increase of
less than 1◦C (but a decrease of 0.3◦C at Alp Weissenstein)
in soil temperature under the shelters compared to unshel-
tered periods (Fig. 1d). However, the rain shelters had the
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Table 3. Effect of drought on community (i.e. sum of dead and alive), alive and dead annual above-ground biomass productivity at Chamau
(including Rumex obtusifolius), Früeb̈uel and Alp Weissenstein in g m−2. Means and standard errors are given (n=5–6). Significantly
different means (P≤0.05) are given in bold, marginally significant differences (0.1≥P>0.05) in italics.

Chamau Fr̈ueb̈uel Alp Weissenstein

control drought P control drought P control drought P

2005a

community 477±53 425±60 0.6 248±40 260±53 0.9 – – –
alive 457±55 398±60 0.5 220±35 235±49 0.8 – – –
dead 20±4 26±5 0.3 28±6 26±4 0.7 – – –

2006
community 931±174 895±185 0.2 590±77 607±69 0.9 284±9 184±26 0.007

alive 909±173 862±181 0.9 535±76 531±61 1.0 180±11 55±7 <0.001
dead 22±2 33±4 0.05 55±6 76±12 0.1 104±2 128±24 0.3

2007
community 1211±134 887±56 0.06 616±77 676±57 0.5 487±30 338±45 0.02

alive 1160±130 820±52 0.04 416±64 477±30 0.4 191±34 119±28 0.1
dead 52±6 67±6 0.08 200±25 199±38 1.0 296±23 218±29 0.07

a Annual biomass productivity sum based on only three (instead of six) and one (instead of two) harvests at Chamau and Früeb̈uel,
respectively.

desired effect on soil moisture. Maximum reduction of soil
moisture was around 83% at Chamau, with soil moisture
being reduced by 20 to 60% during the drought treatment.
Additional measurements of gravimetric soil water content
showed a similar pattern as the continuous measurements
(Fig. 1e). Due to lack of rain in the weeks prior to the start
of the treatment, soil moisture dropped to very low levels in
both, drought and control plots before the start of the drought
treatment in 2007. At Früeb̈uel, the effect of the shelters
on soil moisture was smaller than at Chamau because the
site was generally much wetter: soil moisture was reduced
on average by 30% at 30 cm soil depth during the drought
treatment. At Alp Weissenstein, no data from continuous
measurements were available due to technical problems, but
drought significantly reduced gravimetric soil water content
in 0–5 cm depth at the end of the drought treatment (absolute
reduction of 41%,P<0.001).

3.2 Above-ground productivity

Overall, annual community above-ground biomass differed
significantly among the three sites (P<0.001). At Chamau,
annual community above-ground productivities were similar
in 2005 and 2006 for both treatments but drought tended to
decrease community above-ground productivity in 2007. No
treatment effect was found at Früeb̈uel in any of the three
years, while annual community above-ground productivity
at Alp Weissenstein was significantly decreased by drought
in both years (Table 3). However, above-ground produc-
tivities at Chamau were strongly influenced by one weed
species,Rumex obtusifolius, which gained competitive ad-
vantage over the other species in 2006 (Gilgen et al., 2010).
We therefore excludedR. obtusifoliusbiomass at Chamau

from all further above-ground productivity analyses. As a
result, the overall drought effect across all sites and all three
years became significant (P=0.02 when including year in the
analysis, data not shown). We found a strong relationship
of the average annual community above-ground biomass re-
sponse with annual precipitation sum (R2=0.73, P=0.004;
without Rumex: R2=0.85, P<0.001; Fig. 2a), which was
much stronger than the relationship with amount of precipita-
tion excluded (R2=0.33,P=0.08; withoutRumex: R2=0.60,
P=0.01; Fig. 2b). No such relationship was found when
relating above-ground biomass response to the fraction of
annual precipitation excluded by the shelters (R2<0.001,
P=0.89) or to growing degree days (R2<0.001,P=0.5).

Drought also affected vegetation composition and species
richness. At Chamau, the average number of species was
only slightly affected in the first two years (2005 and 2006),
but significantly reduced by drought from 7.3 to 5.3 in 2007.
At Alp Weissenstein, the average species number was signif-
icantly reduced in 2006 but not in 2007, while at Früeb̈uel,
no significant impact on species richness was found (data not
shown). Focusing on the drought responses of the four plant
functional types (PFT) separately (Table 4, upper part) re-
vealed significant differences among sites (except for forbs
that grew similar amounts of biomass at all sites) but only
slight differences of annual PFT above-ground productivities
between treatments. Thus, over the three-year experiment,
site was the most important factor influencing annual above-
ground biomass productivities of the community as well as
of individual PFTs. In comparison, impacts of the drought
treatment significantly only affected the annual amount of
dead biomass in 2006 (P=0.05) and grass biomass in 2007
(P=0.03), while annual above-ground productivities of forbs
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and legumes were not significantly affected in any of the
three years.

Community above-ground regrowth (i.e. biomass grown
between cutting dates) across all sites and all three years of
the experiment (Fig. 3, Table 4, lower part) was affected by
site and harvest date (P<0.001) as well as by the drought
treatment (P=0.003). A significant site× treatment inter-
action (P=0.001) indicated differing grassland responses to
drought at the three sites, as already observed for the annual
community above-ground productivities. Including year in
the analysis did not change significance levels and was thus
omitted. When analysing the three years separately, site and
harvest date explained a large fraction of the variation in
productivity in all three years (2005–2007), while the treat-
ment effect was insignificant in 2005, it became marginally
significant in 2006 (P=0.06) and stayed significant in 2007
(P=0.01). In 2007, the drought treatment showed highly sig-
nificant effects on above-ground productivities at Chamau
(P=0.001) and Alp Weissenstein (P<0.001), but still no ef-
fects at Fr̈ueb̈uel (P=0.5; Fig. 3). These annual patterns
could also be seen in the response of the single harvests that
were unaffected by the drought treatment at Früeb̈uel and in
the two first years at Chamau (except for the fifth harvest in
2006), but significantly reduced at Chamau in the third year
(first, third and fourth harvest) and also strongly reduced at
Alp Weissenstein (Fig. 3). The date× treatment interaction
term was never significant, indicating that the direction of
the drought responses of the respective grasslands was stable
over time (Table 4, lower part).

Focusing on the different PFTs clearly showed that grasses
resembled the drought response of the community above-
ground productivity best (independent ofRumex). The
drought treatment clearly decreased grass regrowth above-
ground (P=0.001). Although this response differed among
sites (drought strongly decreased grass productivities at
Chamau and Alp Weissenstein but no effect was observed
at Fr̈ueb̈uel; site× treatment interaction:P<0.001), the re-
sponse of grasses to drought was stable over the growing
season (harvest date× treatment interaction: not signifi-
cant). Furthermore, similar patterns for community and grass
above-ground productivity were also found when analysing
the years separately (except site effect in 2005): grass pro-
ductivity differed among the three sites and grass regrowth
changed during the growing season (site and harvest date ef-
fects: P<0.001). Forbs reacted to drought with decreased
regrowth (overall:P=0.007), particularly in 2006. Unlike
their annual productivities, forb regrowth differed between
sites and also during the season (site and harvest date ef-
fects: P<0.001), but the direction of the drought response
was unaffected by site and harvest date (overall site× treat-
ment and harvest date× treatment interactions:P>0.6).
Furthermore, legumes were generally positively affected by
the drought treatment (overall:P=0.005), particularly in the
year 2007, but this was driven by the positive drought re-
sponse at Chamau (data not shown).

Fig. 2. Relationships of annual precipitation sums(a) and of ex-
cluded amounts of precipitation(b) with the average change in an-
nual community above-ground biomass productivities in response
to the drought treatment.R2 and P values for the regression
of annual above-ground biomass excludingRumex obtusifoliusat
Chamau are given in grey (open symbols, dashed line).

3.3 LAI and vegetation height

LAI measurements during 2006 and 2007 (Fig. 4) repre-
sented above-ground biomass regrowth patterns in higher
temporal resolution than community above-ground produc-
tivity and varied significantly during the growing seasons
(P<0.001). Similar to productivity measurements, no sig-
nificant drought effect on LAI was found at Chamau in 2006
(except very early in the season), probably confounded by
Rumexabundance. In contrast, the drought response of LAI
in 2007 was stronger than that of above-ground productivity,
with drought lowering LAI values significantly (P<0.001).
At Früeb̈uel, LAI was negatively affected by drought in

www.biogeosciences.net/6/2525/2009/ Biogeosciences, 6, 2525–2539, 2009



2532 A. K. Gilgen and N. Buchmann: Response of temperate grasslands to drought

Table 4. Results of the ANOVA models for annual sums of above-ground biomass and above-ground harvest yields of community
(comm.=sum of dead and alive biomass) and plant functional type (grass, forb (excludingRumex obtusifoliusat Chamau), legume; only
alive biomass) as well as dead above-ground biomass. Main factors are site (Chamau, Früeb̈uel or Alp Weissenstein), harvest date and
treatment (drought vs. control). SignificantP values (P≤0.05) are given in bold, marginally significant values (0.1≥P>0.05) in italics;
n=5–6.

All years 2005 2006 2007

Comm. Grass Forb Leg. Dead Comm. Grass Forb Leg. Dead Comm. Grass Forb Leg. Dead Comm. Grass Forb Leg. Dead

Annual above-ground biomass sums
Site <0.001 <0.001 0.2 <0.001 <0.001 0.002 <0.001 0.01 0.07 0.4 <0.001 <0.001 0.3 <0.001 <0.001 <0.001 <0.001 0.2 0.006 <0.001
Treatment 0.1 0.08 0.06 0.2 1.0 0.7 0.7 0.3 0.2 0.7 0.1 0.2 0.1 1.0 0.05 0.05 0.03 0.6 0.2 0.4
Site× Treatment 0.2 0.05 0.7 0.1 0.6 0.6 0.1 0.2 0.04 0.4 0.3 0.4 0.7 0.9 0.8 0.05 0.004 0.4 0.2 0.2

Above-ground harvest yields
Site <0.001 <0.001 <0.001 <0.001 <0.001 0.02 0.5 <0.001 0.7 <0.001 <0.001 <0.001 <0.001 0.003 <0.001 <0.001 <0.001 <0.001 0.002 <0.001
Harvest date <0.001 <0.001 <0.001 0.05 <0.001 0.01 0.004 0.9 0.5 <0.001 <0.001 <0.001 <0.001 0.02 0.003 <0.001 <0.001 0.8 0.2 0.05
Treatment 0.003 0.001 0.007 0.005 0.8 0.6 0.5 0.2 0.1 0.7 0.06 0.05 0.01 0.4 0.01 0.01 0.002 0.5 0.01 0.3
Site× Harvest date 0.2 0.3 <0.001 0.09 <0.001 – – – – – – – – – – – – – – –
Site× Treatment 0.001 <0.001 0.7 0.03 0.01 0.6 0.2 0.002 0.06 0.4 0.06 0.07 0.3 0.5 0.1 0.006 0.005 0.2 0.1 0.001
Harvest date× Treatment 0.6 0.6 0.6 0.7 0.02 1.0 0.9 0.9 0.2 0.6 0.3 0.5 0.8 0.7 0.3 0.2 0.2 0.9 0.6 1.0

Fig. 3. Effect of summer drought on community above-ground biomass production (i.e. dead and alive plant material) at Chamau (excluding
R. obtusifoliusbiomass;a–c), Früeb̈uel (d–f) and Alp Weissenstein (g–h) during the experiment. Bars represent biomass production per
harvest (i.e. biomass regrown between cutting dates). Means and standard errors are given (n=5–7). Periods of drought treatment are shaded
in grey.∗ 0.05≥P>0.01,∗∗ 0.01≥P>0.001.
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Fig. 4. Effect of summer drought on community leaf area index (LAI) at Chamau (a, b), Früeb̈uel (c, d) and Alp Weissenstein (e) dur-
ing the experiment. Means and standard errors are given (n=3–7). Periods of drought treatment are shaded in grey. (∗) 0.1≥P>0.05,
∗ 0.05≥P>0.01,∗∗ 0.01≥P>0.001,∗∗∗ P≤0.001.

both years (P<0.001) although there was no such effect on
community above-ground biomass. At Alp Weissenstein,
drought reduced LAI values (P=0.02), but despite the large
decrease in biomass under drought conditions this trend was
not significant at the different measurement dates. No re-
lationship of LAI before the cut with harvested community
above-ground biomass was found at any of the three sites
(R2

≤0.1,P>0.2 butP<0.001 for Chamau).
Vegetation height (data not shown) developed similar to

LAI but was not as strongly affected by the drought treat-
ment as LAI (except for Alp Weissenstein where vegetation
height was significantly reduced by drought). Vegetation
height before the cuts was not related to community above-
ground biomass at Chamau and Alp Weissenstein, in contrast
to Früeb̈uel (R2=0.4,P<0.001).

3.4 Root biomass

Root biomass productivity differed significantly among sites
(P=0.01), with productivities being almost twice as high
at Alp Weissenstein compared to Früeb̈uel and Chamau
(Fig. 5). However, below-ground productivity was not af-
fected by the drought treatment (P=0.9). In addition, the site
× treatment interaction term was not significant (P=0.9), in-
dicating that the response of below-ground productivity to
drought was similar across all three sites.

3.5 Carbon isotope and nitrogen concentration
measurements

Bulk above-ground carbon isotope ratios (δ13C) ranged be-
tween−31.3‰ and−26.7‰ for the grassland vegetation
(Fig. 6), with significant differences among sites (P<0.001).
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Fig. 5. Effect of summer drought on annual community above-
(dead and alive plant material) and below-ground biomass produc-
tivity at the three sites in 2007. Below-ground biomass was esti-
mated using ingrowth cores. Means and standard errors are given
(n=3–6). (∗) 0.1≥P>0.05,∗∗ 0.01≥P>0.001. No significant treat-
ment effects on the below-ground biomass productivity were found.

δ13C values were highest for Alp Weissenstein and varied
over the course of the growing season (P<0.001). In addi-
tion, we found significant effects of the drought treatment on
δ13C at all sites (P<0.001). While drought increasedδ13C
in 2005 and 2007, there was only a delayed response in 2006
at Chamau (date× treatment interaction:P<0.001; Fig. 6a–
c). This was controlled by the drought response of grasses
that contributed most to community biomass. Legumes on
the other hand did not react to drought in 2005 and 2007
but instead significantly decreased theirδ13C values in 2006
(data not shown). At Früeb̈uel, the drought response of veg-
etation δ13C varied throughout the experiment but a non-
significant harvest date× treatment interaction indicated no
change in the direction of the drought effect (Fig. 6d–e).
Grasses were the only functional group displaying an over-
all positive drought response but forbs also showed slightly
increasingδ13C values in response to drought in 2007. The
drought response of vegetationδ13C at Alp Weissenstein was
mainly driven by a very strong positive drought effect in the
first year (significant date and date× treatment interaction
effects; Fig. 6g–h), dominated by grasses that showed high-
est increases inδ13C in response to drought as well as by the
positive drought effect onδ13C of forbs in 2006. Interest-
ingly, δ13C values of legumes were not significantly affected
by drought, although legume biomass had been reduced sig-
nificantly.

On the single species level, no clear patterns could be de-
tected. Grass species showed clear drought responses but no
species differed strikingly from the others. The only out-
standing drought response was observed inR. obtusifoliusat
Chamau (excluded from all analyses, for detailed results see
Gilgen et al., 2010).

Community nitrogen concentrations varied between 1.1%
and 4.9%, with highly significant differences among sites
and harvest dates (P<0.001 each). The drought treat-
ment increased overall N concentrations in above-ground
biomass significantly by around 0.15% (P=0.003). How-
ever, analysing the three years separately revealed that the
drought effect was only significant in 2006. At Chamau,
drought significantly increased N concentrations in above-
ground biomass (P<0.001). Independent of the treatment, N
concentrations increased from around 2.5% in 2005 to more
than 3.5% in autumn 2007. At Früeb̈uel, no effect of drought
on N concentrations was detected. At Alp Weissenstein,
drought decreased average N concentrations at Alp Weis-
senstein, but this effect was only significant in the first year
(P=0.001), not in the second year (P=0.3) of the drought
treatment.

4 Discussion

4.1 Above-ground productivity and N supply

Drought typically reduces above-ground biomass productiv-
ity in grasslands (Hopkins, 1978; Bollinger et al., 1991; Kah-
men et al., 2005). In contrast to these findings and rather
unexpected, no consistent decrease in community above-
ground biomass under drought was observed in our exper-
iment for all sites in all years. One might suspect that es-
pecially at Fr̈ueb̈uel the plants were not really water stressed.
However, measurements of pre-dawn leaf water potential, as-
similation rate and stomatal conductance show that plants
of all three plant functional types (grasses, herbs, legumes)
were negatively affected by the reduced precipitation input
(Signarbieux and Feller, 2008; Signarbieux, 2009). As envi-
ronmental and management characteristics differed consid-
erably among the three sites (i.e. site explained most of the
differences in community above-ground biomass productiv-
ity) and with time (i.e. significant effect of the harvest date),
the sites seemed to react rather site- and year-specific. How-
ever, there was a strong relationship of average annual com-
munity above-ground biomass response with annual precipi-
tation. Sites with lower annual precipitation thus seem to be
more vulnerable to summer drought than sites with higher
annual precipitation. Moreover, if annual precipitation is
very high (above 1500–2000 mm), decreased precipitation
input can even generate a beneficial effect on annual above-
ground biomass productivity. The partial pressure of oxygen
in wet soils is reduced due to decreased oxygen diffusion
from the atmosphere and thus less oxygen is available for
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Fig. 6. Effect of summer drought onδ13C of vegetation (alive plant parts only) at Chamau (excludingRumex obtusifolius; a–c), Früeb̈uel
(d–f) and Alp Weissenstein (g–h) during the experiment. Means and standard errors are given (n=5–7). Periods of drought treatment are
shaded in grey.∗ 0.05≥P>0.01,∗∗ 0.01≥P>0.001,∗∗∗ P≤0.001.

root respiration. Also the availability of nutrients can be lim-
ited in wet conditions due to changes in redox potentials and
microbial activities which will also negatively affect plant
performance (Nilsen and Orcutt, 1996). The lacking relation-
ship of average annual community above-ground biomass re-
sponse with the fraction of annual precipitation excluded by
the shelters or with growing degree days clearly indicates that
long-term annual precipitation rather than temperature con-
trolled the drought response of these grasslands. A depen-
dence of biomass production on soil moisture at drier sites
but not at wetter sites was found for shrublands (Penuelas et
al., 2007).

Grasses contributed most to community biomass (gener-
ally more than 50%, except for Chamau in 2006), thus re-
flecting the response of the community well or rather shaping
the response of the community. Also Grime et al. (2000) had

found that perennial grasses were particularly vulnerable to
climate change in a limestone grassland. This is supported
by findings from a companion study showing that drought
had a strong negative impact on the physiological perfor-
mance of grasses (especially at Chamau, Signarbieux and
Feller, 2008). On the other hand, we found only slight ef-
fects of drought on forbs or legumes (except forR. obtusi-
folius at Chamau in 2006, Gilgen et al., 2010). Although
Trifolium repens, the most abundant legume species at our
sites, has been shown to be drought sensitive (Foulds, 1978;
Stevenson and Laidlaw, 1985), in our study, the fraction
of T. repensof community biomass was not significantly
affected by drought (except at Alp Weissenstein in 2006).
Furthermore, the amount of dead biomass was slightly in-
creased under drought, with the strongest effect again at
the driest site, Alp Weissenstein, in 2006. This increase in
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dead biomass in drought plots was probably caused by ear-
lier senescence as has been reported in other studies as well
(Volaire, 2002; Monti et al., 2007).

Although other factors than water can also limit plant pro-
ductivity, such as N (Harpole et al., 2007), we can fairly as-
sume that the three grasslands studied here were not N lim-
ited throughout the experiment. This was shown in a long-
term biodiversity experiment in Germany where biomass
productivity was not affected by the lack of fertilisation after
six years (Marquard et al., 2009). Prior to our experiment, the
plots at the two lower sites were regularly fertilised with ma-
nure, according to Swiss regulations. At Chamau, this high
fertilisation was even shown to control the C cycle more than
climate (Zeeman et al., 2009). Increasing N concentrations
in above-ground biomass in drought plots at Chamau and no
change in N concentrations at Früeb̈uel indicate an appropri-
ate N supply. Even at the alpine site where drought decreased
N concentrations in 2006, we can still assume there was no N
limitation since biomass productivity was higher in the sec-
ond year than in the first year of the experiment and N con-
centrations in above-ground biomass were unaffected by the
treatment in the second year.

4.2 Below-ground productivity

Below-ground productivity can also react to drought: plants
are able to sense the water available in soils and when
the soil dries out, they produce abscisic acid (ABA) which
was shown to maintain or increase root growth while shoot
growth is inhibited (Saab et al., 1990; Davies and Zhang,
1991; Tardieu et al., 1992). Indeed, increased root growth
under drought was often found in other studies (Jupp and
Newman, 1987; Field et al., 1992; Kalapos et al., 1996; van
den Boogaard et al., 1996; Kahmen et al., 2005). However,
in our study, no change in below-ground biomass produc-
tivity was observed at any of the three sites. One reason
could be that roots of different grass species reacted differ-
ently to drought (Molyneux and Davies, 1983; Bessler et al.,
2009) and could thus compensate each other to hold com-
munity root biomass constant. Another explanation could be
timing. Since our ingrowth cores remained in the field for
a whole season or longer and not only during the drought
treatment, the untreated conditions during most of the season
might have dampened any drought effect. Still, on an annual
basis, constant below-ground compared to decreasing above-
ground productivity resulted in a higher root/shoot ratio of
total plant biomass, thus indicating an increased allocation
of resources to root growth.

4.3 Carbon isotope measurements

According to theory,δ13C of plants can be used as an esti-
mate for water use efficiency (integrated WUE) because the
13C signature depends on the ratio of intercellular to ambi-
ent CO2 concentrations (ci /ca , Farquhar et al., 1982) and

an increase inδ13C is thus coupled to a decrease in ci /ca ,
which can either be caused by higher photosynthetic fixation
or decreasing stomatal conductance (Farquhar et al., 1989).
Although this simplified view has recently been discussed
rather critically (Seibt et al., 2008), our data still met the pre-
dictions made based on those earlier assumptions, i.e. an in-
crease inδ13C under drier condition due to decreased stom-
atal conductance (Signarbieux and Feller, 2009). Vegetation
δ13C was more positive in drought plots than in control plots
at all sites in all years, although other physiological processes
than just photosynthesis, e.g. cell elongation and protein syn-
thesis, might affect growth even more strongly than photo-
synthesis (Lambers et al., 1998). Nevertheless, vegetation
δ13C was mainly controlled by grassδ13C values that were
also higher in drought plots than in control plots while forb
and legumeδ13C values were unaffected by drought indicat-
ing no change in WUE efficiency in these two plant func-
tional types.

4.4 Perspectives

Extrapolating results of the present study to the future might
be difficult, since not only the amount of summer precip-
itation is changing under climate change but also of win-
ter precipitation as well as timing and variability of rain-
fall, both important for grassland productivity (Nippert et al.,
2006; Heisler-White et al., 2008). Future winters are pre-
dicted to be wetter than today in Central Europe (Frei et
al., 2006). Higher winter precipitation will therefore prob-
ably recharge water reservoirs regularly, thereby buffering
any summer drought effects. In addition, it has been shown
that winter precipitation had no effect on biomass produc-
tivity, which was rather controlled by summer precipitation
of the previous and the current year (Morecroft et al., 2004).
This indicates that even if community above-ground biomass
productivity recovered quickly after the removal of the rain
shelters in our experiment, a long-term effect could still have
been preserved.

Under future climate change drier summers will also be
accompanied by higher atmospheric CO2 concentrations.
These have been shown to lead to water savings due to a
reduced stomatal opening (Campbell et al., 1997; Volk et al.,
2000). However, the relatively strong reductions of biomass
productivity at Alp Weissenstein and at Chamau in 2007
will probably not be offset by the typically small water sav-
ing effects under increasing CO2 as observed in Swiss for-
est (Leuzinger et al., 2005) and grassland sites (Volk et al.,
2000).

In conclusion, results from this study indicate that there
is no uniform grassland response to drought in Switzerland.
Different grassland types as well as different plant functional
types differed in their response to drought. However, the
drought response scaled with total annual precipitation, thus
sites with high annual precipitation seem to be better buffered
against disturbance by summer drought than sites with low
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annual precipitation. If this is also true in other parts of Eu-
rope remains to be tested, but it already now emphasises the
strong needs for adapted management strategies in the drier
parts of Switzerland.
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