Transporters for amino acids and peptides in plants

Doris Rentsch

Institute of Plant Sciences, University of Bern, Bern, Switzerland

Nitrogen is an essential nutrient for plant growth and productivity. Following uptake from the soil or assimilation within the plant, organic nitrogen compounds are transported within and between cells as well as over long distances in support of plant metabolism and development. Research mainly focused on amino acids that represent in most plants the principal transport form for organic nitrogen, but transport of small peptides and other organic nitrogen forms has also been investigated.

Transformers for amino acids and peptides have been identified in Arabidopsis and characterized using heterologous expression systems, i.e. Saccharomyces cerevisiae and Xenopus laevis oocytes. These studies identified transporters belonging to different gene families that mediate low and high affinity transport of amino acids or peptides. Results from different labs revealed differential expression of the respective genes and elucidated the importance of individual transporters for uptake of amino acids or peptides from the soil, for long distance transport and translocation to seeds, respectively.

An overview of current knowledge and recent findings will be presented.

Metabolomics-based functional genomics and network analysis for plant amino acid metabolism

Kazuki Saito.1,2

1Graduate School of Pharmaceutical Sciences, Chiba University, Chiba
2RIKEN Plant Science Center, Yokohama, Japan

Metabolomics is a powerful approach to decipher genes’ function and elucidate metabolic networks in plants. We have investigated the metabolic profiling of the mutants of serine acetyltransferase genes and β-substituted alanine synthase (BSAS) genes, which encode cysteine synthase (CSase) [O-acetylsereine (thiol) lyase] and β-cyanoalanine synthase (CASe) of Arabidopsis thaliana. This analysis concluded mitochondrial BSAS3;1 is a genuine CASe, and β-cyanoalanine synthase is present as a conjugated form as γ-glutamyl-β-cyanoalanine. We also investigated the metabolic network of two mutants (methionine-over accumulation 1 [mto1] and transparent testa4 [tt4]). Although the mutants showed no apparent morphological abnormalities, the overall metabolite correlations in mto1 were much lower than those of the wild-type and tt4 plants, indicating the loss of overall network stability due to the uncontrolled accumulation of methionine. In the tt4 mutant, several new correlations were observed, suggesting an adaptive reconfiguration of the network module. Gene-expression correlations presumably responsible for these metabolic networks were determined using the metabolite correlations as clues.

Function of glutamine synthetase and glutamate synthase in rice plants

Tomoyuki Yamaya

Graduate School of Agricultural Science, Tohoku University, Sendai, Japan, tyamaya@biochem.tohoku.ac.jp

A major source of inorganic nitrogen for rice plants grown in paddy soil is ammonium ions. The ammonium-ions, actively taken up by the roots, are assimilated into the amide-residue of glutamine (Gln) by the reaction of glutamine synthetase (GS) in the roots. The Gln is converted into glutamate (Glu), which is a central amino acid for synthesis of a number of amino acids, by the reaction of glutamate synthase (GOGAT). Although a small gene family for both GS and GOGAT is present in rice, ammonium-dependent and cell-type specific expression suggest that cytosolic GSI:1,2 and plastidic NADH-GOGAT1 are responsible for the primary assimilation of ammonium ions in the roots. In the plant top, approximately 80% of the total nitrogen in the panicle is remobilized through the phloem from senescing organs. Thus, nitrogen remobilization determines productivity of rice. Since the major form of nitrogen in the phloem sap is Gln, GS in the senescing organs and GOGAT in developing organs are important for nitrogen remobilization and reutilization, respectively. Our recent work with a knock-out mutant of rice clearly showed that GSI:1 and NADH-GOGAT1 are both responsible for the remobilization processes. Since the integration of the functions of many genes is required for the overall process of nitrogen utilization in plants, it is not easy to draw the whole picture from studies on an individual gene. Recent studies obtained from the profiling of metabolites in the OsGSI:1' mutants, together with transcriptome analysis, will be discussed in this symposium.