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THE MODAL //-CALCULUS HIERARCHY OVER RESTRICTED 
CLASSES OF TRANSITION SYSTEMS 

LUCA ALBERUCCI AND ALESSANDRO FACCHINI 

Abstract. We study the strictness of the modal /(-calculus hierarchy over some restricted classes of 
transition systems. First, we prove that over transitive systems the hierarchy collapses to the alternation-
free fragment. In order to do this the finite model theorem for transitive transition systems is proved. 
Further, we verify that if symmetry is added to transitivity the hierarchy collapses to the purely modal 
fragment. Finally, we show that the hierarchy is strict over reflexive frames. By proving the finite model 
theorem for reflexive systems the same results holds for finite models. 

§1. Introduction. The modal //-calculus is an extension of modal logics, with 
least and greatest fixpoint operators. The term "//-calculus" and the idea of ex
tending modal logic with fixpoints appeared for the first time in the paper of Scott 
and De Bakker [23] and was further developed by others. Nowadays, the term 
"modal //-calculus" stands for the formal system introduced by Kozen [16]. It is 
a powerful logic of programs subsuming dynamic and temporal logics like PDL, 
PLTL, CTL and CTL*. Hence, it provides us with the capability of expressing and 
reasoning about assertions concerning "temporal" properties of dynamic (reactive 
and parallel) systems with potentially infinite behavior. We refer to Bradfield and 
Stirling's tutorial article [9] or Stirling's book [24] for a thorough introduction to 
this system. 

The standard semantics of the modal //-calculus is given by transition systems. 
As usual, formulae are interpreted as subsets of a system, the set of states where the 
property expressed by the formula holds. Many natural properties such as "there 
is an infinite path" can be expressed by a modal //-formula. Further, most such 
properties are given by formulae with alternation depth two, where the alternation 
depth is the number of non-trivial nestings of least and greatest fixpoints. Never
theless, it is mathematically interesting to see whether the expressive power of the 
modal //-calculus increases with the alternation depth. If this is the case then we 
have a strict hierarchy otherwise we have a collapse at some point. 

By a result of Bradfield [7, 8] the hierarchy over arbitrary transition systems 
is strict, a result independently proved by Lenzi in [18] but only for the positive 
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1368 LUCA ALBERUCCI AND ALESSANDRO FACCHINI 

fragment. Subsequently, Arnold showed in [5] that the hierarchy is also strict over 
binary trees by using the Banach-Cacciopoli fixpoint theorem. His proof has been 
naturally extended to the class of all models by one of the authors in [1], 

Having seen the strictness over arbitrary transition systems, it can be asked 
whether the alternation hierarchy remains strict for restricted classes of transition 
systems such as those that are reflexive or those that are transitive. In the case of 
transitive systems, to our knowledge, the first attempt to answer this question is 
presented by Lenzi in [19]. There, he shows that on transitive frames every Biichi 
automaton is equivalent to a co-Buchi automaton, and conversely.1 This implies 
that over transitive frames the modal ,u-calculus collapses to the level of Biichi 
automata (and to co-Buchi automata). Because, for example, well-foundedness is 
not definable in the modal fragment, the hierarchy is non trivial. Thus, since over 
arbitrary graphs the intersection of Biichi and co-Buchi automata corresponds to the 
alternation-free fragment, Lenzi conjectured that the full modal n-calculus collapses 
to the alternation-free fragment [20]. It is interesting to note that Visser has shown 
in [29] that in the case of reflexive and transitive models, where well-foundedness is 
false and therefore can be expressed by a modal formula, the non-triviality of the 
fixpoint hierarchy is testified by the formula stating the existence of an infinite path 
alternately labelled with p, ->/?, p, ->p, etc. 

In this paper we answer positively Lenzi's conjecture for the class of all transitive 
systems by giving an explicit syntactical translation of the full modal /i-calculus 
into the alternation-free fragment. This result is first showed for finite transition 
systems and then generalized, by proving a finite model theorem, to all transitive 
systems. We also verify, again by giving an explicit syntactical translation, that if we 
add symmetry to transitivity all collapses to the purely modal fragment. Further, 
by adapting Arnold's proof for the general case, we show that the hierarchy remains 
strict over reflexive frames. By proving a finite model theorem for reflexive transition 
systems the corresponding result holds even on finite models. 

In the next section we introduce the modal /^-calculus and some additional, not 
standard, notions. In Section 3 we introduce evaluation games and show their 
relevance for the modal /^-calculus. In Section 4 some finite model theorems are 
proved. In Sections 5 and 6 the collapse of the hierarchy over transitive-symmetric 
and over transitive systems are proved. In Section 7 we prove the strictness of the 
hierarchy over reflexive transition systems. 

Related work. The question whether the modal p -calculus hierarchy collapses on 
special classes of transition systems has been addressed in various other works. A 
prominent subclass, coming from G6del-L6b logic, is the class of transitive upward 
well-founded frames. As shown by Visser in [30] and van Benthem in [28] by using 
the de Jongh-Sambin fixpoint Theorem, the modal ft -calculus collapses to its modal 
fragment. A direct proof of this result without using de Jongh-Sambin Theorem 
is given by the authors in [3]. In [27] ten Cate, Fontaine and Litak show that on 
the class of finite trees with the descendant relation the modal /^-calculus collapses 
to the modal fragment. Concerning the hierarchy on transitive frames d'Agostino 
and Lenzi in [10] propose a different proof which uses Theorem 6.5 of this paper. 

'A complete proof of this fact, extended to the class of finite simple graphs (a class which contains— 
modulo bisimulation—the class of finite transitive graphs) can be found in [10]. 
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THE MODAL ^-CALCULUS HIERARCHY 1369 

Further, Dawar and Otto in [11] give a characterization of the bisimulation invariant 
fragment of Monadic Second Order Logic over transitive frames. From their result, 
by using the Finite Model Theorem for transitive frames (Theorem 4.4), the collapse 
of the modal //-calculus follows, too. 

§2. The propositional modal /(-calculus. In this section we introduce syntax, se
mantics of the modal //-calculus and the alternation depth hierarchy. 

2.1. Syntax. The language of the modal fi-calculus, SPp, results by adding greatest 
and least fixpoint operators to propositional modal logic. More precisely, given a 
set P of propositional variables, the collection .S^ ofmodal //-formulae (or simply 
//-formulae) is defined as follows: 

<p ::= p \ ~/> | T | ± | (<p A <p) | (ip V <p) | Oip | Dip \ fix.<p | vx.tp 

where p, x e P and x occurs only positively in nx.p {n = v, //), that is, ~x is not a 
subformula of ip. JZ?M denotes the pure modal fragment of 2?^. 

The fixpoint operators // and v can be viewed as quantifiers. Therefore we use 
the standard terminology and notations as for quantifiers and, for instance, free(^) 
denotes the set of all propositional variables occurring free in p and bour\d(ip) 
those occurring bound. Further, we define var(</?) = free(tp) U bound(^). If y/ is a 
subformula of p, we write yi < p. We write yi < p when y/ is a proper subformula. 
sub(<£>) is the set of all subformulae of ip. 

Let <p(x) and y/ be two //-formulae. The substitution of all occurrences of x with 
y/ in p is denoted by p[x/y/] or sometimes simply p>(y/). Simultaneous substitution 
of all Xi by y/i {i € {1, . . . ,«}) is denoted by ip[x\/y/\,..., x„/y/„]. For serial 
substitution such as (<p[x\/y/i])[x2/y/2] we often omit the parentheses and write 
V[x\/w\\[x2/y/2l 

REMARK 2.1. Note that if p(x), y/ £ 2fM then ip[x/y/] need not be a //-formula, 
for example, if we set p> = /uy.x and y/ = ~ j then we have p[x/y/] = juy.~y £ 5fM. 
Nevertheless, in this paper, if nothing else mentionned, an expression like ip[x/y/] 
will denote well defined //-formula. For a formal introduction of substitution we 
refer to Alberucci [2]. 

The negation -up of a //-formula p is defined inductively such that ->/? = ~/> and 
^(~/>) = p, by using de Morgan dualities for boolean connectives and the usual 
modal dualities for O and • . For //, v we define 

-^ltx.ip(x) = vx.-^tp(x)[x/^x] and -^vx.p(x) = /ux.^ip(x)[x/-^x]. 

As usual, we introduce implication ip —> y/ as -^p V y/ and equivalence ip <-> y/ as 
(<p -> ^)A(</3 -> y/). 

We say that a variable x e bound(<^>) is well-bounded in p> if no two distinct 
occurrences of fixpoint operators in p> bind x, and x occurs only once in <p. A 
propositional variable p is guarded in a formula p> G JS^ if every occurrence of p 
in <p is in the scope of a modal operator. A formula p> of .2^ is said to be guarded 
if and only if for every subformula of ip of the form nx.S, x is guarded in 5. A 
formula ip of &M is said to be well-named if it is guarded and every x e bound(i/>) 
is well-bounded in p. For all well-named ip, if x is bound in ip then there is exactly 
one subformula nx.8 < ip which bounds x, this formula is denoted by tpx. In the 
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1370 LUCA ALBERUCCI AND ALESSANDRO FACCHINI 

subsection of the semantics, by Lemma 2.3 we will see that any //-formula <p is 
equivalent to a well-named formula wn(y>), therefore, if nothing else mentionned, 
we assume that all formulae are well-named. 

If x e bound(<p) and x is in the scope of a O operator in <px, resp. • operator, then 
we say that x is weakly existential in <p, resp. weakly universal in <p. If x € bound(y>) 
and x is in the scope only of O operators in ipx, resp. • operators, then we say 
that x is existential in <p, resp. universal in (p. Let <p(x) be a //-formula. If x is free 
and occurs only positively in <p, then we define <p" (x) for all n inductively such that 
(p1 (x) = <p(x) and such that 

<pk+l{x) = <p[x/<pk{x)]. 

We define <p"{T) = <pn[x/T], and analogously for <p"(±). 
The rank, rank(<p), of a formula <p is an ordinal number defined inductively as 

follows: 
• rank(^) = rank(~/?) = 1, 

• rank(A a) = rank(a) + 1 where AG {•,<>}, 
• rank(a o /?) = max{rank(a), rank(/?)} + 1 where o e {A, V}, 
• rank(//x.a) = sup{rank(a"(x)) + 1; n e N} where n € {v,//}. 

The fact that the definition of rank terminates is shown in the joint work with 
Krahenbuhl [4] (see also [2]). It is an easy exercise to show that for all formulae <p 
we have that rank(v?) = rank(-iy>). 

The next lemma shows that wellnaming iterated formulae which are already well-
named does not affect the rank. It follows by the fact that since <p is well-named 
the equivalent well-named formula for <p"(T) is given by simply renaming bound 
variables. 

LEMMA 2.2. For all well-named formulae <p such that x appears only positively and 
all n € N we have that 

rank(y>"(T)) = rank(wn(v?"(T))). 

Similarly for _L. 
Given a //-formula <p, for all set of bound variables X C bound(<p), the formula 

f̂ree(x) j s obtained from <p by eliminating all fixpoint operators binding a variable 
x £ X but leaving the previously bound variables x as a free occurrences. Further, 
if X ~ {xt,..., x„} C bound(y>) then we define 

f-x = ^{x)[xr/±,...,xn/±]. 
2.2. Semantics. The semantics of modal //-calculus is given by transition systems. 

A transition system ZT is of the form (S, ->5r, kT) where S is a set of states —*^ is a 
binary relation on S called the accessibility relation and the function X: P —> p(S) 
is a valuation for all propositional variables. A transition system ZT with a distin
guished state s is called ̂ pointed transition system and denoted by {3~, s). T denotes 
the class of all pointed transition systems. Given any property P, by T^ we denote 
the subclass of pointed transition systems satisfying the property P. In particular 
T denotes all pointed reflexive transition systems, Tst all pointed symmetric and 
transitive transition systems, T' all pointed transitive transition systems and Trer 

denotes all pointed transition systems where the accessibility relation is an equiva
lence relation, that is, it denotes the class of all S5 models. Given any property P, 

https:/www.cambridge.org/core/terms. https://doi.org/10.2178/jsl/1254748696
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:44:35, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2178/jsl/1254748696
https:/www.cambridge.org/core


THE MODAL /(-CALCULUS HIERARCHY 1371 

with Tpf we denote the subclass of finite pointed transition systems satisfying the 
property P. For example, T'^ denotes all finite pointed transition systems where the 
accessibility relation is transitive. 

Let X be a valuation, p a propositional variable and S' a subset of states S; we set 
for all propositional variables p' 

1 X(p') otherwise. 

Given a transition system F = (S, — ^ X^), then!T{p >—> S'] denotes the transition 
system (S, —>^,X^\p H-> S']). This notions are generalized straightforwardly to 
X[x\ i—• S i , . . . , x„ *—> S„] and 3~[x\ >-* S i , . . . , xn H-> S„]. Given a transition system 
&, the denotation ofip in J', ||y>||,y, that is, the set of states satisfying a formula ip is 
defined inductively on the structure of ip. Simultaneously for all transition systems 
we set 

\p\W = Mp) a n d | |~p| |y = S — X{p) for all ^ G P, 
| |aA/? | |^ = H | ^ n | | / ? | | ^ , 
| | aV/? | |^ = H k U | | / ? | | y , 
|Da | |^ = {s G S | \/t((s ^ ( ) = > ' £ H k ) } . 
| O a | k = { J G S | 3 / ( ( S - » 5 r 0 A r G | | a | | ^ ) } > 

|vx.a||^ = U{S' C S | S' C | | a U ) | | ^ M S ' ] } , and 
ll^x.all^ = H{S' C S | \\a{x)y[x„S'] Q S'}. 

We say that a pointed transition system {3~, s) is a model of a /^-formula if and only 
if ^ G Hvlk. By \<p\ we denote the class of all models of ip and by ||<^||p the class 
of all models of <p with property P. For a formula cp(x) and set of states S' C S we 
sometimes write | |v(S ' ) |k instead of ||y»(jc)||y-[X_>s']- When clear from the context 
we use ||<y?(x)||y- for the function 

lM*)Hs-: 

By Tarski-Knaster Theorem, c.f. [26], ||vx.a(x)||y is the greatest fixpoint and 
||/iAr.a(x)||^ the least fixpoint of the operator ||o;(x)||^-. 

The next two lemmas state some basic properties of denotations. Their proofs 
are left to the reader. 

LEMMA 2.3. For all transition systems 3~ = (S, —>^, X^) and all formulae <p we 
have that 

i. \\^\W = s-\w\w, 
2. \\t]x.ny.<p(x,y)\\r = \\nx.<p(x,x)\\<r, where n G {fi,v}, 
3. ||vx.y>(jc)||y = ||<^(T)||^, if all occurrences of x are not guarded, 
4. Il^x.^x)!!^ = \\<p{±)\\$-, if all occurrences of x are not guarded. 
5. There is a well-named formula wn(<p) such that \\ip\\^ = ||wn(y)||^. 
LEMMA 2.4. Let <p, a, a,-, /?, /?,-, i//, y/i G J2?M be well-named ^-formulae, where i G 

{ 1 , . . . , k}. For all transition systems 9" the following holds: 

1. Iffree{y/j) n bound(^>) = 0 for alii G {l,...,k} then 

\\<p[xi/i//u-..,xk/i//k]\\r = \\<P\\:r[xl~\\v,l\\!r,...,xk~\\Wk\\s-]-
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1372 LUCA ALBERUCCI AND ALESSANDRO FACCHINI 

2. If y/ < <p andXj G free(i//) n bound{tp), with i = 1 , . . . ,k, then 

\\y/[xi/<pXl,...,xk/<pXk]y = IM|<r[x,HKIk,...,x*HKII./]-

3. Iffree{y/i) D bound(a) = free(^,) n bound(/?) = $andxt G free(a) n free(/?) 
/or a// J G { 1 , . . . , k} and for every transition system ST we have that 

\\<*\\r = \\P\W 
then, for every transition system £T we have that 

\\a[xi/y/u • • •, Xk/<Ck]\\sr = \\P[xi/y/u..., xk/y/k]\\^. 

4. Let free (a,-) n bound(y) = free(/?r) n bound(y>) = 0 and let xt G free(<p) occur 
positively in <p, where i = 1 , . . . , k. If for every transition system ZT we have that 

\\&i\W ^ \\Pi\W, far every i G {l,...,k}, 

then we have that 

\\ip[xi/au...,xk/ak]\\^ C \\<p[xi/Pu...,xk/pk]\\<r. 

Let 9~ = (S, —»5r, A) be a transition system and s, s' two states in S. A sequence 
SQ, S\, . . . , Sn such thats, —^ Si+\ ,so = s and s„ = s'is apath of length n connecting 
s to s'. We say that s' is reachable from 5. A subset S' C S of the set of states is 
called a strongly connected component if for all s, s' G S' we have that s' is reachable 
from s. For each s by scc(s) we denote the greatest strongly connected component 
which contains s if there is one and scc(s) = 0 if s is not contained in any strongly 
connected component. Note that the notion scc(s) is well-defined. Given a pointed 
transition system {3~, s) and a state s' in it, we define the depth of s', dp(s'), to be 
the length of the shortest path from s to s'. Since parts which are non connected to 
the point,? will be irrelevant in the sequel we assume that all transition system are 
connected and, therefore, that dp{s') is defined for all s'. 

2.3. The alternation depth hierarchy. Let O C S"^. For n G {v, ju}, n(<S>) is the 
smallest class of formulae such that: 

• O , - I O C / / ($); 
• If y/{x) G //(O) and x occurs only positively, then rjx.y/ G n(<S>); 
• If y/, <p G rj{<!>), then y/ A (p, y/ V ip, <>y/, Dy/ G f/(0); 
• If y/,tp G rj(<t>) and free(y/) n bound(^) = 0 then </?[x/y/] G ?/(0) 

With the help of this definition, we introduce the syntactical hierarchy for the modal 
/^-calculus. For all n G N, we define the class of/i-formulae 2,„ and Tl„ inductively 
as follows: 

.2£+1=Mn£); 

The fixpoint alternation depth, ad, of a formula is the number of non-trivial 
nestings of alternating least and greatest fixpoints. Formally, the alternation depth 
of ip G ̂  is given by 

ad(y>) :=inf{k: ip G A£+1}. 
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THE MODAL //-CALCULUS HIERARCHY 1373 

All X£ and n£ form the syntactical modal fi-calculus hierarchy, which is strict. The 
fixpoint alternation free fragment corresponds to the class A%. 

LEMMA 2.5. For all [i-formulae <p there is a well-named formula wn(y>) such that 
for all ^ we have \\(f\\g- — ||wn(v?)|[^ and ad(<p) = ad (wn (<£>)). 

PROOF. We have just to verify that the construction of wn(p) given by parts 2 to 4 
of Lemma 2.3 does not increase the alternation depth of the formula. But this is 
straightforward. -\ 

Given Lemma 2.2 and Lemma 2.5, we can assume that wn is a function associating 
to every formula tp a well-named formula wn(v?) which has the same alternation 
depth and the same denotation in every transition system and such that, if <p is 
well-named, it also preserves the rank of <p"(T) and <p"(-L), for every n. 

The semantical modal pi-calculus hierarchy over T consists of all I,f and Uf', 
which are classes of pointed transition systems defined inductively as follows: 

if = {\\<p\\:<peiG}, 

nf = {Nigeria 
As usual, the ambiguous classes are denned by 

Af := sf n nf. 
The semantical modal ju-calculus hierarchy over T p , for any property P, is defined 
analogously. 

THEOREM 2.6. [7, 8] The semantical modal fi-calculus hierarchy over T is strict. 

From now on, when we write about the modal fi-calculus hierarchy, we always 
mean the semantical modal /^-calculus hierarchy. 

EXAMPLE 2.7. It is instructive to have a look at two typical /^-formulae. The first 
formula express the property of "always eventually p" 

vx.(fiy.(pV Oy)) A Ox). 

Indeed, it says that from any node of a model, we can reach a node where p holds. 
Since this formula is in Ilf, this kind of property can be expressed without any 
alternation. Moreover, it can be shown that cannot be reduced to a purely modal 
formula. The second formula defines the property of "there is a path where p holds 
infinitely often" 

vx.juy.((p V Oy)) A Ox). 

It can be verified that the alternation is really needed, that is, that the class of models 
of this formula is in Ui^ \ YJ^. 

§3. Evaluation games for the modal /^-calculus. Evaluation games are a very 
important tool in the modal /z-calculus and will play a crucial role in the sequel. 
After introducing some general notions for infinite games we define the evaluation 
games. The last subsection is about the concept of game formula. 
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1374 LUCA ALBERUCCI AND ALESSANDRO FACCHIN1 

3.1. Parity games. Let V be a set. By V* we denote the set of finite sequences 
on V, and by V+ we denote the set of nonempty sequences. Finally, by V° we 
denote the set of infinite sequences over V, 

A game 'S is defined in terms of an arena A and a winning condition W. In our 
case an arena is simply a bi-partite graph A = {Vo, V\, E), where VQ n V\ — 0 and 
the edge relation, or set of moves, is E C (F0 U Fi) x (F0 U V\). Let F = Ki U V2 

be the set of vertices, or positions, of the arena. Given two vertices a, b e F, we say 
that b is a successor of a, if (a, b) £ E. The set of all successors of a is sometimes 
denoted by aE or E (a). We say that 6 is reachable from a if there are a \,..., a„ e F 
such that a\ = a, an = b and for every 0 < i < n, a,-+i € a ,£ . 

A play in the arena 4̂ can be finite or infinite. In the former case, the play is a non 
empty finite path n = a\... an e V+ such that for every 0 < i < n, a,+i e a ,£ and 
a„E = 0. In the last case, the play consists in an infinite path n = a\ ...an- • • e T 
with a,+i e atE for every / > 0. Thus a finite or infinite play in a game can be seen 
as the trace of a token moved on the arena by two Players, Player 0 and Player 1, 
in such a way that if the token is in position a e Vt, then Player i has to choose a 
successor of a where to move the token. 

The set of winning conditions IF is a subset of Vw. Thus, given a game "§ = 
(A, W) a play n is winning for Player 0 iff 

1. if 7r is finite, then the last position a„ of the play is in V\, 
2. if n is infinite, then it must be a member of W. 

A play is winning for Player 1 if it is not winning for Player 0. In this framework 
we are interested in what is called & parity winning condition. That is, given a set of 
vertices V, we assume a coloring or ranking function Q: V —> co such that £l[V] is 
bounded. Then, the set W of winning conditions is defined as the set of all infinite 
sequences n such that the greatest priority appearing infinitely often in Q.{n) is even. 

Let A be an arena. A strategy for Player ;' is simply a function a,: V*V\ —• V, 
with / = 1,2. A prefix a\ ...an of a play is said to be compatible or consistent with 
Gi iff for every j with 1 < j < n and aj G F,, it holds that <r,(ai . . . aj) = aj+\. A 
finite or infinite play is compatible or consistent with CT, if each of its prefix which 
is in V* Vt is compatible with CT, . The strategy 07 is said to be a winning strategy for 
Player i on W if every play consistent with CT, is winning for Player i. A position 
a e V is winning for Player i in the parity game 'S iff there is a strategy a for 
Player i such that every play compatible with a which starts from a is winning for 
Player i. A winning strategy a is called memoryless if a(a\ ...a„) = a{b\... b„), 
when a„ = bn. For parity games we have a memoryless determinacy result. 

THEOREM 3.1. [12, 22] In a parity game, one of the Players has a memoryless 
winning strategy from each vertex. 

Having in mind this theorem, in the sequel we assume that all winning strategies 
are memoryless, that is, a winning strategy in a parity games for Player 0 is a function 
a: Vo —> F , analogously for Player 1. 

3.2. Evaluation games for the modal //-calculus. In this subsection we will see, 
given ip e Sfi and a pointed transition system (3~,so), how to determine the 
corresponding parity game 2?(tp,(&',so)), called also the evaluation game of ip 
over (^,so)-
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Remember that ET = (S, — ^ A5"). The arena of %{<p, (^>so)) is the triple 
{Vo, V\,E) which is defined recursively such that 

(<p,so) G V 

(remember that V = Vo U V\) and such that if {y/, s) G V then we distinguish the 
following cases: 

• If y/ = (-i)/7 and /? e free(y>). In this case we set E{y/, J ) = 0 and 

• If ^ = x and x G bound(y). In this case we set 

{{t//,s),{<px,s)) eE 

and we have 

(y/,s) G Ko iff x is a //-variable. 

• If y/ = a A p then we have (^, s) G Fi, and if y/ = a V /? then we have 
(^, s) € VQ. In both cases it holds that 

{{il/, s), {a, s)) G E and {{y/, s), (/?, 5)) G E. 

• Uy/ = Da then we have {y/, s) G F , and if y/ = Oa then we have {y/, s) G Vo. 
In both cases it holds that 

{{1//, s), (a, s')) G E for all s' such that s -*r s'. 

• If y/ = vx.a then we have {y/,s) G Fi, and if y/ = fix.a then we have 
{y/,s) € Fo. In both cases it holds that 

({yf,s),{a,s))£E. 

We complete the definition of the parity game % (ip, ( y , so)) by defining the (partial) 
priority function Q: V —> a>. The function is first defined on states of the form 
{rjx3, s) G V, where 77 G {/z, v}. In this case we have that: 

' ad{rjx.S) if tj = /u and ad{rjx.3) is odd, or 

r/ = v and ad(^x.<5) is even; 

ad{tjx.S) — 1 if 77 = /* and ad{rjx.d) is even, or 

77 = v and ad{t]x.S) is odd. 

For a state of the form (x, s), where x G bound(yj), we set 

£l({x,s)):=n((<px,s)). 

For all the other states (a, s) we distinguish two cases. If there is a least formula 
r\x.5 G sub(yj) such that //xJ > a we set 

Q ( ( Q , J ) ) : = Q ( ( I J X A 4 

If there is no such formula then we set 

_.,. .. \min{£l{r]x.d): tjx.d <<p\ if<peA%,n>l, 
il{{a,s)) = < 

I I l fyGA^. 

Q{{y/,s)) 
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1376 LUCA ALBERUCCI AND ALESSANDRO FACCHINI 

FIGURE 1. 

It can easily be seen that if there is a formula nx.S > a then there is also a 
least one. Therefore, the second case refers to subformulae a of <p which can 
not be regenerated by a fixpoint application in a parity game. In the following 
we simply write minQ and maxQ instead of min{Q((a,^)): (a,s) £ V} and of 
max{Q({a, s)): (a,s) G V}. 

Remember that if the play n is finite, Player 0 wins iff the last vertex of the play 
belongs to V\, and if the play n is infinite, Player 0 wins iff the greatest priority 
appearing infinitely often even. 

THEOREM 3.2. [25] {3~,s) e ||<p|| iff Player 0 has a winning strategy for 

This result can be seen as the "game-theoretical version" of what is usually called 
the Fundamental Theorem of the semantic of the modal /^-calculus. The proofs of 
the following Lemma is by unwinding the definitions of winning strategy. 

LEMMA 3.3. Let ST = (S, —>̂ \ XT) be a transition system and <p(x\,..., Xk) be 
a formula where all x,- occurs positively. Let a be a strategy for Player 0 in 
%(<p(x\,..., Xk), (JT, s)). Suppose that for all vertices of the form (Xj,s') which 
are reachable by a we have that s' € Aj C S, with i = 1 , . . . , k. Then a can be con
verted into a winning strategy for Player 0 in the evaluation game W(<p(x\,...,Xk), 
{3~\x\ t-*Ai,...,xk >-+Ak],s)). 

EXAMPLE 3.4. Evaluation game ^(vx.O((p V DJ.) A x),{&~,s\)). J~ is as in 
Figure 1, that is, it has states { s i , ^ , ^ } and p holds in s\ and ^2, and the ac
cessibility relation is as depicted in Figure 1. In Figure 2, you find the arena of 
g'(vx.D((/7VD_L)Ax), (!T,s\)). In order to simplify the picture we identified vertices 
of the form (vx.D((/?VD-L) Ax), s) with the vertices of the form (D((/?VD±) Ax), s). 
Note that this does not change essentially the evaluation game. Further, the graph 
given by the non-dotted edges represents the part of the arena which can be reached 
by a play given the strategy of Player 0 where he chooses, if there is the possibility, 
the non-dotted instead of the dotted move. Note that it is a winning strategy. It 
is left as an exercise to verify that vx.D((p V DJ_) A x) is valid if for all reachable 
states in a transition system we have that either, the state is terminal, or, p holds in 
the state. 

3.3. Game formulae. Given a parity game %(tp, {?T,s)) for a formula (p we define 
the pointed game transition system ZT(&(<p,(£T,s))) = ((S,—^, X^),SQ) such that 
the states S are the vertices V and the distinguished state so = (tp,s), and such that 
the transition relation —^ is the edge relation E of the parity game. If ad(y>) = n 
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( Q ( ( P V D I ) A 4 S | ) 

I 
((pVDl)Ai,j,) ((/?VD1)M,J7) 

(fVDl..!,) (x,s}) \ ((;VDX), 

J " . 
(p.j,)' (D±,*3) (D( ( ; IVD1)A4JJ ) \{p,J2> in_L,i2) (D((;VDl)A4i2) 

{ * , s2) 

FIGURE 2. 

then the valuation X^ is specified for the new prepositional variables 

{c,: 0 < i < n} U {d,>: 0 < ;' < «}. 

For all y/ e sub(<p) we define our valuation for these propositional variables such 
that 

^(di) = {(y/,s): (y/,s)G V0 and Q((y/, s)) = 1} 

and A5r(c,-) = {(v.J>: < ^ ) e Ki andfi((^, .s» = / } . 

In the following we introduce the game formulae and show that with them it is 
possible to test the existence of a winning strategy for Player 0 in an evaluation 
game. 

DEFINITION 3.5. For all n > 1 we define the E£ game formula W^ such that: 

W „ •= [pxn-i.vxn-2. ...vx0( \/"~o (dt A Ox,) V \/"~J fo A Dx,-)) n even, 
*" '~ \/ix„.vx„-.i..../iXi(\/"=l(di A Ox,) V\J"=1(CJ ADxt)) n odd. 

The Yin game formula H7^ is defined such that: 

u/ _ fvx„. /ux„_i.. . . /uxi(\/"=iU' AOx,) V V"=i(c« ADx,)) weven, 

" ' I VX„-i.flX„-2. • • • VX0( V?Jo W' A < > X ' ) V V"=To (C; A a X ' ) ) " ° d d -

For « = 0 we define 

It is clear from definition that for all n > 1 we have that W^ £ ££ and Wnv G n£ . 

PROPOSITION 3.6. [12, 31] Let "§ an arbitrary parity game. Assume that 
minQ e {0,1} andmaxQ. = n. We have that if n is even (resp. odd): 

(a) if minQ = 0 then Player 0 has a winning strategy for & if and only if3r{'§) € 
\\WKJ\{resp.J-{$)e\\WKJ), 

(b) ; /minQ = 1 then Player 0 has a winning strategy for "§ if and only ifSr{<§') e 
\\WK\\(reSp.^{^)e\\W^\\). 

From Proposition 3.6 and the definition of an evaluation game, it follows imme
diately that: 
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1378 LUCA ALBERUCCI AND ALESSANDRO FACCHINI 

COROLLARY 3.7. Let <p be a Yin-formula (resp. a T^-formuld) and let {9~, s) be an 
arbitrary pointed transition system. We have that Player 0 has a winning strategy for 
W{<p,{F,s)) ifand only ifJ'{%'(</?, {T,s))) G | |^n"ll (resP- if and only if {F, s) G 
II^ID-

Therefore, by applying Proposition 3.2 and Corollary 3.7, we have the following 
result: 

COROLLARY 3.8. Let <p be a Ufi-formula {resp. Yl^-formula) and let {£F, s) be an 
arbitrary pointed transition system. We have that 

{3r,s) G \\<p\\ ifandonlyifF{g{<p,{F,s))) G \\Wn„\\ {resp. {F,s) G | |H^J ) . 

§4. Finite model theorems. In this section we prove finite model theorems for the 
modal p -calculus over the class of all reflexive and over the class of all transitive 
transition systems. Let us first state the well-known finite model theorem for general 
transition systems. 

THEOREM 4.1. [17, 25] For all modal /u-formulae <p for which there is a transition 
system ZT and a state s in 3~ such that s G ||</?||.r there is a finite transition system 
£TF and a state sF such that sF G ||<£>||^F. 

4.1. Finite model theorem for reflexive transition systems. Let <p be a ^-formula. 
By induction on the structure of ip we define the formula (pref as follows: 

• (~)Pref = (~)/>> 
• (a o p)ref = aref o pref where o G {A, V}, 
• (na) r e / = Dare/ A aref, 
• {Oa)ref = Octroy ctref, and 
• {nx.a)ref = nx.aref where n G {p., v}. 

The next Lemma is by induction on the structure of the formula. 

LEMMA 4.2. Let 9~ be a finite transition system and let 3~ref be its reflexive closure. 
For all ju-formulae <p the following holds 

s G H r̂e/H.̂  ifandonlyif s G HvH "̂"/-

With the help of this lemma we can easily prove the finite model property for 
reflexive transition systems. 

THEOREM 4.3. For all modal /u-formulae >p for which there is a reflexive transition 
system ZT and a state s in ET such that s G ||<p||y- there is a finite reflexive transition 
system y F and a state sF such that sF G ||</>||^F. 

PROOF. Let tp be a /i-formula and 3~ a reflexive transition system with a state * 
such that s G ||y>||^-. Since !T is reflexive we have that 9" = ^ref and therefore by 
Lemma 4.2 we have that 

s G H^e/ll^. 

By the general Finite Model Theorem 4.1 we get that there is a finite transition 
system ZTF and a state sF such that 

SF G | | y r e / | | ^ F . 
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THE MODAL ^-CALCULUS HIERARCHY 1379 

If we define grFref to be the reflexive closure of ZTF by applying again Lemma 4.2 
we get 

SF e Hvllyf"/ 

and we have found the finite reflexive model and a state in it satisfying <p. H 

4.2. Finite model theorem for transitive transition systems. Let ip be a //-formula. 
By induction on the structure of <p we define the formula tptr as follows: 

• (~)Ptr = (~)/J. 
• (a o p)tr = a,r o fjtr where o G {A, V}, 
• (Oa)tr = vx.O(atr A x), 
• (Oa)tr = /tx.O(a,r V x), and 
• (nx.a),r = nx.a!r where n G {,«, v}. 

As in the reflexive case, the next Lemma is proved by induction on the structure 
of the formula. 

LEMMA 4.4. Let ZT be a finite transition system and let 3~tr be its transitive closure. 
For all ^.-formulae tp the following holds 

s G \\<ptr\\s- ifandonlyif s G ||<£>||y". 

By using Lemma 4.4, mutatis mutandis, the proof of the finite model property 
for transitive transition systems is exactly the same as for Theorem 4.3. 

THEOREM 4.5. For all modal ^-formulae <p for which there is a transitive transition 
system ST and a state s in ST such that s G ||y>||y there is a finite transitive transition 
system ETF and a state sF such that sF G ||<p||yf. 

§5. The hierarchy on transitive and symmetric transition systems. In this section, 
we prove the collapse of the semantical modal //-calculus hierarchy over TP' to the 
purely modal fragment. Let us begin with the following easy lemma. 

LEMMA 5.1. Let ZT be a transitive transition system and let s' G scc(^). For all 
^-formulae <p we have that 

s G || A <p\\^ if and only if s' G || A <p||y 

where AG {•,<>}. 

PROOF. Suppose that s G ||Dy>||y. This is equivalent to the fact that for all s" 
such that s —^ s" we have that s" G Hvll̂ "- On the other hand by definition of sec 
we have for all s' G SCC(J) that s —^ s' and s' —>̂  s. Therefore, for an arbitrary 
state s" by transitivity we have s —^ s" if and only if s' —*^ s". This implies that 
s G IPvl l^ if and only if for all s" such that s' —>̂  s" we have that s" G \\<p\\ff-
which itself is equivalent to s' G ||Dy>||y. The case for O is proved similarly. H 

THEOREM 5.2. Let ST be a transitive and symmetric transition system. We have 
that 

\\vx.y(x)\\? = \\V{V{T))y. 

PROOF. The C inclusion is clear. For the D inclusion, define A = \\<p(<p(T))\\^; 
by definition of greatest fixpoint it is enough to show that we have 

Ac\\,p(A)y. (i) 
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First recall that we assume that vx.<p(x) is well-named. This means that in the 
formula ip(x) the variable x is in the scope of a modal operator and occurs only 
once in ip. Therefore, we can assume that tp is of the form /?(A a(x)) where 
A€ {O, • } . Moreover x we have that A a(x) and A a(<p(x)) occur only once 
in the formula tree of (p(<p(x)). Let s e A, by Proposition 3.7 there is a winning 
strategy a for Player 0 in the evaluation game g(<p((p(x)), (&~[x i—> S], s)). Let n be 
an arbitrary play consistent with a. If % reaches a vertex of the form (A a(x),s') 
then the same play reaches a vertex of the form (A a((p(x)),s"). Since a is a 
winning strategy for Player 0 by Proposition 3.7 we have that 

s" e || A a(if(x))\\nx^S] and s' € || A a{x)\\gr[x„S]-

Since y is transitive and symmetric it clearly holds that s" € scc(s') and, by 
applying Lemma 5.1, we have 

s' e || Aa(¥>(*))lk[x~S]. 

Hence, we have shown that for all plays n consistent with a, if n reaches a vertex of 
the form (A a(x), s') then, by Theorem 3.2, there is a winning strategy for Player 0 
in the evaluation game g^A a(ip(x)), {£T[x i-+ S],.s')). A fortiori, this implies 
that if n reaches a vertex of the form (A a{x),s') then there is a winning strategy 
a{*a(x)y) for Player 0 in r ( A a{x),{&~[x i-> \\ip(x)y[x^s]],s')). Therefore, 
since ||y(jc)||^-[Xh->s] Q S, the strategy a* given by following a but switching to the 
corresponding o^a(x)y) when a position of the form (A a(x),s') is reached, is 
winning for Player 0 in the parity game W((p(ip(x)), (&~[x <—> S],s)). Let B :— 
\[V{x)^[x^s]- By construction of a* we have that for all vertices of the form (x, v) 
which are reachable by a* it holds that v e B. Then, by applying Lemma 3.3, 
a* can be converted into a winning strategy for Player 0 in the evaluation game 
£{<p{(p(x), (^[x H-> B],s)). By Theorem 3.2, we have that 

s e \\<p(<p(B))y 

which can be reformulated as s € (^((/'(^(T))))!^ or s e \\tp(A)\\^. Therefore, we 
have proved Equation 1 and completed the proof. H 

DEFINITION 5.3. The syntactical translation (.)': ^ —> -S?M is denned recursively 
on the structure of the formula such that p1 = p, U = _L and T' = T, such that it 
distributes over boolean and modal connectives, and such that 

{jux.tp)' = (\Nn{ip(<p(±))))' and (vx.ip)' = (wn(<p(ip(T))))'. 

Note that (ip)' is defined via an application of (.)' either to a strict subformula y/ 
of (p, or to a formula whose rank, by Lemma 2.2, is strictly smaller than the rank 
of ip. Thus (.)' terminates and is well-defined. 

The next corollary proves that on transitive and symmetric models, the semantical 
hierarchy of the /u-calculus collapses to the class A^ . Its proof goes by induction 
on the rank of a formula and uses Theorem 5.2. 

COROLLARY 5.4. On transitive and symmetric transition systems we have that 

\\<p\\r = \\<p'y. 
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EXAMPLE 5.5. If we look at our example from Section 2, for "always eventually 
p",we have that 

\\vx.(fiy.(p V Oy)) A Dx)||T" = \\(pv Op) A D(p V Op)\\T' 

and for "there is a path where p holds infinitely often", we have that 

\\vx.My.((pVOy))AOx)\\T' 

= II (P V <>(/> A <>((/> V 0(p A OT)) A OT)) A 

0 ( ( / > V O ( / ? A O T ) ) A O T ) | | T " . 

REMARK 5.6. Because the previous proof applies to any S5 model, that is, for 
every y £ Trsl we have that: 

\\<py = \\v'\w 
The fact that the modal /^-calculus hierarchy for S5-models collapses to the 

pure modal fragment is indeed not surprising since for a S5-formula ip there are 
only finitely many formulae with the same propositional variables which are not 
equivalent over T"' and, therefore, it can easily be shown that for all vx.ip(x) £ .2^ 
there is a n e N such that ||¥>"(T)||T™ = ||vx.y||T™ . The existence of only finitely 
many non equivalent formulae follows from the fact that for all S5-formulae tp 
there is a conjunctive modal normal form t// such that i// = Si A 82 A • • • A S„ where 
8 = a V D/?i V D/?2 V • • • V Upn V Oyx V Oy2 V • • • V Oym and a, fo and yj are 
propositional formulae.2 

§6. The hierarchy on transitive transition systems. We show that the modal ju-
calculus hierarchy over T' collapses to the alternation-free fragment. This is done in 
four parts starting from subsection two. First, any modal /^-formula is reduced to a 
semantically equivalent formula z(<p) such that normalized strategies on evaluation 
games, which will be introduced in the third subsection, have certain nice properties. 
Then, we encode such normalized winning strategies in modal /^-formulae and, 
finally, we show the collapse for finite transitive transition system and, by using 
the previously proved finite model theorem, generalize it to all transitive transition 
systems. 

In the next subsection some technical notions like the one of unfolding a formula 
in a model are introduced and some properties are proved. 

6.1. Some technical preliminaries. Remember that we suppose all ^-formulae 
well-named. First we introduce the unfolding of a formula which generalizes the 
one of closure of a formula, introduced by Kozen in [16]. In order to do this, let tp 
and i// be any /^-formulae such that {x\,..., x„} = X C bound(v?). The unfolding 
of if/ in <p over X, u n f f ^ ) , is the formula defined recursively such that unf¥,(^) = y/ 
and such that if X is of the form {x\,...,xn} then 

unf^(^) = ^[xi/unf£ (<pXl),...,x„/unf$ "(<px„)] 

where X~' = {x\,..., xt-\, xi+\ ,...,x„}. It can easy be seen that we have X n 
free(unf£(<p))=0. 

Cf. Chapter 5 in [14]. 
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In order to explain semantically the unfolding of a formula we introduce for each 
transition system 3~ the transition system induced by tp, Sff. For every variable 
x e bound(<p) we define a natural number l(x) recursively such that l(x) = 0 if 
free(ipx) n bound(tp) = 0 and such that 

l(x) = max{l(xi): x, e free(tpx) fl bound(y>)} + 1 

in the opposite case. For all transition systems J~ with valuation X and for all 
0 <i < max{/(x): x e bound(<p)} =: N we define new valuations X' and transition 
systems y such that X° = X and 5""° = y , and such that STk+x is identical to ZTk 

except for the valuation Xk+l which is denned as follows: 

• ^ + |p\bound(v) = ^ IpXbound^)! 

• i f x € bound(^): 

\ ll^xll^ if/(x) = A: + 1. 

We define £TV to be H~N and 2^ = 1^. Note that if we have a formula >// such 
that free(^) n bound(y>) is empty then, since the denotation of <p is independent 
of the valuation of the bound variables, we have \\y/\\?- = \\y/\\?*- In particular, 
we have \\<p\\r = \\<p\\^v. Moreover note that for all x, 6 bound(y>) it holds that 
WiXj) = \\<px,\\srv-

LEMMA 6.1. For all formulae tp, all subformulae y/ < tp, all X C bound(y), and 
all transition systems £T we have that 

| |y | |5^ = ll"nf^(v)ll^-
PROOF. By induction on the size of X. If X is empty, then by definition of 

unfolding we have that 

unf^ (^ ) = y/ 

and the claim is trivial. For the inductive step, suppose that X n free(i^) is the set 
{x\ ,...,xm}. Hence, by definition we have 

unf£(y/) = y/[xi/unf£ (tpXi),... ,xm/unf* '" (tpXm)]. 

Since bound(i^) fl free(tpXi) = 0 and free(unf^ {tpXl)) Q free(<pX;) for all i we get 

that bound((//) n free((unf^ (<pXi)) = 0. Therefore, by induction hypothesis and 
Lemma 2.4.1 we get 

| | un f*(^ ) | | ^ = \\yr\\rriXl~\\Vx]\\7V.....xm~\\v,m\M-

Since for all x,- we have that W{xi) = \\tpXi ||y-»> we get 

The previous lemma tells us that on the transition system induced by tp the denota
tion of any subformula of (p and the denotation of any of its unfolding over tp are 
the same. 

Other useful properties of J~v are summarized in the next lemma. 

LEMMA 6.2. Let ZT = (S, —^ , X?) be a transition system, tp any ^.-formula and 
if/ < <p. Then: 
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1. For every X C bound(</?) we have 

lkfreeWlk, = \W\\<r*. 
2. For every X\,Xi C bound(yj), where X\C\X2 = 0, we have 

3. For every l^i, A2 C bound(<^), vv/zere Jfi n ^2 = 0, we /zave 

||u<yree™||^ = |Mk-
PROOF. Part 1. By Lemma 2.4.2 and since ||y>x||̂ -v = h3"* (x) for every variable 

x e bound(<^) we get 

ll(/reeWlk, = ||/reeW[xiM,,---,*«MJIk-
The proof ends with a straightforward induction on the structure of if/ proving that 
for all transition systems S~ we have 

IMk* = ||vfreeW[x1M1,...,x„M„]||^. 
The only non trivial step is the one where t// is of the form t]x.a (rj e {/i, v}). In 
this case, note that if any x, appears free in a then x appears only bound in <pXt. 

Part 2. We prove the equation by induction on the size of X%. If X2 is empty, the 
equation holds by the previous point. For the inductive step, given 

{x,„...,Xik} = X2nfree(Vffn'{Xl)), 

we have that by definition of unf the formula || unf r̂ee(A., ^free(-yi) ||^„ is equal to 

\vfree{x>\xijMf%ixM
eeiXl]K • • • • .^ /unf fu , )^ 6 ^ 1 ^ , ] ! !^ . J J ™ W I I 

Since free(unf ]m{X]) {<pfreel-x,))Xii) C free(<phee(-x,^)Xii) and since we have that 

free(ipfneiXl))Xli) n bound(V/free(z')) = 0 

we get 

free(unf^|, i l(¥'f ree(J r ' )),,) D bound(v/ree(Xl)) = 0. 

With Lemma 2.4.1 we get the equality with 
I ^f i -ee^i ) 

7*[Xll ~ 1 | u n f ^ , (<p"^0hi | | ^ , . . . , % M | | u n f ^ , (**-<*. >),,, \M 

and by induction hypothesis this expression is equal to 
11 „,free(Xi) n 
II V ll̂ -K-llv,,, ||̂ ,...,*,,HKt ||^]. 

Since in ZT* we have that A(JC,-;) = \\<px,..||^«. the last expression is equal to 

\\<//free{X])\\3r*. 

Part 3. Suppose {*,-,,..., x,t} = Xi n free((//free^'ri)). Following the same argu
mentation as in part 2 we get that Hunf^^/"*^!!,^ is equal to 

l l v f r e e ( J r i ) l l 
• ^ K H H V V*,-, ||yv....,x^i—||unfv

2 ipx.Wrv] 
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1384 LUCA ALBERUCCI AND ALESSANDRO FACCHIN1 

With Lemma 6.1 we get the equality with 

l l ^ ^ l l ^ n ^ H k v , , ll^,....*,*HI^ Upl

and because in ZT^ we have that A(x,-.) = \\<pXl-.\\s-v the last expression is equal to 
H^freetXi)!!^ w h j c h by p a r t \ j s e q u a l t o ||^||^-v>. H 

LEMMA 6.3. Le? ip be a ^.-formula andET = (S, — ^ A5") 6e a transition system. 
For all X C bound(<^), all Xk & X = bound((^) \X, all i// < <p and all x £ X we 
have that 

1. | |un f j_ 7 ^ -^ | | y C | | u n f ^ > ^ - ^ V , 

2. I l u n f j ^ r - 7 ^ £ | | u n f ^ V l k , 

4. ik-^n^-^ c IMI^. 
PROOF. Suppose a is a winning strategy for Player 0 in ^(unfx_Ty/~x, ( y , J ) ) . 

By definition, any winning play for Player 0 starting from (unfx_ji//~x,s) and 

compatible with a do not reach a position of type (±,s'). Thus, this strategy 

determines a winning strategy for Player 0 in «?(unf u±*yy/~x , (JT, s)). Part 1 

is then obtained by applying Theorem 3.2. Part 2 follows by a finite reiteration of 
part 1. In order to obtain part 3 just apply Lemma 6.1 to part 2 and note that, 
since x <£ X, (<p~x)x = (<Px)~x• Part 4 is also a consequence of an application of 
Lemma 6.1 to part 2. H 

6.2. A first reduction. We begin with a Lemma whose proof is standard. 

LEMMA 6.4. Let 3" be a transitive transition system and let s, s' be two stated such 
that s —^ s'. For all ju-formulae <p we have that 

s e | | L > | U - = > s ' € WUtpWr 

and s' £ \\<><p\W =>s G | | 0 ^ | | ^ . 

THEOREM 6.5. Let 3~be a transitive transition system and let vx.<p{x) be a formula 
such that x is weakly universal. We have that 

\\vx.v{x)\W = | |v(v(T))| | ?• 

PROOF. The C inclusion is clear. For the D inclusion, define A = \\(p(p{T))\\&-; 
by definition of greatest fixpoint it is enough to show that we have 

A<Z\\v{A)\y. (2) 

First, recall that we assume that vx.tp(x) is well-named. This means that in the 
formula <p(x) the variable x is in the scope of a modal operator and, therefore, 
we can assume that tp is of the form fi(Da{x)). Moreover x occurs only once 
in tp. This implies that Da(x) and Da((p{x)) occur only once in the formula tree of 
tp(tp(x)). Let s e A, by Theorem 3.2 there is a winning strategy a for Player 0 in the 
evaluation game ^{ip{ip{x)),{!T[x \-^S],s)). Let n be an arbitrary play consistent 
with a. If n reaches a vertex of the form (Da(jc), s') then the same play reaches a 
vertex of the form (Oa(ip{x)), s"), with Oa(x) < Oa((p(x)) and s' reachable from 
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s" in ET[x i-> S]. Since a is a winning strategy for Player 0 by Proposition 3.7 we 
have that 

s" G ||na(¥>(x))|k[*~S] and s' G | |Da(x)| |^ [ x„S]-

Since 5"[x i-> S] is transitive we have that 5" _>
5r[*'->s] j ' and, by applying 

Lemma 6.4, we have 

s' e \\na(ip{x))\\<r[x„S]-

Hence, we have shown that for all plays n consistent with a, if n reaches a vertex of 
the form (Da(x), s') then, by Theorem 3.2, there is a winning strategy for Player 0 
in the evaluation game ^ ( D a ^ f x ) ) , {&~[x i-> S], .?'))• A fortiori, this implies 
that if n reaches a vertex of the form (Da(x), s') then there is a winning strategy 
a(Oa(x)y) f° r Player 0 in W{Ua{x), {ET[x i-> \\<p(x)\\?-[x>->S]]> s')). Therefore, since 
jl̂ (-v)H^-^v-^s] Q S, the strategy a* given by following a but switching to the 
corresponding ff(n<*(x)„s') when a position of the form (Da(x),s') is reached, is 
winning for Player 0 in the parity game %((p(tp(x)), (&~[x t-» S], s)). Let 5 := 
\\<p(x) ||̂ "[xt-»s]- By construction of c* we have that for all vertices of the form (x, v) 
which are reachable by a* it holds that v G B. Then, by applying Lemma 3.3, a* 
can be converted into a winning strategy for Player 0 in £(<p{<p(x), (&~[x H-> 2?], s)). 
By Theorem 3.2, we have that 

s G \\(p(<p{B))ylx^si 

which can be reformulated as s G | |v(v(¥'(T)))| |^ or s G ||^(/4)||y. Therefore, we 
have proved Equation 2 and completed the proof. H 

DEFINITION 6.6. The syntactical translation x: Sff, —> .2^ is defined recursively 
on the structure of the formula such that x{p) = p, T(—•/?) = ->/?, T ( ± ) = _L and 
T ( T ) = T, such that it distributes over boolean and modal connectives, and such 
that 

• x(jux.<p) = x(wn(<p(<p(±)))), x is weakly existential in <p, 
• x(jux.ip) = wn(/xx.x{<p)), x is universal in ip, 
• x(vx.<p) = T(\Nn(<p(<p(T)))), x is weakly universal in <p, 
• x(vx.<p) = wn(vjc.r(v)), x is existential in <p. 

First, note that in each defining clause x(<p) is defined via an application of x to a 
formula whose rank, by Lemma 2.2, is strictly smaller than the rank of tp. Thus x 
terminates and is well-defined. Note, also, that it can be proved by induction on 
the structure of <p that all variables which are existential (resp. universal) in ip are 
weakly existential (resp. universal) in x(ip) and that therefore for all /ux.a < x(<p) 
we have that x is weakly universal and for all vx.a < x{(p) we have that x is weakly 
existential. 

COROLLARY 6.7. On transitive transition systems we have that 

\W\W = Hf)\W-
PROOF. By induction on rank(y). If rank(<y9) = 1 or rank(<y?) is a successor 

ordinal the proof is straightforward. If rank(^) is a limit ordinal then tp is of the 
form nx.a. We distinguish four cases. If <p is of the form vx.a and x is existential 
in ip the induction step is straightforward. Similarly for <p of the form //x.a and x is 
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1386 LUCA ALBERUCCI AND ALESSANDRO FACCHINI 

universal imp. If y> is of the form vx.a and x is in the scope of a D in <p the induction 
step follows from Theorem 6.5 and Lemma 2.5. In the third case, if <p is of the form 
/ux.a and x is in the scope of a O in <p then -«p is of the form vx.^a[x/-^x] and x is 
in the scope of a • in ->tp. Since in this case rank(y>) = rank(-xp) we can apply the 
induction step as in the third case. H 

6.3. Normalizing the winning strategies. Let 9~ be a transitive transition system 
and if a ^-formula. Consider an arbitrary (memoryless) strategy a for Player 0, 
not necessarily winning. We define the restriction ofW{<p, {3~, SQ)) on a, denoted by 
%\a{<p, (^,so)), as follows: 

• The set of positions V\a of the restriction is given by all nodes which are the 
positions of some play compatible with a starting from position ((p, so)> 

• The arena o{S,\a(f, (9~ ,SQ)) is the triple {Vo\a, V\\a,E\„) where: 
1. Ko|„ = 0, 
2. Vx\a = V\„, 
3. if <^, j> e V\„r\ V{ then E\a((v,s)) = E{{y/,s)), and 
4. i f ^ , j ) e V\anV0thenE\a((y/,s)) = {cr((y/,s))}. 

• The ranking function Q|„ is given by the restriction of Q. on V\„. 

Note that if 9~ is finite then V\„ is finite, too. We have that in W\a(<p, {3~, so)) 
the only Player who can move is Player 1. This can be done because the moves for 
Player 0 are already completely determined by the (memoryless) strategy a. Clearly, 
any play in %\a{.<p, (&~, so)) is a play in B'itp, {ET, so)) compatible with a. We say 
that a play n in &\a{<p, {&, so)) is winning for Player 0 if and only if the play n is 
winning for Player 0 in &{<p, {ZT, so)). If a is a winning strategy for Player 0 then 
any play in W\a{<p, (5", so)) is winning for Player 0. 

EXAMPLE 6.8. Look at the arena depicted in Example 3.4. The non-dotted part 
of the picture represents the arena of a restricted evaluation game. 

DEFINITION 6.9. Let 9~ be a finite transitive transition system and tp a ^-formula. 
Suppose there is a winning strategy a for Player 0 in the parity game &(<p, {!T, so)). 
Then, for every position (y/,s) of &\a{<p, (?7~,s0)), we define a measure d((^ , s)). We 
distinguish two cases in the definition, depending on whether the strongly connected 
component scc((y/,s)) of (y/,s) m£\a((p, {!T,so)) is empty or not: 

1. scc{(y/, s))=<t): 

d{( ^ ( 0 if£| f f((y/,s» = 0, 
KW'S)> \max{rf((<A,s')): {</>,s') e E\a((v, s))} + 1 else. 

2. scc(y/,s) ^ 0 : 

d({y,,s)) = 0 if \J{E\a((a,s)): (a, s) e scc(^, s)} \ scc(^, s) = 0, 

else 

d((y/,s)) = max{d((</>,s')): (<j>,s') g scc((y/,s)) 

and exists 

(Z,s") G sec{(yr,s)) with (<f>,s') € E\a((i,s"))} + 1. 
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For all finite transition systems d is a well-defined measure. Indeed, if we have a 
finite transition system we obviously have a finite arena which can be collapsed to 
a finite and well-founded graph by identifying all vertices in the arena which are in 
the same strongly connected component. It is clear that on finite and well-founded 
graphs d is well-defined. By noting that on the original arena the measure of a vertex 
corresponds to its measure of the collapsed arena we get that d is well-defined. 

LEMMA 6.10. Let !T be a finite transitive transition system and <p G ££ • Suppose 
there is a winning strategy a for Player 0 in the parity game &(<p, (£T ,s§)). If 
y G bound(yj) is a jx-variable, then for every position (y,s) G V\a, we have that 
scc((y,s)) = 0. 

PROOF. If scc((>>, s}) ^ 0 then Player 1 can determine a play % in the restricted 
game W\a{<p, (ZT, SQ)) where (y, s) occurs infinitely often, since in %\a{(p, (ST, so)) 
only Player 1 moves and therefore can stay as long as he wants in a strongly 
connected component. Remember that cp € I.^. Thus, there is no v-variable free 
in <py. Moreover, if y G free(cpx), where x is an arbitrary v-variable, we have that 
fl((j, s)) is strictly greater than the priorities of x and <px positions. Therefore, n 
is winning for Player 1. But since n is compatible with a, the play must be winning 
for Player 0, too. A contradiction. H 

Given the restriction of &((p, (ST, so)) on a winning strategy a and the measure d 
on V\a we define the normalization of a, denoted by <rN, as follows: 

• For all positions (Of}, s') G V\a we have that 

oN((Of},s')) = a((Of},s')), 

ifd(o{(Of3, s'))) is the minimum of the set {d((f}, s)): (/}, s) G E((Of}, s1))}, 
where any (/?, s) G E({Op, s')) has to be reachable from (O/?, s') in V\a. Else 

aH{{Op,s')) = {p,s"), 

where (fi,s") G E((0/3,s')) is a vertex reachable from (Op,s') in V\a such 
that d((0,s")) is the minimum of the set {d{{p,s)): (fi,s) G E((Ofi,s'))} 
where any (ft, s) G E{{Op, s')) has to be reachable from (Of}, s') in V\a. 

• If y/ is not of the form Of} then we simply set aN((y/,s)) = <r((y/,s)). 
Intuitively, given a winning strategy a for Player 0 onS'((p, (&~, so)), the normalized 
strategy aN for Player 0 is given by adapting a such that for all vertexes of the form 
(Of}, s') Player 0 moves to a vertex (/?, s") whose measure is the minimal measure 
of all positions of the type (/?, s) reachable from (Of}, s') which are still winning 
in f (if, ( y , SQ)). We have the following lemma. 

LEMMA 6.11. Let 3~ be a finite transitive transition system. If a is a winning 
strategy for Player 0 on %"(<p, (&~,so)) then aH is a winning strategy for Player 0 
onW(ip, (3~,sG)), too. 

PROOF. First we prove the following claim: 
CLAIM: E\a and is^N coincide on every non empty sec o{%\ati(<p, (ZT, so)). 
The proof of the claim goes as follow. If there is no position of the form (Of}, s) in 

a sec of£\aN(<p, (ZT,so)), the claim is trivially verified. Consider now an arbitrary 
scc((0/U)) of %\aH(y>, (ZT,s0)). Let (y/,t) G scc((Of},s)), in order to prove the 
claim we have to show that £|aN ((y/, t)) = E\a((\j/, t)). 
(a) If ^ is not of the form Oa, then E\aN((y/, t)) = E\a((y/, t)). 
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(b) For the case where y/ = Oa then suppose that E\an((i//, t)) ^ E\a((y/, t)) and 
that E\an{{y/, t)) = {(a,t')}. Note that by construction of aN the position 
(a, t') is the only successor of (y/, t). Since E\aN((y/, t)) ^ E\a{(y/, t)) it must 
hold that 

d{{a,t'))<d({y/,t)) (3) 

where d is the depth defined on E\a{tp, (H', s0)). Since scc((Oa, t)) ^ 0 and 
since (a, t') is the only position reachable in one step from (Oa, t) we have 
that (a, t') G scc((Oa, t)) and therefore that (Oa, t) is reachable from (a, t') in 
%\an (tp, ( y , so)). Since reachability in £|CTN(tp, ( y , so)) implies reachability in 
E\a(tp, (3~, so)) we can infer that d((a, t')) > d((Oa, t)), where d is the depth 
defined on E\a(tp, (3~, so)). This is a contradiction to point 3 and therefore the 
claim is proved. 

Consider an arbitrary play it in the graph of W\an (tp, (3~, so)). If n is finite, then 
by construction of the normalized arena the play is winning for Player 0. If n is 
infinite then from a certain position, say (a, t), we are in a sec of f|CTN(y>, (9~ ,SQ)). 

But then by the previous claim after (a, t) the strategies of a and aN coincide. Since 
by construction of aN the position (a, t) is winning in W\a(tp, ( y . s0)) the highest 
priority appearing infinitely often in n must be even and, therefore n is a winning 
play in %(tp, (3T, s0)) for Player 0. H 

In the next lemma we prove that, when considering S2"f°rmulae> normalized 
strategies have a nice and very useful property. 

LEMMA 6.12. Let 3~ be a finite transitive transition system and tp G JJ^ sucn tnat 

all v-variables are weakly existential. Let aH be a normalized winning strategy for 
Player 0 on "S(tp, (!T,so))- Consider a position (x,si) in ^\an(tp, (&~,so)) where 
x G bound(y>) is a v-variable. Then, if there is a position (y, S2) reachable from (x, s\) 
in V\an, wherey G bound(<^) is a ̂ .-variable, then there is no position (x,si) reachable 
from (y,S2) in V\au. 

PROOF. Suppose there is a play n consistent with <rN such that we have the follow
ing regenerations: (x, s\) then (y, S2) and then (x, S3), where x is a v-variable and 
y a //-variable. Note that, since tp G ££, we have that y G free(tpx), and therefore 
tpx < ipy. This implies that in re wemusthavepositionsoftheform{0(^(x)),5'[} and 
(P(x), s[') before (x, si), and also positions of the form (0(/?(x)), s$) and (P(x), s") 
before (x, S3} but after (y, si). By construction of normalized strategy and by the 
transitivity of the transition system 3~ it holds that d((P(x),s"}) = d((fl(x),s"}) 
but also that d{{P(x),s[')) = d({P{x),s%)) = d({y,s2)). This implies that 
scc((y,s2)) 7̂  0. Because <rN is a winning strategy for Player 0, by Lemma 6.10 
we get the desired contradiction. H 

We immediately can restate the previous lemma as the following theorem. 

THEOREM 6.13. Suppose a finite transitive transition system E7~, a formula tp G Zj 
such that all v-variables are weakly existential and a normalized winning strategy, aN, 
of Player 0 in %(tp, (ZT, s)). If in a play n consistent with <rN there is a regeneration 
of a v-variable x then either there is no more regeneration of a fi-variable after the 
first regeneration ofx or, if there is such a regeneration of a ^-variable, then after this 
position there is no more regeneration of x. 
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6.4. Encoding normalized winning strategies. In Definition 6.14 we define the 
formulae NS~(X'.y) and NSj(x, X') used to encode the main properties of the 
normalization of winning strategies of tp given by Theorem 6.13. Encoding, in this 
context, will be formalized in the two main Lemmas of the section, Lemmas 6.16 
and 6.17. The intuition behind these formulae is the following: 

• NS~(A", y) reflects the fact that we are regenerating y and any v-variable 
regenerated afterwards will be an element of X', 

• NSj(jt, X') reflects the fact that we are regenerating x and if we regenerate 
any //-variable then afterwards any v-variable regenerated will be an element 
of JT. 

In the sequel, in order to ease notation, we write a formula of the form <pf
y
 x' 

instead of (<pfree{x))y. 

DEFINITION 6.14. Let <p be a Y.\ -formula. Let Y = {y\,..., yk } be the set of all 
fi-variables in ip and X be the set of all v-variables in tp. For all subsets of X' c X, 
all v-variables x such that x e X/X' and all //-variables y we define the formulae 
NS+(x, X') and NS~(X',y) recursively on the size of X' such that 

and, such that 

NS+UJ) = (unf^r)V^r^)[yi/NS-(9,yi),...,yk/NS;(ji,yk)]. 

If A" = {*,-,,... ,Xi,} a n d T 7 = X \ X', then 

NS; (X>, y) = (unf ( ; _ F ) ^ r / ) (<p-nfriX,))[xti / N S ^ U - , , X'~u), 

xJNS+^ixi,,*'-'')], 

and 

tiS$(x,X') EE {u^{YUXI]^
Yur))[yx/nS-{X\yx), 

yk/HS-{X',yk), 

Xil/NS$(Xll,X' '% 

Note that by construction we have that for every v-variable x, every //-variable y 
and every set of v-variables X', free(NS^(x, X')),free(NS~ (X', y)) C free(<p) and 
bound(NS+(x,l")),bound(NS-(A",^)) C bound(^). 

LEMMA 6.15. Let <p e S j , y be // - variable in <p and X'be a proper subset of the set 
of all v-variables. Suppose that Xj is a v-variable such that Xj £ X'. We have that 

HS-{Xl,y)MS+
v{xi,X')e^1. 
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PROOF. The proof goes by induction on the size of A". If X' = 0 then clearly 
NS~(2", Y) € E? and, by definition of the formula, NS+(x, X') e A£. The induc
tion step follows from the definitions by noting that the class A£ is closed under 
substitution of A% formulae if no new variable is bound. H 

LEMMA 6.16. Let <p be a "L^-formula and X be the set of all v-variables in <p. 
Suppose that all x e X are weakly existential. Let {J',SQ) be a finite transitive 
transition system such that there is a normalized winning strategy aN in the evaluation 
game W{ip, {3~, so)). The following holds for every X' C X where X' — XjX': 

1. If there is a play consistent with aN which reaches a position (y, s) (y a ̂ .-variable 
in (p) such that on this play before (y, s) there are positions (x, s) for allx' £ X' 
then it holds that 

se\\NS;(X',y)\\^. 

2. If there is a play consistent with aN which reaches for the first time a position (x, s) 
{x a v-variable in <p) such that on this play before {x, s) there are positions (x, s) 
for allx € X1 \{x} then it holds that 

*e||NS+(x,x')lk-
PROOF, Let Y = {y\,..., yu] be the set of all /^-variables in tp. We prove the 

two points simultaneously by induction on the size of X'. If X' = 0 we have that 
NS~(0,y) = ur\fp-x((<p~x)y). If there is a play consistent with cN reaching a 
position of the form (y, s) whereby for all v-variables there has been a regeneration 
in this play before, then, since aN is a normalized strategy, by Theorem 6.13 there 
can not be any regeneration of a v-variable after ( j , s). Therefore <rN determines a 
winning strategy in 

and with Theorem 3.2 we get the induction base for part 1. For part 2 remember 
that 

NS+(x,0) = ( u n f ^ e ( y ) ^
e e ( 5 ' ' ) [ y i / N S ; ( 0 , j 1 ) , . . . , j , / N S ; ( 0 , W ) ] . 

Suppose that there is a play consistent with aN which reaches for the first time a 
position (x, s) (x G X) such that on this play before (x, s) there are positions (x, s) 
for all x e X \ {x}. Then, since CTN is a normalized strategy, by Theorem 6.13 for 
every play extending this position which is compatible with CTN, either there are only 
regenerations of v-variables, or, if there is a regeneration of a {y,s), then after this 
regeneration there is no more regeneration of a v-variable. Therefore aN determines 
a winning strategy in 

r ( (un f^ r e E ( , ) ^
e e ( J ' ) ) [ j 1 /NS ; (0 , j 1 ) , . . . , W /NS; (0 , j , ) ] , ( ^ , . ) ) 

and with Theorem 3.2 we get the induction base for part 2. 
For the induction step of part 1, let X' = {x, , , . . . , x,,} and let (y, s) be a position 

of a play consistent with aN such that all x € X' have been regenerated before. 
Then, by Theorem 6.13 for all v-variables x, regenerated afterwards in the play we 
have Xj € X'. By construction for such a position (x,-,s,-) we will have that all 
v-variables in X' are regenerated before this position. Define X'~' = X' \ {x,}. It 
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can easily be seen that (x,-, Sj) satisfy the condition of part 2 and, since x,- e X', that 
X'~' C X'. Therefore, we can apply induction hypothesis of part 2 and get 

* , e | | N S + U ; , ^ ' ~ ' ) l k . 

Recapitulating, we have that for all plays consistent with aN starting from {y, s) if 
a v-variable x,- is regenerated by a position (x,-, Sj) then st e ||NS+(x,-, X'~')\\^ and 
otherwise we have only regenerations of/^-variables. But by Lemmas 2.4.1 and 3.3 
this means that aN gives us a winning strategy in the evaluation game 

where 

y = u n f ( ^ _ F ) t a ( j r , ) ( ( y > - : F 7 ) ^ ' ) ) [ ^ / N S ; _ F U - 1 ) r - ' 1 ) , 

By noting that y = NS~(X',y) and using Theorem 3.2 we finish the induction step 
for part 1. 

For the induction step of part 2 let (x, s) be a position of a play consistent with 
aN such that all f e l ' have been regenerated before. There are only three disjoint 
classes of winning plays (consistent with erN) extending the position (x, s) and they 
are obtained by considering all possible regenerations of bound variables after this 
position: 

1. The class of plays in which afterwards we regenerate a xi £ X' in a position 
(xj,Si), and before this position there was no regeneration of a /^-variable. 
In this case we can apply the induction hypothesis for part 2 to the set X'~' 
and get 

Sie\\NSZ(xhX'-')\\r. 

2. The class of plays in which afterwards we regenerate a ̂ -variable y in a position 
(y, sy), and before this position there was no regeneration of a xr e X'. In this 
case, we can apply part 1, where the induction step is already done, and get 

^ G | | N S - ( Z ' , y ) | | ^ . 

3. The class of plays in which there is no regeneration of z e X' U Y, but there are 
eventually only regenerations of x, e X'. Because these plays are consistent 
with oH, they are winning. Therefore, they are winning in the evaluation game 

a ^ u n f j : . ™ , , , ^ ™ * 0 ) , (F,s)), too. 
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1392 LUCA ALBERUCCI AND ALESSANDRO FACCHINI 

By Lemmas 2.4.1 and 3.3 we have that 

yk/NS-(X',yk), 

x . / N S + U , , ! " - " ) , 

xil/tiS$(xil,X'-il)]\\!r. 

and this ends the induction step of part 2 and the proof. H 

LEMMA 6.17. Let <p be a Y/^-formula and X be the set of all v-variables in <p. 
Suppose that all v-variables are weakly existential. Then, for every finite transitive 
transition system ZT and for every X' C X it holds that 

1. For every y e Y we have 

\\fis;(x',y)yv c\\Vyyv, and 
2. for every x € X1 =: X/X' we have 

||NSj(x,jr')||^c ii^n^. 
PROOF. Let Y = {y\,-..,yic} be the set of all /^-variables. We prove the two 

points simultaneously by induction on the size of X'. Suppose X' is empty. Then 
we have that NS~(0,)>) = unf^x((if~x)y) and by Lemma 6.3.3 we obtain 

\\unf*-x((<p~x)y)\\r* C H^ll^-v.. 

Therefore we complete the base case of the induction for part 1. For part 2 remember 
that 

NS+(x,0) = ( u n f ^ e ( n ^ I ' ) ) [ j 1 / N S ; ( 0 , j 1 ) , . . . , j , / N S ; ( 0 , j , ) ] . 

Thus, by the induction base of part 1 and by Lemma 2.4.4, we have that 

| | ( u n f ^ e e ( , ) ^
e e ( I ' ) ) [ j 1 / N S ; ( 0 , j I ) , . . . , j , / N S - ( 0 , W ) ] | | ^ 

c 
I K u n f ^ ^ W ) ^ / ^ , , . . .,ym/ipym}\\r*. 

But because in &~v we have that k{y) = \\<py\\s-v and by applying Lemma 2.4.1 and 
Lemma 6.2.2, it holds that 

\\(unf*^m<pfre{Y))[yi/<Pyi, • • •,ym/tPym]\W<p Q \\(px\\<r*. 

Therefore 

| | ( u n f ^ e ( , 1 ^ r ) ) t j 1 / N S ; ( 0 , j 1 ) , . . . , j , / N S ^ ( 0 , j f c ) ] | | ^ C H ^ I I ^ . 

This ends the induction base for both parts 1 and 2. 

https:/www.cambridge.org/core/terms. https://doi.org/10.2178/jsl/1254748696
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:44:35, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2178/jsl/1254748696
https:/www.cambridge.org/core


THE MODAL /i-CALCULUS HIERARCHY 1393 

Let X' = {x,-,,..., Xj,}. For the induction step of part 1, remember that 

x,//NS+_F(x,-,,r-;')]. 

By induction hypothesis, by Lemma 2.4.4 and because in fT9 the evaluation of 
a variable x,v s X' is equal to I K V - ^ ' ) ^ || _~ ,̂ we obtain 

||Ns;(jr', y)y* = l l u n f ^ - ^ , , ^ - ^ 

[ J C / N S + ^ U - , , * ' - ' 1 ) , 
¥> 

* / , / N S + F (*„* ' -*) ] Ik 
V 

C| |unf ( ;_ I ,^ ) ( (^ - j r ' ) , ^ J r ' ) )> 

With Lemma 6.2.2 we obtain 

Finally, because by Lemma 6.3.4 it holds that || (<p~x')y || _j? C H ^ | | ^ we get 

IINs;(r,j)n^c||^n^. 

For the induction step of part 2 if X = X \ X', then by induction hypothesis and 
by part 1 we have for every finite transitive transition system !T 

||Ns;(jr',^i)||^ c Hv^H^, 

l|NS;(X',^)]||^ C H ^ J ^ , 

\\m%{xhx'~h)\W^\W,h\\^, 

IINS+Cx^'-'OH^Cll^ll^. 

Therefore, by Lemmas 2.4.4 and 2.4.1, and because for every z e bound((p) we have 
that A(z) = ||¥>r||,y«>, we get 
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1394 LUCA ALBERUCCI AND ALESSANDRO FACCHINI 

| |(unf5„(^,)(^ree{ruX')))[>'i/NS-(Z',j1), 

yk/fiS-(X',yk) 

Xil/NS;(xh,X'-"), 

Thus, we can apply Lemma 6.2.2 and obtain 

||(unfy„(,^,(^ree(rur)))ll^ c yxyv. 
Because this implies that 

\\fiS+{x,X')yvcyxyv 

this ends the induction step of part 2 and the proof of the Lemma. H 

6.5. The collapse over transitive models. Everything now is ready to prove the 
collapse of the /i-hierarchy over finite transitive transition systems. 

DEFINITION 6.18. For the formula p e S ' such that X = {x\,..., xm} is the set 
of all v-variables imp. We define a new formula p(ip) e A% such that 

p(v>)=ipf^^[x1/NS+{xuX-l),...,Xm/m^(xm,X-m)]. 

REMARK 6.19. By Lemma 6.15 it can easily be seen that p{<p) is indeed a A£-
formula. 

THEOREM 6.20. For all i ^ e l j and all finite transitive transition systems £T we 
have that 

\\<P\W = \\P(T(<P))\W. 

PROOF. First, we observe that r{ip) G ££ a n c ' t n a t by Corollary 6.7 we have that 
\\(p\\ff- = \\T((P)\\^. Thus, we can assume that each v-variable in <p e E£ *S weakly 
existential and any /^-variable weakly universal. If X = {xi,..., xm} is the set of 
all v-variables in ip, by definition of p we have to prove that 

Mr = | | ¥ > f r e e W [x 1 /NS+(x 1 ,Z- 1 ) , . . . , x m /NS+U m , l - m ) ] | | ^ . 

"D": Note that T[xy ^ \\NS+(Xi,X~l)y,...,xm » | |NS+(xm,X-m) |H|] 
a n d ^ x , .-> | |NS+(x i , J r - 1 ) | | ^ > . . . , x m ^ | |NS+(x m ,Z- m ) | | ^ | | ] agree on the 

free variables of ipfree{x) because | |NS+(x,-,X-')|k and \\NS^{xt,X-')yv coincide 
for every x,- G X. Therefore we have that 

| | ( ^eeUf) [ x i / N S + ( x i ) X-1), ..., Xm/NS+(xm, X~m)]y 

= | |<p f r e e W [x i /NS+(x , ,Z- , ) , . . . ,x m /NS+(x m ,X- ' " ) ] | | ^ . 
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With Lemma 6.17 and, because all v-variables appear positively in tp, by applying 
Lemma 2.4.4 we get that 

^reeW[x,/NS+(x,,jr - 1 ) , . . . , xm/ns+{xm,x- ^ 
C \\ipfree{X)[Xi/<fiXl,..., Xm/<PxJ\\^. 

By Lemma 2.4.4 and because in y*" we have that X{xt) = \\(pXl. \\z-e, we obtain 

\\<pfnelx)[xi/<pXi,...,xm/<pxj\\<rv c yUee{x)y,. 

Since by Lemma 6.2.2 we have that ||<£freeW \\^v = \\(p\\y we get this inclusion. 
"C": Let s G ||v||^-. By Theorem 3.2 there is a winning strategy in W{tp, (J", s)) 

and by Theorem 6.13 it can be assumed to be normalized. Let n be any play 
consistent with the strategy starting from (tp,s). We have that if there is a (first) 
regeneration of a v-variable x, in a position (xi,Sj) then by Lemma 6.16 we have 
that 

*e||NS+(*,,jr-')||«r 

where X is the set of all v-variables in <p. Therefore, there is a winning strategy for 
Player 0 in 

g r ( / ~ W , ( ^ [ X l ~ HNS+Oci,*-1)!^, . . . ,*, , -> \\NS+(xn,X-n)y],s)). 

By Theorem 3.2 we have that 

S e \\<pKeX \\^[Xl^\\NS+(Xl,X-')\W,...,x„^\\NS+(x„,X-")\\:r] 

and with Lemma 2.4.1 we complete the proof. H 

COROLLARY 6.21. The modal fi-calculus hierarchy on finite transitive systems col
lapses to Aj. 

PROOF. By Theorem 6.20, zZf" = Af'\ By duality, uf'' = Af". By this 

fact it is therefore very easy to verify inductively that for every n > 0, ££+« = 

ll2+n - a2 • ^ 

COROLLARY 6.22. The modal ^.-calculus hierarchy on transitive systems collapses 
to A*. 

PROOF. Suppose that the hierarchy does not collapse. Therefore, there is a formula 
(p such that for all formula y/ e A£ there is a transitive system ZT such that y , so |= 
-•(</? <-> y/). By Theorem 4.5, there is a finite transitive model Iff such that 
iff ,s{ \= -i(<p <-> if/). But this cannot be the case by Corollary 6.21. H 

We end with the definition of a syntactical translation from 5?^ to A£ preserving 
equivalence on transitive transition systems. 

DEFINITION 6.23. R: ^ —> A£ is defined as 

• /?(/?) = p and R(->p) = -<p, 
• /?(_L) = ±and /? (T) = T, 

7?(o; O p) = R(a) o R{fi), where o 6 {A, V}, 
R(A fi) =A £(j8), where AS {D, O}, 
R{[ix.ip) = wn(/)(i(wn(^.(J?(y)))))), 
/?(v;c.y>) = -i(/?(^x.-i<p[x/-ix])). 
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LEMMA 6.24. For all ^-formula (p we have that 

1. R{ip) is well-defined, and 
2. R(<p) e A£. 

PROOF. We prove both parts simultaneously by induction on the structure of tp. 
The induction cases for boolean and modal connectives are trivial. If ip is of the 
form ,ux.a: we have that i?(,«x.a) = wn(/)(T(wn(/«.(i?(a)))))). Because x is a well-
defined syntactical transformation, and neither wn nor x increase the alternation 
depth of a formula, the application of/? in the clause of R(fix.a) is well-defined by 
induction hypothesis. Thus, R((p) terminates and therefore it is well-defined too. 
The fact that R(/ux.a) e A£ follows by induction hypothesis, by the fact that, by 
Remark 6.19, for all YJ^-formulae y/ we have that p(y/) G A£, and because we know 
that x and wn do not increase the alternation depth. If <p is of the form vx.a, on 
one hand R(vx.a) is well-defined because the clause for this form is defined via a 
reducing case R(/ix.-«p[x/-ix]), and, on the other hand R{ip) € A£ because A£ is 
closed under negation. H 

THEOREM 6.25. For all <p e £fM and all finite transitive transition systems ST we 
have that 

IMk = ll*Mlk-
PROOF. We prove the equivalence by induction on rank(y>) simultaneously for all 

finite transitive transition systems !T. The induction cases for boolean and modal 
connectives are trivial. If (p is of the form fix.a we have that 

| | i?(^x.a)| |^ = \\\Nr\(p(x(wn(jux.R{a)))))\\gr by definition of R 

= \\\Nn(jux.R(oi))\\r x(wn(/ux.R{a))) G S^, and by 

Lemma 2.5 and Theorem 6.20 

= ||/ix.a||^- by Lemma 2.5 and induction 

hypothesis. 

If ip is of the form vx.a we do a similar induction step like above by using the 
equivalence ||vx.a||^- = ||-i/ix.-iaLr/-ix]||^-. H 

We conclude by verifying that the syntactical translation R is also an explicit 
syntactical translation of all modal ^-formulae to the alternation free fragment 
preserving denotation in every transitive transition systems. The proof goes with 
similar argument as in Corollary 6.22 and it is left to the reader. 

THEOREM 6.26. For all ip e .2^ and all transitive transition systems 3~ we have 
that 

\\<P\W = \\R{V)\W-

REMARK 6.27. Note that due to the example of Visser in [29] mentioned in the 
introduction the alternation-free fragment is also the optimal bound if restrict 
ourselves to transition systems which are transitive and reflexive. 

EXAMPLE 6.28. Let's have a look at our example from Section 2. In the case of 
"always eventually", we have that 

\\vx.(fiy.(p V Oy)) A Dx)f = \\(pV Op) A 0(p V Op)f. 
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For "infinitely often", it holds that 

\\vx.py.((p V Oy)) A Ox)||T' = \\vx.(p A Ox)f. 

But, because from footnote 4 of the introduction we know that vx.{p A Ox) cannot 
be reduced to any purely modal formula, contrary to the transitive and symmetric 
case, over transitive transition systems "infinitely often" cannot be expressed by a 
A^ formula. 

§7. Strictness of the hierarchy for reflexive transition systems. In this section 
we prove the strictness of the modal ^-calculus hierarchy on reflexive transition 
systems. In doing this, we follows the argumentation of the proof of the strictness 
of the hierarchy on all binary transition systems presented in [1]. First, we adapt 
the game transition system such that it is reflexive. 

Let ^((p.(^,s))bea parity game with priority function Q. and with correspond
ing pointed game transition system &~(%(ip, (ET, s))). We extend the edge relation 
E of the parity game to its reflexive closure Er = E U {(s, s); s e VQ U V\}, and 
change our priority function Q to Qr such that for all vertices (iff, s) where y/ = nx.5 
(rj e {fi, v}) we have 

ar((yf,s))=Q,((yt,s))+2 
and such that for all other vertices we define: 

• if min Q. is even 

&((v,s)) = 
0 if (y/,s) e Vi, 

1 if(y/.s)eV0. 

• if min Q. is odd 

nr((yy,s)) 
2 if (iff. s) £ Vu 

1 if (iff, s)ev0. 

The new resulting "reflexive" parity game is denoted as &r((p,(&~,s)). The 
following Lemma can be proved by unwinding the definition of winning strategy. 

LEMMA 7.1. Player 0 has a winning strategy for <or(<p, (3f~, s)) iff Player 0 has a 
winning strategy for W(ip, ( y , s)). 

Given a "reflexive" parity game &r(<p, (tT, s)) the pointed game transition system 
y (£"•(<£>, (fT,s))) is defined analogously as above. Obviously, the pointed game 
transition system 3~[%r(<p, (&~,s)))is reflexive. We have that 

PROPOSITION 7.2. Let (!T,s) be an arbitrary pointed transition system. For all 
(p G Yin we have that 

Zr(gr(v,{Sr,s)))e\\WKJ\ ifandonlyif r(X(<p,(r,s)))e\\Wnr\\ 

and dually for tp el.%. 

PROOF. This follows directly by the definition of the "reflexive" parity game 
%r(<p. (^. s)) and by applying Proposition 3.6 to Lemma 7.1. H 

COROLLARY 7.3. Let (3~,s) be an arbitrary pointed transition system. For all 
if e l l j we have that: 

^(^'(<p.(^.s))) € H ^ ' J I if and only if (¥,s) e \\<p\\. 

and dually for (p € E«. 
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PROOF. By Proposition 7.2 and Corollary 3.8 we obtain our result. -\ 

For all formulae <p we define a function fv (functional class) mapping a pointed 
transition system (9~, s) to a reflexive transition system f^{^,s) such that 

The proof of the next Lemma follows similar arguments as the proof of the same 
result for arbitrary transition systems proved by one of the authors in [1]. 

LEMMA 7.4. For all formulae \// G !,„ (resp. Yl„), n G N, there is an equivalent 
formula p e S { {resp. n£) such that the function fv has afixpoint in Tr, that is, a 
pointed reflexive transition system {J~F, sF) such that 

fv{!?F,sF) = ^F,sF). 

THEOREM 7.5. For all natural numbers n G N \ {0} we have that 

zrsCi and n»rsni+i-
PROOF. We proof the contrapositive. Assume that we have 

yT c yT T-TTT c r-fT 

Without restriction of generality, assume 2>J'+l C S j r . Then, ii\\<p\\ G IT£+1 we have 
\\-i(p\\ G S^+1 and by assumption \\-xp\\ G S« and therefore \\(p\\ € Tlf,. Therefore, 
assuming the contrapositive leads to 

4 ^ f and i C c n f . 

Since from Z ^ C Zj ' , by definition, it can be inferred that njf C Ej", and from 
nj+! C njf, by definition, it can be inferred that Ejf C njf, by assuming the 
contrapositive we get that Hj'+l = I l j ' = E ^ = Ejf and, obviously, we then have 
for all k G N that 

lln+k — u n — ̂ n+k ~ ^n • W 

Since WXf G ££+2 we have that -• WZf G n£ + 2 and with equation 4 we get 

ih^jr Gir. 
By Lemma 7.4 there is a formula ^ e i j equivalent to ~^Wi„^ and a pointed 
transition system (9~F,sF) such that 

(rF,sF) = fv(r
F,sF). 

Since f ^ , s ) is defined as y(^r(</>, (5",*))), by Corollary 7.3, for all pointed 
transition systems iff ,s) we have that fv{!T,s) € ||W^„+2II ^ an<^ o n ry ^ 
( y , 5) G ||v?||. Since <p is equivalent to ~^Wz^2 we get that 

( ^ f , ^ ) G | h ^ „ + 2 | | iff (^F.sF)&\\W^2\\ 

which is a contradiction. H 

THEOREM 7.6. 1. The modal fi-calculus hierarchy is strict over reflexive transition 
systems. 

2. The modal ^-calculus hierarchy is strict over finite reflexive transition systems. 
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PROOF. Part 1 is a corollary of Theorem 7.5. For Part 2, let \\<p\\ e i f \ LTf. 
Then, by Part 1 we know that for every y/ e E£_[ it holds that ->(<p <-> y/) has a 
reflexive model. By Theorem 4.3, this model can be finite. Hence ip e ~L„ is not 
equivalent to any 5^_, formula on finite reflexive transition systems. H 
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