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Abstract A new realist interpretation of quantum mechanics is introduced. Quantum
systems are shown to have two kinds of properties: the usual ones described by values
of quantum observables, which are called extrinsic, and those that can be attributed
to individual quantum systems without violating standard quantum mechanics, which
are called intrinsic. The intrinsic properties are classified into structural and condi-
tional. A systematic and self-consistent account is given. Much more statements be-
come meaningful than any version of Copenhagen interpretation would allow. A new
approach to classical properties and measurement problem is suggested. A quantum
definition of classical states is proposed.

Keywords Intrinsic vs. extrinsic properties of quantum systems · Structural and
conditional intrinsic properties · Classicality · Classical property of quantum linear
chain · Quantum measurement

1 Introduction

Quantum mechanics does not seem to be fully understood even after about eighty
years of its very successful existence and a lot of work is being done on its interpre-
tation or modification today (e.g., [1, 2]). The present paper describes an approach to
its conceptual foundation from a new point of view.
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Accounts of the conceptual structure of quantum mechanics usually start from a
‘minimal’ interpretative framework on which adherents of different interpretations
can agree. For example in [3], this is referred to as ‘pragmatic approach’ to quantum
theory and a review of it is called ‘The Rules of Quantum Theory’, pp. 67–75. In [4], a
similar review is called ‘Rules of Quantum Mechanics’, pp. 42–56. From d’Espagnat
review, we leave out Rules 7–10 that concern the so-called ideal measurements (in our
language, ideal measurements are preparations). Isham’ Rules 1–4 and d’Espagnat
Rules 1–6 are practically equivalent and where they differ, they are compatible. We
call their logical union standard quantum mechanics.

An interpretation of quantum mechanics is defined as those hypotheses that are
added to standard quantum mechanics.1 For example, Copenhagen interpretation
adds the hypothesis that quantum systems cannot posses real properties or even that
quantum systems do not exist. Many-world interpretation adds that all values that a
measurement can give really exist in different branches of the world, etc.

Standard quantum mechanics can be characterised as a set of rules allowing the
computation of probabilities for the outcomes of registrations which follow specific
preparations. The preparations and registrations work only with classical systems and
classical properties, the existence of which is not denied. The question is, however,
left open whether quantum system really exist and can posses real properties.2 In de-
pendence of how an interpretation answers this question, it is classified as realist or
anti-realist. Some criteria are formulated in [3], (p. 68): For an anti-realist interpreta-
tion:

The notion of an individual physical system ‘having’ or ‘possessing’ of all its
physical quantities is inappropriate in the context of quantum theory.

For a realist interpretation:

It is appropriate in quantum theory to say that an individual system possesses
values of its physical quantities. In this context, ‘appropriate’ signifies that
propositions of this type can be handled using standard propositional logic.

To understand this text, one has first to know what are ‘physical quantities of an
individual quantum system’. For practically all physicists, these are the values of ob-
servables (examples are [3–5, 8]). For a realists, it remains then only to ask what can
be a maximal set of determinate (but perhaps unknown) properties for a system, S,
say, in a state ρ, the so-called determinate set. The assumption that they are determi-
nate must not lead to any contradictions that might follow from the standard quantum
mechanics and possible measurements of other observables in the determinate set
as well as from some further desirable conditions (for details, see [8]). Examples of
such contradiction can be obtained from the Kocher-Specker theorem (see, e.g., [5]).
Important is that the absence of contradiction is only required for measurements of

1If the hypotheses modify standard quantum theory as in, e.g., pilot-wave theory by Bohm and de
Broglie [2], then we do not call the result quantum mechanics.
2In Isham’s and d’Espagnat account of standard quantum theory, the existence of quantum systems seem
to be assumed. But this is not what everybody can accept (see the discussion in [5–7]: they define quantum
systems just as equivalence classes of preparations or registrations).
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observables inside the determinate set and measurements of other observables can be
ignored. The resulting mathematical problem has been solved (see [8]). All sets of
determinate properties are necessarily restricted in the sense that they never contain
all observables that are in principle measurable on S in ρ (at least for Hilbert spaces
that have more than two dimensions).

The standpoint of the present paper is very different. We consider a value of ob-
servable O that can be measured on a quantum system S as a physical quantity
of composite system S + A, where A is the apparatus that measures O . For us, it
is, therefore, not a physical quantity of individual system S and we call it extrinsic
property of S. Probabilities can be interpreted epistemically only as concerning the
composite system. The so-called determinate properties are then mostly the extrinsic
ones. Extrinsic properties of S have an important but only intermediate role: from
them, something about genuine physical quantities of S can be inferred. We call the
part of standard quantum mechanics that concerns extrinsic properties phenomenol-
ogy of observation. A precise account is Sect. 2.

The main new idea of the present paper is a proposal of what the quantities of in-
dividual quantum systems are. It is very different from what is taught at universities
and what is believed by experts who know all existing literature. We start from two
principles. First, our reality condition is stronger than that for determinate properties:
it requires that the attribution does not lead to contradictions with any possible mea-
surement that could be performed on S in ρ according to the basic rules of standard
quantum mechanics. Hence, most determinate properties violate our reality condition.
Second, we necessarily consider properties that are different from values of observ-
ables. They are more sophisticated and need not have their values in R

n. If we find
such a quantity, we accept the hypothesis that does ascribe it to individual quantum
systems and call such properties intrinsic.3 In Sect. 3, it is shown that there are two
kinds of intrinsic properties, structural and conditional, and that there is plenty of
them.

Many physicists are aware of objectivity of properties such as mass and charge but
our notion of structural properties includes much more quantities. A structural prop-
erty of any quantum system is, e.g., the form of its Hamiltonian operator. Clearly, it
is a specific feature different from system to system and it is amenable to an exact
mathematical description even if not by a quantity that takes on numerical values.
According to our opinion, the ultimate aim of all quantum measurements (such as
the scattering experiments in CERN) is to determine the structural properties of real
quantum systems (such as parameters of the standard model). Conditional are those
properties that can be given to quantum systems by preparations. For example, Dirac
([9], p. 46) and von Neumann ([10], p. 253) added to the standard quantum mechan-
ics the interpretation of eigenstates as the only special case in which a value of an
observable is determinate before measurement. But our notion of conditional proper-
ties goes far beyond this.4 Thus, the basic ones are summarized and mathematically

3We take the standpoint that such ontological hypotheses are meaningful if they have some relation to ob-
servation. An ontological hypothesis is allowed if its consequences are not disproved by existing evidence
and if it is logically compatible with other physical theories.
4The analysis of experiments in the so-called quantum mechanics on phase space [12] introduces the
notion of property that generalizes single values of observables to probability distributions of such values.
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expressed by state operators, while the more advanced ones extend the information
given by state operators. Existence of such advanced properties has been established
by our previous paper [11].

Our paper is the first systematic, self-consistent and complete account of struc-
tural and conditional properties. It makes the ontological hypotheses of objective
existence of these properties and recognizes that the hypotheses form an interpreta-
tion of quantum mechanics which is different from any other known one (versions of
Copenhagen, Everett, etc.). The interpretation may be called realist because it satis-
fies Isham’s criterion.

As mentioned above, standard quantum theory works directly only with classical
systems and classical properties. In particular, the measuring apparatuses are classical
systems. In this context, another classification criterion of anti-realist versus realist
interpretation emerges. Measurement is considered as a fundamental notion of the
theory and classical systems as different from quantum systems in the former and
classical systems are considered as quantum systems with special quantum proper-
ties and measurement processes as some kind of quantum processes that represent
nothing fundamentally new in the latter (see, e.g., Isham, p. 68).

Section 4 turns to this part of our interpretation. We conjecture that the dichotomy
of quantum and classical worlds can be replaced by the difference between extrinsic
and intrinsic properties of quantum systems. In particular, average values of observ-
ables in prepared states are intrinsic. This enables us to use methods of statistical
physics to construct quantum models of some classical properties. An example ex-
plaining this idea is carefully described in Appendix. A tentative generalisation to the
classical properties of a macroscopic body that determine its complete classical state
is given: they can be chosen as intrinsic average values and small variances of certain
operators of the underlying quantum system. Recently, there has been some progress
concerning quantum models of further classical properties [13].

Our interpretation also gives some non-trivial hints of how the measurement prob-
lem is to be approached. On the one hand, corresponding to its notion of classical
systems and classical properties, the assumption that measuring apparatuses are ex-
clusively classical (that is non quantum) has to be abandoned. On the other, von Neu-
mann model of measuring apparatus, where readings of an apparatus are eigenvalues
of an operator, is incompatible with it.

2 Phenomenology of Observation

This section briefly describes what part of standard quantum theory belongs to the
phenomenology of observation. To shorten the exposition, we shall base it on the
accounts of standard quantum mechanics as given in [3, 4]. The Rules will be referred
to just by their numbers.

At the beginning of any measurement stands what is usually called preparation.
The name is somewhat misleading. What is meant is a set of conditions that can be

Some of these properties are similar to some of our conditional properties. However, quantum mechanics
on phase space is a modification rather than an interpretation of quantum mechanics. It postulates the
existence of informationally complete measurements. Our approach is different.
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described in classical terms, to which an individual quantum system has been subject
and that determine its state. This can, but need not, include some human activity in
laboratory. For example, we can know that a quantum system inside the Sun is the
plasma with a given composition and that its classical conditions are certain tem-
perature and pressure. The description of classical conditions is important in order
that the same preparation can be recognized or reproduced. Thus, a series of repeated
experiments is feasible, and the set of individual quantum systems obtained by re-
peating the same preparation is called ensemble. Clearly, the notion of ensemble is
in many aspects closely connected to that of preparation. Isham’s Rules 1 and 2 and
d’Espagnat’s Rules 1, 2 concern states.

At the end of any quantum measurement there is what is often called a registra-
tion. It is an interaction of an individual quantum system in a specific state with a
classical system, the measuring apparatus that determines a value of a set of com-
muting observables. About representation of observables by operators is the Rule 3
by Isham and Rules 4, 5 and 6 by d’Espagnat.5

Rule 4 by Isham and Rule 3 by d’Espagnat concerning dynamics are considered as
a part of standard quantum mechanics but not of the phenomenology. All mathematics
that is associated with the included Rules, such as the theory of Hilbert spaces and
self-adjoint operators, are considered as part of the phenomenology.

Let us introduce the word ‘property’ in order to have a general notion of observable
characteristics concerning quantum systems. For instance, the values of observables
in quantum mechanics are properties. We define:

Definition 1 Extrinsic properties of quantum system S are those values of observ-
ables6 pertaining to S that are not uniquely determined by the preparation of S.

The extrinsic properties are not real properties of quantum systems in the follow-
ing sense: the assumption that an extrinsic property P of a quantum system S as
measured by an apparatus A is possessed by S independently of, or already before,
their registration, leads to contradictions with other possible measurements on S. An
example is the well-known double-slit experiment (see also [4], Sect. 4.3).

5A more general mathematical object can be mentioned as representing registrations, the positive operator
valued measure (POVM). However, any registration represented by a POVM of a system S is nothing but
a registration associated with a suitable observable of an extended system, S + S′ , S′ being the so-called
ancilla [5]. Thus, conceptually, POVM belong to extrinsic properties because of both measuring apparatus
and ancilla.
6More generally, extrinsic properties can be described as linear subspaces in the Hilbert space of the sys-
tem. They represent the mathematical counterpart of the so-called YES-NO experiments [14, 15]. The
set of linear subspaces admits the usual operations on conjunction (linear hull), disjunction (intersection)
and negation (orthogonal complement), but the resulting orthocomplemented lattice is not a Boolean lat-
tice [16]. As it is well known, the set of ‘classical’ properties of a single system forms a Boolean lattice
(of subsets of classical phase space). If we pretend that the extrinsic properties of a quantum system are
properties of a well-defined single system, then we are lead to abandon the ordinary logic and introduce the
so-called quantum logic. But this pretence is against all logic because the extrinsic properties are properties
of many different systems each consisting of the quantum system plus some apparatus.
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3 The Intrinsic Properties of Quantum Systems

A property P can be ascribed directly to a quantum system S if consequences of S

possessing P do not contradict results of any measurement that can be carried out
on S (even very difficult measurements so as to be practically not feasible). Let us
define:

Definition 2 Let S be a quantum system and P a property that can be directly as-
cribed to S alone so that the assumption of S really possessing P does not lead to
contradiction with any measurements that can in principle be done on S according to
the rules of standard quantum mechanics. Then P is called intrinsic property.

For understanding the notion, it is important to discriminate between attributing
a property to an individual quantum system on the one hand and directly measuring
the property on an individual quantum system on the other. Many structural proper-
ties, such as cross sections or branching ratios, are obtained only after many mea-
surements, of rather different (extrinsic) properties, on many copies of a system. The
same is true for conditional properties such as a state operator. Still, no formal-logical
problem arises if one wants to attribute them to individual systems.

3.1 Structural Properties

First, we turn to those intrinsic properties that are easy: nobody would seriously deny
that they can be ascribed to quantum systems. They are also the most important prop-
erties of quantum systems in the sense that the ultimate aim of experimenters is to
determine them.

Quantum systems can be classified into equivalence classes with the beautiful
property that the structures of each two different systems of the same class are ab-
solutely identical. Examples: electrons, protons, hydrogen atoms, etc. Let us define:

Definition 3 All properties that are uniquely determined by the class of quantum
system are called structural.

The first among the structural properties is the composition of a quantum system.
Experience and practice lead to ideas about what such a composition can be. For ex-
ample, in the non-relativistic case, there must be a definite number7 of some particles
with definite masses, spins and charges. For a relativistic case, there are analogous
rules: we have fields of certain (bare) masses, spins and charges. For example, the
non-relativistic model of hydrogen atom consists of two particles, proton and elec-
tron, that have certain masses, spins and charges.

The next step is to determine the quantum observables that can be measured on
the system. For example, each particle contributes to the observables by three coor-
dinates and three momenta. Thus, in the hydrogen case, there will be (in addition to

7There are non-relativistic systems, in which some particle numbers are variable, such as those of quasi-
particles in solid state physics. Of course, these particle numbers do not belong to the structure of the
systems and they are not intrinsic but extrinsic properties in our conception.
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other observables) six coordinates and six components of momenta. The set of ob-
servables that can be measured on a given system is its intrinsic structural property.
This information is different from that about the values of these observables.8 The al-
gebras of observables contain for example information about superselection observ-
ables (which form the centre of the algebra), so these observables are also structural
properties.

The composition and the observables of a system are used to set up the Hamil-
tonian of non-relativistic or the action functional for relativistic systems. The form of
the Hamiltonian or the action are mathematical expressions of the structure and thus
intrinsic properties.9

Using the Hamiltonian or the action, we can write down the dynamical laws: the
Schrödinger equation or the path-integral formula. Hence, the dynamical part of stan-
dard quantum theory (Rule 4 by Isham, Rule 3 by d’Espagnat) is included into the
structural properties of our interpretation. From the dynamical laws, other important
intrinsic properties can be calculated, for example the spectrum of the hydrogen atom.
The spectrum is clearly a structural intrinsic property of the hydrogen atom that can
be ascribed to the system itself independently of any measurement. This will not lead
to any contradictions with other measurements or ideas of quantum mechanics. We
can recognize the system with the help of its intrinsic properties. For example, if
we detect light from somewhere deep in the Universe and find the Balmer series in
its spectrum, then we know that there is hydrogen there. The numbers such as cross
sections, branching ratios etc. are further examples of structural intrinsic properties.
Moreover, the Hamiltonian contains information about all symmetries of the system,
because these are represented by the operators that commute with the Hamiltonian.
Thus, symmetries are structural properties.

Next, it seems that many-particle systems may have structural properties that are
not found in small quantum systems. An example is provided by molecules of the
deoxyribonucleic acid. The number of their structures grows (roughly) exponentially
with the number of the four kinds of constituents because possible orderings of the
constituents define different structures. It is clearly wrong to say that we know all
kinds of structural properties of macroscopic systems and investigations in this direc-
tion might be useful. For example, rich intrinsic properties of large systems might im-
ply the observed properties of the universe and so enable a new approach to quantum
cosmology without need of bizarre theories such as many world interpretation [3].

8More precisely, the set of observables can be embedded in a so-called C∗-algebra that represents a part
of the physical structure of the system, see [17], Vol. 3. Thus, it is an intrinsic property of it. Moreover,
such algebras have representations on a Hilbert spaces. A representation defines the Hilbert space of the
system. Of course, for systems with finite number of degrees of freedom, the Hilbert space representation is
uniquely defined (up to unitary equivalence) by the algebra, so it does not contain any further information
on an independent structure of the system, but the algebras of relativistic fields possess many inequivalent
representations of which only few are physical, corresponding to different phases of the system. A physical
representation is then clearly an independent structural intrinsic property of the field.
9The energy of a system S that can be measured by suitable apparatus A is an observable. The value of
energy obtained on S by A is a ‘beable’, it is not an intrinsic property of S but that of the composite system
S + A. The three notions of measured energy value, energy measurements and the form of Hamiltonian
are related to each other but they are clearly not identical.
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These steps form the everyday practice of quantum mechanics. An application of
quantum mechanics starts with a proposal of a model for the quantum system under
study. This is done by specifying its structural properties. For each system, we can
attempt different possible models, calculate the extrinsic properties of each and com-
pare with the experimental evidence gained in a number of quantum measurements.
In this way, the models can be confirmed or disproved. The sets of intrinsic and ex-
trinsic properties are model dependent. What is relevant is that every quantum model
exhibits both intrinsic and extrinsic properties.

3.2 Conditional Properties

Encouraged by the triviality of the assumption that structural properties are intrinsic,
we start to look for some intrinsic properties that can have different values for one
and the same class of quantum systems. Let us define:

Definition 4 A property is conditional if its value is uniquely determined by a prepa-
ration according to the rules of the standard quantum mechanics. The ‘value’ is the
value of the mathematical expression that describes the property and it may be more
general than just a real number. No registration is necessary to establish such a prop-
erty but a correct registration cannot disprove its value; in some cases, registrations
can confirm the value.

This can best be explained by examples. Suppose that a system S has been pre-
pared in the eigenstate |o〉 of an observable O with the eigenvalue o. Now, think:
could any conceivable registration made on S thus prepared in |o〉 contradict the
assumption that S possesses the value o of O? The standard rules of quantum me-
chanics clearly say no. More generally, any quantum state ρ that has been prepared
for the system S is a property of S; its value ρ (i.e., a positive self-adjoint operator
with trace 1) can only be confirmed by registrations following the preparation.

Next consider a particle S with spin 1/2. The state with spin projection to the
z-axis equal to �/2 can be prepared. Then, no contradictions can result from the
assumption that S with this value of σz really exists. Thus, the value �/2 of σz is one
example of a conditional property. Of course, S does not possess any value of σx after
such preparation; this would only be brought about by a corresponding measurement
and is not uniquely determined by the preparation. Hence, it is an extrinsic property.
On the other hand, the average (also called expectation or mean) value of σx in the
prepared state has a well-known value defined by the state and hence it is another
example of a conditional property. (Averages will play a key role in the definition of
classical properties.)

One could try to object that there has been the preparation, this is a ‘kind of mea-
surement’ and the property depends on this ‘measurement’. Moreover, the prepara-
tion has used an apparatus A, say, and the property seems therefore to be a property
of the system S + A and not S alone. However, these objections concern clearly also
the structural properties: an apparatus that prepares a beam of electrons is different
from that for a beam of protons. Moreover, they could be also raised in Newton me-
chanics: giving a snooker ball momentum p requires a careful action of the cue. Still,
nobody questions the existence of the momentum p on the ball alone after the poke.
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Any preparation defines a specific state of the quantum system. States can be pure
ones or mixtures and we describe them generally by state operators. There is a mea-
sure of how restrictive and special the preparation process is, namely the entropy.10

It is a function of state and thus an important conditional property.
More advanced examples of conditional properties concern mixtures. In [11], we

have shown that, in some cases, ρ does not contain all information available by reg-
istrations concerning the prepared ensemble. One can consider the ensemble of parti-
cles as defining a state of a single particle, of two particles, etc., and the information
involved in the preparation can thus be described by a set of state operators. Such a
set is the mathematical description of the property, which is clearly intrinsic, and of
conditional character. It can be confirmed by registration.

An example of conditional property that cannot always be confirmed by registra-
tion is the difference between proper and improper mixtures (for definitions, see [4]).
Suppose that a physicist prepares states |1〉, . . . , |n〉 of a quantum system S and mixes
them with frequencies c1, . . . , cn so that the resulting state of S can be described by
state operator

ρ =
n∑

k=1

ck|k〉〈k|. (1)

This is a proper mixture and the particular decomposition (1) of ρ is a conditional
property, that is a real property of the prepared ensemble. In particular, we can as-
sume that the system really is always in either of the states |1〉, . . . , |n〉 with respec-
tive probabilities c1, . . . , cn. The decomposition (1) is not the unique decomposition
that the state operator ρ admits but it is the one that is uniquely determined by the
preparation. According to the standard quantum mechanics, which we adhere to, two
different decompositions of the same state operator cannot be distinguished by any
registrations. This however represents no embarrassment for us: we do not adhere to
the positivist maxim that there is only what is measured. It is also clear that any time
evolution of such a proper mixture is the proper mixture of the evolved states with the
same probabilities and determines a well-defined decomposition at each time. On the
other hand, given an improper-mixture state σ of S then no individual system S can in
general be assumed to really be in any of the component states of any decomposition
of σ . An example is the Einstein-Podolsky-Rosen experiment [5].

What are possible conditional properties of a given quantum system? Clearly, all
state operators that can be prepared (some limitations are due to superselection rules)
belong to them. Other properties are either derived from the state operators (such as
the average of an observable) or added to state operators (such as the decomposition
describing a proper mixture). It seems, that state operators are also universal in the
following sense. Even if we do not know what the source or origin of a system is (for
example the protons coming in cosmic radiation), the assumption that it is described
by some state operator does not lead to any contradictions.

All examples that have been listed show that the intrinsic and extrinsic properties
are physically inseparably entangled with each other. Even the definition of intrinsic

10The term ‘entropy’ always means the von Neumann entropy in this paper.
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properties uses the notion of registration of extrinsic properties: an intrinsic property
can be ascribed to the system alone without giving rise to contradictions with the
results of all possible registrations. Similarly, extrinsic properties cannot be defined
without the notion of a measuring apparatus with its classical properties, which are
a kind of intrinsic properties in our point of view (see the next section). Thus, e.g.,
the notion is clearly untenable that the intrinsic properties can be explained purely
in terms of the extrinsic ones. Still, both kinds of properties are logically clearly
distinguished, and we conjecture that the physical in-and-extrinsic tangle does not
lead to any logical contradictions.

4 Classical Properties

There is a lot of systems around us that behave as classical physics prescribes, at least
to a good approximation. We would like to have quantum models of such systems.
The features that are most difficult to reproduce are summarized in the so-called
principle of macroscopic realism [18], but as formulated by Leggett it is too strong
for our needs. Let us modify the principle as follows:

1. A macroscopic system which has available to it two or more distinct classical
states is at any given time in a definite one of those states.

2. It is possible in principle to determine which of these states the system is in with-
out any effect on the state itself or on the subsequent system dynamics.

Here, we have just replaced Leggett’s ‘macroscopically distinct (quantum) states’ by
‘distinct classical states’, and we call the resulting principle modified macroscopic
realism. Of course, if the classical states include pure quantum states, point 1 of
the macroscopic realism violates the principle of superposition. Then, one has to as-
sume that some as yet unknown phenomena exist at the macroscopic level which are
not compatible with standard quantum mechanics (see, e.g., [18] and the references
therein). However, no such phenomena have been observed. We ought therefore to
suggest how our modified macroscopic realism could be derived from quantum me-
chanics, at least in principle.

Observe that the modified macroscopic realism as it stands cannot be obtained
from the decoherence theory, at least in its present form. For that e.g. the word ‘is’ in
point 1 had to be replaced by ‘appears to be’ (see [19]). The ‘appears’ would under-
mine our quantum realism. We are optimistic because it seems that our interpretation
provides some new tools. Of course, this does not mean that the argument is circular
but only that the output does not contradict the input.

Hence, let us assume that all physical systems are quantum systems. More pre-
cisely, there is one level of description (approximative model of some aspects of a
real system) of a classical system Sc and of its classical properties for which quan-
tum theory is not needed, namely the classical description, and for which the modified
principle of macroscopic realism is valid. In addition, every classical system Sc can
also be understood as a quantum system Sq underlying Sc such that the classical
properties of Sc are some intrinsic properties of Sq . This follows from our definition
of intrinsic properties and from the modified macroscopic realism. Namely, any clas-
sical state of Sc is defined by values of some classical properties. As it must also be a
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state of Sq , the assumed reality of the state requires that these classical properties are
intrinsic properties of Sq .

The quantum description of Sq consists of the following points. (1) The composi-
tion of Sq must be defined. (2) The algebra of observables that can be measured on Sq

is to be determined. As any observable is measurable only by a classical apparatus, the
existence of such apparatuses must also be assumed from the very beginning. Quan-
tum description of Sq will thus always contain some classical elements. This does not
mean that classicality has been smuggled in because, in our approach, classical prop-
erties are specific quantum ones. (3) A Hamiltonian operator or an action functional
of the system must be set up. Finally, the known classical properties P1,P2, . . . ,PK

of Sc must be listed and each derived as an intrinsic property of Sq from the three sets
of assumptions above. This is a self-consistent framework for a non-trivial problem.

There are intrinsic properties of Sq that are not classical properties of Sc, e.g., the
set of all quantum observables measurable on Sq . Hence, classical properties must be
some specific intrinsic properties and the question is, which.

To begin with, let us consider the so-called semi-classical (or WKB) approxima-
tion. This includes the observation that, for a number of systems, the average values in
special states of a number of quantum observables follow classical (say, Newton me-
chanics) trajectories. This is surely a good start because, as we have seen in Sect. 3.2,
in some cases, average values can be considered as conditional properties. Moreover,
everything what we can measure on classical systems has a form of average value and
its variance. This is evident from the description of any classical experiment. How are
these averages and variances related first to the relevant classical theory and, second,
to the averages and variances of quantum operators?

As the first question is concerned, it is often assumed that improvements in mea-
suring techniques will in principle, in some limit, lead to zero variance. This is in
agreement with the classical theory such as Newton mechanics. It predicts that the
trajectories are completely sharp if the initial data are so, and does not put any limit on
the accuracy with which the initial state can be prepared. The point of view adopted
here is different (it is originally due to Exner [20], p. 669, and Born [21]): some part
of the variances can never be removed and the classical theories are only approxima-
tive models.

The second question contains two different problems. First, if we measure several
times the position of the Moon on its trajectory around the Earth, then the variance
in the results is surely not connected to our preparing the system of Earth and Moon
these many times to get the desired ensemble. But the classical systems are robust in
the sense that most classical measurements practically do not disturb them (point 2
of modified macroscopic realism). Thus, one can assume that the values we obtain by
several measurements on one and the same system could equivalently be obtained if
the measurements were performed on several identically prepared systems. The hy-
pothesis is therefore plausible that some intrinsic properties we are looking for are
averages with small variances associated with preparations under identical relevant
conditions. If the variance of a given average value is sufficiently small, it can be and
is usually viewed as a property of each individual element of the ensemble. We con-
jecture that this is the way classical systems come to possessing their properties just
from the classical experimental point of view. Second, there are classical properties
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that cannot be viewed as intrinsic averages of quantum operators but are structural or
different conditional properties. Some examples will be given later.

Next, there is a restriction on quantum models of classical properties: they cannot
be averages with small variance that are defined by pure states such as coherent ones.
Not only are pure states readily linearly superposed but any quantum registration
(a generalized measurement: positive operator valued measure) that were to find the
parameters of a coherent state would strongly change the state. The only available
hint of what classical properties may be comes from thermodynamics. Indeed, statis-
tical physics is a successful method of deriving macroscopic properties from micro-
scopic ones. Moreover, the notions of structural and conditional properties enable a
cleaner formulation of quantum statistical physics. The following is a brief sketch of
a specific example from the thermodynamic-equilibrium theory.

Let S be a (non-relativistic) quantum system with number of particles compa-
rable to Avogadro number. We call such systems macroscopic. Let its structure be
described by a Hamiltonian H . Imagine that S is prepared in all possible quantum
states (not necessarily by humans in laboratories). Consider only those of these states
that have a fixed average value Ē of internal energy. A well-defined average value is
a conditional property that exists for each of the prepared states and hence the imag-
inary selection (without need of any additional registration) is legitimate. Let us call
this subset of prepared states Ē-ensemble.

Next, let the state ρĒ be defined by the requirement that it maximizes the entropy
under the condition that the average internal energy has the value Ē. This is known
as the Gibbs state of S. The state is purely mathematical because no preparation
process for it has been specified. The central conjecture of statistical physics reads:
For macroscopic systems, important statistical properties of Ē-ensemble coincide
to a very good approximation with the corresponding statistical properties of ρĒ .
Claims, equivalent to this conjecture can to a large extent be derived from quan-
tum mechanics ([17], Vol. 4), in the thermodynamic limit. Bayesian approach [22] to
probability and entropy is also helpful. (The thermodynamic limit is, of course, not a
physical condition but a mathematical method of how the structural property of being
macroscopic can be brought into play.)

What are the ‘important’ statistical properties above? Some of them are average
values and variances of a very small but definite subset TS of the algebra of all quan-
tum observables of S. Clearly, these are conditional properties because they are de-
termined by the prepared states from Ē-ensemble. The observables from TS are ex-
tensive quantities associated with some of the ordinary thermodynamic variables. For
instance, consider a gas in a vessel of volume V . The operator of internal energy E of
the gas (the Hamiltonian in the rest frame) belongs to TS . We can also choose some
small but macroscopic partial volume δV at a specific position within V and consider
the particle number δN inside δV . Operator δN can be constructed from the projec-
tors on the position eigenstates of all particles in S. The energy δE inside δV can be
constructed as a coarse-grained operator (see [23]) because the exact energy opera-
tor does not commute with operators of particle positions. It seems that all quantum
observables from TS are macroscopic in the sense that they have a coarse-grained
character or concern many particles.

Other thermodynamic variables are not average values of quantum observables.
Examples are structural quantities such as the total mass and particle number of
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a macroscopic body or state quantities such as the maximal value of entropy and
the corresponding temperature (the Lagrange multiplier that appears naturally in the
problem of maximization of entropy).

The average values of observables from TS determine a thermodynamic state of
the system. Let us consider such a state as an example of a classical state (appearing
in point 1 of the Principle) of the quantum system S. For example, the internal energy
and the volume determine the state of a simple ideal gas. Thus, one macroscopic state
is compatible with a huge number of microscopic (quantum) states of S. It is very
important to understand that a macroscopic state of S is conceptually different from
any microscopic state of it, and that there are no linear superpositions of macroscopic
states. The sets of average values of operators from TS do not form a linear space
that could lead to a definition of state superposition of a fixed system: addition of
extensive quantities entails addition of the corresponding systems.

It can be shown that the observables from TS have negligible relative variances in
the Gibbs state. (The property that they are extensive plays an important role.) Thus,
the average values of the observables can be given individual meaning: each indi-
vidual system from Ē-ensemble possesses a value of the observables within certain
limits. Is such an average already a classical property satisfying the requirements of
the modified macroscopic realism? Point 1 is satisfied by construction. Point 2 is just
plausible as yet: the influence of measurement can still be large as concerns the mi-
crostate but it can change it to another microstate that is compatible with the original
macrostate and so it need not change the macrostate. Clearly, statistical physics in
our interpretation is the quantum theory of at least some macroscopic properties.

The discussion above motivates a general definition of the classical state making
it analogous to the thermodynamic state as follows.

Definition 5 Let the state of classical system Sc be described by the set of n num-
bers {A1, . . . ,An} that represent values of some classical observables with variances
{�A1, . . . ,�An}. Let the corresponding quantum system Sq contain in its algebra a
set of n observables {a1, . . . ,an} that correspond to the classical ones. Then the quan-
tum counterpart of the classical state {A1, . . . ,An} is the set of all quantum states ρ

such that

Tr(ρak) = Ak,

√
Tr(ρa2

k) − [Tr(ρak)]2 = �Ak.

Let us call the quantities in A1, . . . ,An state coordinates.11 For example, the classical
state of a mass point in mechanics can be described by three coordinates Qk and
three momenta Pk , and the operator algebra of its quantum analogue contains the
corresponding operators qk and pk . Of course, we can define a sensible classical
state only for macroscopic systems so that their classical states contain huge numbers
of quantum states and in this way much less information than their quantum states.
Each of the many quantum states satisfying the above equations can be viewed as
representing one and the same classical state.

11They are not uniquely determined by the classical system and we assume that the choice can be done so
that all state coordinates are averages of quantum operators.
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Classical states defined in this way can be understood as equivalence classes: two
quantum states are equivalent, if the state coordinates have the same averages and
variances in them. For such classes, one can try to define a superposition operation
by forming superpositions of vectorial representative of the states: let |a〉 ∈ {ρ} and
|b〉 ∈ {σ }, where {ρ} denotes the class with representative ρ, then

{c|a〉 + d|b〉} := c{ρ} + d{σ }.
However, we find that there are often more vectorial representations in each class
and that superposition of another pair does not lead to the same class. |a′〉 ∈ {ρ} and
|b′〉 ∈ {σ } are other such vectors then

{c|a〉 + d|b〉} = {c|a′〉 + d|b′〉}
can hold only in few exceptional cases.

To summarize the main points of our theory of classical properties, let us first
compare it with some well-known approaches to the problem. Thus, we mention the
quantum decoherence theory [19, 24], the theories based on coarse-grained opera-
tors [5, 25, 26], the Coleman-Hepp theory [27–31] and its modifications [32]. At the
present time, the problem does not seem to be solved in a satisfactory way, the short-
coming of the above theories being well known [4, 33, 34]. Our approach is free of
these shortcomings.

It starts at the idea that all classical properties of a macroscopic system S in a
quantum state ρ are certain intrinsic quantum properties of S in ρ. Then, first, intrin-
sic properties are quantum properties of all quantum systems and there is no question
about how they emerge in quantum mechanics. This avoids e.g. the artificial con-
struction in the Coleman-Hepp approach. The new point is that they are considered
as, and proved to be, objective in our paper. Hence, second, they could in principle
serve as classical properties because they can satisfy the principle of modified macro-
scopic realism. This avoids the problems of both the quantum-decoherence and the
coarse-grained theory that assume values of quantum observables to be real. This,
as analysed in [8], can be done only for restricted classes of observables, all other
measurements being forbidden. Third, we conjecture that certain macroscopic quan-
tum systems possess intrinsic properties that can model all their classical properties.
Hence, classical states and properties defined in the present paper are available only
for some quantum systems and the relation between classical and quantum states
is not one-to-one but one-to-many. This is different from other approaches such as
Wigner-Weyl-Moyal scheme, quantum-mechanics-on phase-space theory or coher-
ent state approach. Finally, our modelling or construction of classical properties uses
the way analogous to that of statistical physics. Thus, Definition 5 starts a project of
modelling classical properties of quantum systems including the internal (thermody-
namic) and external (mechanical) properties. A full derivation including the complete
list of all assumptions is described with the help of an example in Appendix. Models
of classical mechanics are constructed in [13].

An important piece of our interpretation is the existence of classical macroscopic
apparatuses that are needed for the phenomenology of observation. Some necessary
conditions such apparatuses must satisfy not only in order that the phenomenology



Found Phys (2009) 39: 411–432 425

works but also that our realist interpretation has a reliable basis are summarised in
the modified principle of macroscopic realism.

The problem to construct a quantum model of registration process is the most dif-
ficult one in the field of conceptual foundation. A quantum explanation of classical
properties is only a part of the problem. There is much activity in this field. The refer-
ences given above deal also with the measurement problem. No satisfactory solution
seems to be known.

One cause of the difficulties may be the model of measuring apparatus that has
been proposed by von Neumann and by Jauch [10, 35]. The key assumption of the
model is that the values shown by the apparatus are some of its extrinsic properties.
For example, the pointer states are eigenstates of some quantum operator. Let us
briefly describe it for the case of quantities with discrete values (continuous quantities
would need a slightly different approach).

Suppose quantum system S is prepared in initial state |S 1〉 and the observable to
be measured, a, has eigenvalues ak and eigenstates |ak〉. We can write

|S 1〉 =
∑

k

ck|ak〉.

The apparatus that makes the registration is quantum system A in initial state |A1〉
and its pointer observable A has eigenvalues Ak and eigenstates |Ak〉.

The next assumption is that there is an interaction between the two systems that
leads to unitary evolution

|S 1〉 ⊗ |A1〉 �→
∑

k

ck|ak〉 ⊗ |Ak〉.

If we trace out S , we obtain the final state of the apparatus,
∑

k

|ck|2|Ak〉〈Ak|. (2)

This a mixture of the eigenstates |Ak〉〈Ak| of the apparatus with the ‘correct’ proba-
bilities |ck|2.

The problem is that (2) is not a proper mixture. Nothing prevents us to view the
process above as a preparation of the apparatus in the state (2) and this preparation
does not contain any steps that would bring A into any of the states |Ak〉 during
each individual measurement.12 The usual way out is to employ another apparatus B,
which is non-quantum so that an interaction between A and B can bring A always
into one of the states |Ak〉.

Clearly, the model contradicts the experience. One apparatus is sufficient, it is a
system with classical properties and the outcome of any individual measurement is
represented by a definite change of a classical property of the apparatus. Moreover,
the model is incompatible with our interpretation. The extrinsic property that repre-
sents the apparatus readings had to be replaced by an intrinsic one. We have to use

12In the decoherence theory, another component, the environment, is added at the beginning and traced
out at the end. The result is again an improper mixture and the problem remains exactly the same.
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our theory of classical properties as described in the previous section. To construct a
model of such an apparatus is a problem that will be addressed in a separate paper.

To summarize: Our interpretation suggests a new approach to quantum theory of
classical properties and of measurement because it allows quantum systems to have
also properties that are not extrinsic.

Appendix: Quantum Model of Classical Property

The purpose of Appendix is to construct a quantum model of a classical property, the
length of a body, as an average value with a small variance. No original calculation is
to be expected, but simple and well known ideas are carefully interpreted according
to the lines described in Sect. 4. This entails that, first, the quantum structure of the
system must be defined, second, the basic intrinsic properties such as the spectrum
calculated, and, third, some intrinsic properties derived that satisfy our definition of
classical property.

.1 Composition, Hamiltonian and Spectrum

We shall consider a linear chain of N identical particles of mass μ distributed along
the x-axis with the Hamiltonian

H = 1

2μ

N∑

n=1

p2
n + κ2

2

N∑

n=2

(xn − xn−1 − ξ)2, (3)

involving only nearest neighbour elastic forces. Here xn is the position, pn the mo-
mentum of the n-th particle, κ the oscillator strength and ξ the equilibrium inter-
particle distance. The parameters μ, κ and ξ are intrinsic properties (the last two
defining the potential function).

This kind of chain seems to be different from most that are studied in literature:
the positions of the chain particles are dynamical variables so that the chain can move
as a whole. However, the chain can still be solved by methods that are described in
[36–38].

First, we find the variables un and qn that diagonalize the Hamiltonian describing
the so-called normal modes. The transformation is

xn =
N−1∑

m=0

Ym
n um +

(
n − N + 1

2

)
ξ, (4)

and

pn =
N−1∑

m=0

Ym
n qm, (5)

where the mode index m runs through 0,1, . . . ,N − 1 and Ym
n is an orthogonal ma-

trix; for even m,

Ym
n = A(m) cos

[
πm

N

(
n − N + 1

2

)]
, (6)
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while for odd m,

Ym
n = A(m) sin

[
πm

N

(
n − N + 1

2

)]
(7)

and the normalization factors are given by

A(0) = 1√
N

, A(m) =
√

2

N
, m > 0. (8)

To show that un and qn do represent normal modes, we substitute (4) and (5) into
(3) and obtain, after some calculation,

H = 1

2μ

N−1∑

m=0

q2
m + μ

2

N−1∑

m=0

ω2
mu2

m,

which is indeed diagonal. The mode frequencies are

ωm = 2κ√
μ

sin
m

N

π

2
. (9)

Consider the terms with m = 0. We have ω0 = 0, and Y 0
n = 1/

√
N . Hence,

u0 =
N∑

n=1

1√
N

xn, q0 =
N∑

n=1

1√
N

pn,

so that

u0 = √
NX, q0 = 1√

N
P,

where X is the centre-of-mass coordinate of the chain and P is its total momentum.
The ‘zero’ terms in the Hamiltonian then reduce to

1

2M
P 2

with M = Nμ being the total mass. Thus, the ‘zero mode’ describes a straight, uni-
form motion of the chain as a whole. The other modes are harmonic oscillators called
‘phonons’ with eigenfrequencies ωm, m = 1,2, . . . ,N − 1. The spectrum of our sys-
tem is built from the mode frequencies by the formula

E =
N−1∑

m=1

νm�ωm, (10)

where {νm} is an (N − 1)-tuple of non-negative integers—phonon occupation num-
bers.
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At this stage, a new and important assumption must be done. We imagine that
all states ρ of the modes m = 1, . . . ,N − 1 are prepared that have the same average
internal energy Ē,

Tr

[
ρ

(
H − P 2

2M

)]
= Ē.

We further assume that it is done in a perfectly random way, i.e., all other conditions
or bias are to be excluded. Hence, the resulting mixture must maximize the entropy.
In this way, the maximum of entropy does not represent an additional condition but
rather the absence of any. The resulting state ρĒ is the Gibbs state of the internal
degrees of freedom. The conditions that define the preparation of Gibbs state are
objective and need not have to do with human laboratory activity.

The internal energy has itself a very small relative variance in the Gibbs state; this
need not be assumed from the start. Thus, it is a classical property. All other classical
internal properties will turn out to be functions of the classical internal energy. Hence,
for the internal degrees of freedom, Ē forms itself a complete set of state coordinates
introduced in Sect. 4. The mathematics associated with the maximum entropy prin-
ciple is variational calculus. The condition of fixed averaged energy is included with
the help of Lagrange multiplier denoted by λ. It becomes a function λ(Ē) for the
resulting state. As it is well known, λ(Ē) has to do with temperature.

The phonons of one species are excitation levels of a harmonic oscillator, so we
have

um =
√

�

2μωm

(am + a†
m),

where am is the annihilation operator for the m-th species. The diagonal matrix ele-
ments between the energy eigenstates |νm〉 that we shall need then are

〈νm|um|νm〉 = 0, 〈νm|u2
m|νm〉 = �

2μωm

(2νm + 1). (11)

For our system, the phonons of each species form statistically independent sub-
systems, hence the average of an operator concerning only one species in the Gibbs
state ρĒ of the total system equals the average in the Gibbs state for the one species.
Such a Gibbs state operator for the m-th species has the form

ρm =
∞∑

νm=0

|νm〉p(m)
νm

〈νm|,

where

p(m)
νm

= Z−1
m exp(−�λωmνm)

and Zm is the partition function for the m-th species

Zm(λ) =
∞∑

νm=0

e−λ�ωmνm = 1

1 − e−λ�ωm
. (12)
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.2 The length of the body

The classical property that will be defined and calculated in our quantum model is
the average length of the body. Let us define the length operator by

L = xN − x1. (13)

It can be expressed in terms of modes um using (4),

L = (N − 1)ξ +
N−1∑

m=0

(
Ym

N − Ym
1

)
um.

The differences on the right-hand side are non-zero only for odd values of m, and
equal then to −2Ym

1 . We easily find, using (7) and (8):

L = (N − 1)ξ −
√

8

N

[N/2]∑

m=1

(−1)m cos

(
2m − 1

N

π

2

)
u2m−1. (14)

The average length is obtained inserting (11),

〈L〉Ē = (N − 1)ξ. (15)

It is a function of intrinsic properties N , ξ and Ē.
Equation (14) is an important result. It shows that contributions to the length are

more or less evenly distributed over all odd modes. The even distribution will lead
to a very small variance of L in Gibbs states. Let us give the proof that the relative
variance of the length is indeed small. The proof is not trivial because the distribution
is not constant. The relative variance is

�L

〈L〉Ē
=

√
〈L2〉Ē − 〈L〉2

Ē

〈L〉Ē
.

To estimate the variance �L to the leading order for large N , we start with

〈L2〉Ē = (N − 1)2ξ2

+ 8

N

[N/2]∑

m=1

[N/2]∑

n=1

(−1)m+n cos

(
2m − 1

N

π

2

)
cos

(
2n − 1

N

π

2

)

× 〈u2m−1u2n−1〉Ē .

Since

〈u2m−1u2n−1〉Ē = δmn

〈
u2

2m−1

〉
Ē
,

the above formula leads to

〈L2〉Ē − 〈L〉2
Ē

= 8

N

[N/2]∑

m=1

cos2
(

2m − 1

N

π

2

)〈
u2

2m−1

〉
Ē
,
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where

〈
u2

2m−1

〉
Ē

= 1

Z2m−1

∞∑

ν2m−1=0

�

2μω2m−1
(2ν2m−1 + 1) exp(−λ�ω2m−1ν2m−1).

Introducing dimensionless quantities

xm = sin

(
2m − 1

N

π

2

)
, γ = 2�κλ√

μ
,

we can substitute ω2m−1 = (2κ/
√

μ)xm and obtain the intermediate result

〈L2〉Ē − 〈L〉2
Ē

= 2

N

�

κ
√

μ

[N/2]∑

m=1

1 − x2
m

xm

1 + e−γ xm

1 − e−γ xm
.

In order to extract the leading term for large N , we note that

xm − xm−1 = π

N
cos

2m − 1

N

π

2
+ O(N−2).

Then we can write

〈L2〉Ē − 〈L〉2
Ē

≈ 2

π

�

κ
√

μ

[N/2]∑

m=1

(xm − xm−1)f (xm),

where

f (x) =
√

1 − x2

x

1 + e−γ x

1 − e−γ x
.

By inspection, f is a decreasing function of x in the interval (0,1) diverging to plus
infinity at x → 0+ and going through zero at x = 1. The leading term at x → 0+ is

f (x) = 2

γ x2

[
1 + O(x)

]
.

The block diagram of the sum now shows that

[N/2]∑

m=1

(xm − xm−1)f (xm) < 2x1f (x1) +
∫ 1

x1

dx f (x).

The dependence of the integral on its lower bound can be approximated by

∫ 1

x1

dx f (x) = const + 2

γ x1

[
1 + O(x1)

]
.
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Thus, the leading term in the sum is 6/γ x1 ≈ 12N/γπ so that the leading term in
〈L2〉Ē − 〈L〉2

Ē
is (12/π2λκ2)N . We obtain the final result valid for large N

�L

〈L〉Ē
≈ 2

√
3

πκξ
√

λ

1√
N

. (16)

Thus, the small relative variance for large N need not be assumed from the start.
The only assumptions are values of some structural properties and that an average
value of energy is fixed. In the sense explained in Sect. 4, the length is then a classical
property of our model body. We have obtained even more information: the internal-
energy independence of the length (in this model, the dependence is trivial). This is
an objective relation that can be in principle tested by measurements.

Similar results can be obtained for further thermodynamic properties such as elas-
ticity coefficient, specific heat etc. They all are well known to have small variances
in Gibbs states. The reason is that the contributions to these quantities are homo-
geneously distributed over the normal modes and the modes are mechanically and
statistically independent. Further important classical properties are the mechanical
ones: centre of mass and total momentum. In fact, these quantities can be chosen as
the rest of the state coordinates for the whole chain. The contributions to them are
perfectly homogeneously distributed over all atoms, not modes: the bulk motion is
mechanically and statistically independent of all other modes and so its variances
will not be small in Gibbs states. Still, generalized statistical methods can be applied
to it. This is done in a separate paper [13].

The last remark is that the thermodynamic equilibrium can settle down starting
from an arbitrary state only if some weak but non-zero interaction exists between the
phonons. This can easily be arranged so that the influence of the interaction on our
result is negligible.
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