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Abstract Denote by H" the 2n 4 1 dimensional Heisenberg group. We show that the pairs
(RF, H™) and (H*, H") do not have the Lipschitz extension property for k > n.
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1 Introduction

Over the past decades, it has been a subject of incessant research interest to identify the pairs
of metric spaces (X, Y) which exhibit the Lipschitz extension property, that is, the pairs for
which there is a constant C > 0 such that every L-Lipschitz map f : A — Y from an
arbitrary subset A of X can be extended to a C L-Lipschitz map F : X — Y. Most classical
results in this direction are concerned with target spaces Y having a linear structure, such as
Hilbert spaces or Banach spaces (see [7,14,17,22] and the references therein). Fewer results
are known about the extension of Lipschitz maps with nonlinear target spaces even though
this question becomes relevant in the theory of rectifiability in general metric spaces [2,10].
There is, however, a criterion due to Lang and Schlichenmaier (see [16]) which characterizes
the Lipschitz extension property of the pair (X, Y), where X = R” is a Euclidean space and
Y is a complete metric space, in terms of a spherical extension property. According to this
result it is enough to check whether every Lipschitz map defined on a sphere of dimension
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674 Z. M. Balogh, K. S. Fissler

less than n can be extended to a Lipschitz map on the respective ball with a linear control on
the Lipschitz constant.

To be more precise, a metric space Y is called Lipschitz n-connected if there exists a
constant C > O such that for every m € {0,...,n}, every L-Lipschitz map f : S C
R™*! — Y admits a C L-Lipschitz extension F : B#+l ¢ R”"+! — Y. 1In [16], it is shown
that the pair (R, Y), where Y is a complete metric space, has the Lipschitz extension property
ifand only if Y is Lipschitz (n — 1)-connected. More generally, they prove that for an arbitrary
metric space X with Nagata dimension (see [3]) less than or equal to n and a Lipschitz (n — 1)
-connected space Y, the pair (X, Y) has the Lipschitz extension property.

In this paper, we study whether the pairs (R¥, H") and (H*, H"), where H" denotes the
nth Heisenberg group, have the Lipschitz extension property. It turns out that the answer
depends on the values of k and n. Let us recall that the Lipschitz extension property holds for
the pair (R, H"), for all n > 1, since H" is a geodesic space (see [9, 16]). More generally, for
any complete and quasiconvex space Y, the pair (R, Y) has the Lipschitz extension property.
The situation becomes increasingly more difficult for higher dimensional source spaces, i.e.
for k > 2. The Lipschitz extension property of (R%, H") for n > 2 has recently been shown
in [9] and [19]. The proof of this result uses the above described characterization of Lipschitz
extendability via the spherical extension property as in [16] and a theorem of Allcock [1]
proving the quadratic isoperimetric inequality for H", n > 2 (see also the survey in [11], 0.7
and the open question therein). We conjecture that the Lipschitz extension property holds for
the pair (R, H") whenever k < n.

The main result of this note is the counterpart of the above conjecture for k > n:

Theorem 1 Let k > n. Then the pairs (R*, H") and (]HI", H") do not have the Lipschitz
extension property.

In fact, we will show that there is a Lipschitz continuous function f : St c Rl
which cannot be extended to a Lipschitz map defined on B"t!. To do so, we shall use the
fact that H" is purely k-unrectifiable for k > n, i.e. subsets of R are mapped under H"-
valued Lipschitz functions onto sets with vanishing k-dimensional Hausdorff measure. The
function f : §" — H" will be constructed as a lift of a Lagrangian n-sphere having the
property that any continuous extension to B! has positive filling volume. This will lead to
a contradiction and show the non-extendability of f and thus proves Theorem 1.

The structure of the paper is as follows. In Sect. 2, we recall notation and background results
on Heisenberg groups. In Sect. 3, we discuss the notion of rectifiability in the Heisenberg
group. In Sect. 4, we give the proof of Theorem 1. The last section is devoted to final comments
and open questions. Motivated by Theorem 1, we introduce and discuss the so called Holder
extension property of Lipschitz mappings.

2 Notation and background results

In this section, we recall the differential and metric structure of the Heisenberg group H".
This is a special example in the class of the so-called Carnot groups (see, e.g. [6,11]), defined
as follows:

Definition 1 A Carnot group G is a connected, simply connected Lie group, whose Lie
algebra g is nilpotent and has a stratification

g=Vid- -V,
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Rectifiability and Lipschitz extensions 675

where [Vy, V;] = V| forall j € N with V; = {0} whenever j > [. The positive integer [
is called the step of the group.

To define the Lie algebra of the Heisenberg group, we consider 2n + 1 vectors
{X1,.... X0, 11,.... Y, T}
which satisfy the commutation relations
[Xi, Y] =—[Y;, Xi] = —4T forl<i<n

and all other commutators vanish.

The vectors X1, ..., X,, Y1, ..., Y, span a 2n-dimensional space Vj. This generates the
following Lie algebra (where the Lie bracket is defined on the basis elements as described
above)

hp = V1 @ V2, where V| :=spanp{Xy,...,X,,Y1,...,Y,} and V;:=spanp{T}.

We have [V, Vi] = V, and [V), Vo] = 0. The corresponding Lie group, which can be
obtained by the exponential mapping, is called the nth Heisenberg group. It is an example
of a non-commutative step-two Carnot group and can be seen as the space R>**!, equipped
with the group law

n
v, 0%y 1) = (x Ly Y 2D Xy — xiy,f),

i=1

where x = (x1,...,%), X' = (&],...,x), ¥y = OVi,--»¥n), ¥ = (V],...,y,) are
points in R” and ¢, ' € R. The neutral element of the group is given by e = (0, 0, 0) and the
inverse of p = (x, y,t)is —p = (—x, —y, —1).

We can identify the Lie algebra j,, with the tangent space 7T, H"” of H" at the neutral element
e € H" and, by left translation, assign to each of the (basis) vectors in the Lie algebra a unique
left invariant vector field, which we will denote by the same letter, but with an additional
tilde,

:a,

These vector fields satisfy the same commutation relations as the corresponding vectors
ill bu, where the Lie bracket is defined by its action on smooth functions as [i , )7] f =
XY -Y&f. ~

‘We consider the so called honzontal tangent space H,H" = {X(p)|X € V;} and observe
that H,H" = ker(@) where § = dt — 2 lel vidx; — x;dy;. The tangent spaces H,H" are
collected in the horizontal vector bundle HH", a sub-bundle of the tangent bundle 7H".

Aleft invariant sub-Riemannian metric on H" is next defined by using so-called horizontal
curves. These are absolutely continuous curves y : [a, b] — H" with tangents lying almost
everywhere in the horizontal bundle, i.e. y'(t) € H, )H" for a.e. r € [0, 1]. Equivalently, y
is horizontal if it satisfies the condition

n
Va1 () =2 ¥/ Oyari() = vi()y, () forae.t €[a,b).
i=1

We define the length of a horizontal curve by using an inner product on HH" for which the
vectors X 1(p)y ..., Xu(p), Y1 (p), - Y (p) form an orthonormal basis of H,H" at each
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676 Z. M. Balogh, K. S. Fissler

p € H". More precisely,
b 1

lengthy, () := / (' ©. ¥ D)) / (Zy, ®) ) dr.

a

Definition 2 The Carnot—Carathéodory metric is defined as

dee(f(p), f(q)) :=inf lengthy(y),

where the infimum is taken over all horizontal curves y joining p to g.

Notice that the existence of the horizontal curves connecting an arbitrary pair of points in the
above definition is guaranteed by Chow’s theorem (see [11]).

The topology induced by the Carnot—Carathéodory metric coincides with the usual Euclid-
ean topology on the underlying space. However, the d..-metric on H" is not bi-Lipschitz
equivalent to the Euclidean metric dz on R?"*!. But there is the following comparison of
the two metrics: Locally, one can find a constant C > 0 such that

1 1
EdE(p,q) <dc(p,q) <Cdg(p,q)? p,q € B, (D

where B is a bounded subset in H” and the constant C depends on the bound of B (see
[4,11]). This implies that the identity map id : (H", d;..) — (RZH dp)is locally Lipschitz.
Moreover, it follows directly from the definition that the projection map = : (H"*, d..) —
(RZ”, dg) is 1-Lipschitz continuous, indeed

dp((p), m(q)) < length((y)) = length, (y) = dcc(p,q) p,q € H", ()

where y is a horizontal curve of minimal length which joins p to g.

For an arbitrary metric space (X, d) and 0 < s < 00, one can define the s-dimensional
Hausdorff measure 7y , (see, e.g. [20]). We will omit the subscript and simply write /2
if it is clear with respect to which metric the Hausdorff measure should be taken. Also, we
abbreviate ﬁf&n’ dp) = = A7 and fsz,ﬂ do) = = A0
Note that the estimate (1) implies

1 s
E%E(A) < A (A) < CHy (A)

for a bounded set A in R?"*+! where C depends on the bound of A. However, this is only a
very rough estimate between the Hausdorff measures of sets with respect to the Euclidean
and the Carnot-Carathéodory metrics. For example an open set A in H" is 2n + 1 dimensional
in the Euclidean metric whereas its Hausdorff dimension with respect to d.. is 2n + 2. For a
complete description of the discrepancy between the Hausdorff measures ¢} and /77, we
refer to [4-6].

3 Rectifiability in the Heisenberg group

The notion of rectifiability can be defined in arbitrary metric spaces. Let us recall from [2]
the following

Definition 3 A Borel set S in a metric space (X, d) is said to be countably % -rectifiable if
it can be covered—up to a set with .7#*-measure zero—by a countable family of Lipschitz
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Rectifiability and Lipschitz extensions 677

images of subsets of R*, that is, there exists a countable sequence of Lipschitz functions
fi+Aj CRY — X such that %, (S\ U, f;(A4;)) =0.

In the same paper, Ambrosio and Kirchheim observed that the above notion of rectifiability
is not suitable for all metric spaces in the sense that a given metric space can be purely
k-unrectifiable for some k € N. Let us recall:

Definition 4 A metric space (X, d) is called purely k-unrectifiable if sk( f(A)) = 0 for
any Lipschitz map f : A — X with A C R*.

Ambrosio and Kirchheim have shown in [2] that the first Heisenberg group is purely
k-unrectifiable for k = 2, 3, 4. More generally, H" is purely k-unrectifiable for k > n. This
result seems to be part of the mathematical folklore for the specialists working in the geometric
measure theory of Carnot groups. It follows indeed from the algebraic characterization of
purely k-unrectifiability in general Carnot groups due to Magnani [18]. Since we were not
able to locate an explicit reference for the application of this criterion to H" for n > 1, we
give the proof of this statement in Proposition 1 for the convenience of the reader.

Let us first recall

Theorem 2 ([18]) Let G be a Carnot group with Lie algebrag =V, ® Vo @ --- D V). Then
G is purely k-unrectifiable if and only if the first layer V| does not contain any k-dimensional
Lie subalgebra.

Recall that a Lie subalgebra of g is a subspace a of g which is closed under the Lie bracket,
ie.[x,y] €aforallx,y € a.

We will show the following proposition which enables us to apply Theorem 2 in order to
prove the k-unrectifiability of H" for k > n.

Proposition 1 The first layer V| of the Lie algebra b, = Vi @ V, does not contain any
k-dimensional Lie subalgebra for k > n.

Theorem 3 The nth Heisenberg group H" is purely k-unrectifiable for k > n.
Proof of Theorem 3 This follows from Proposition 1 and Theorem 2. O

This result suggests that the Euclidean notion of rectifiability as defined above is not
suitable for the geometry of the Heisenberg groups, at least not for k > n. See the comments
in the last section of this note and the references therein for a further discussion on this
subject.

Proof of Proposition 1 Let V be a k-dimensional subspace of V| with k > n. We prove that
there must exist two elements X and Y in V such that their Lie bracket [ X, Y] is no longer
contained in V| and, in particular, it does not belong to V. This shows that V cannot be a Lie
subalgebra of g.

The goal is to show that—if the dimension of V is big enough—the space must contain
an element X for which also J X belongs to V, where J is the complex multiplication with
respect to the basis {Xy, ..., Xu, Y1,..., ¥, } given by

0 E,
J =
(_En 0 )
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678 Z. M. Balogh, K. S. Fissler

and E, denotes the n-dimensional identity matrix. We will then show that [J X, X] is a
constant multiple of 7" and hence not contained in V. To see this, notice first that the dimension
formula for the injective map J : V — V; yields

dimJV =dimV =k >n+1

which, by a simple linear algebra argument, implies that V N JV 2 {0}. Thus, there must
exist a non-trivial element X € VN JV, ie.

n n
X=>aXi+pY, €V and JX=D BX;—a;Y; €V,
i=1 i=1

where at least one of the coefficients «;, f; is non-zero. We compute

[X, JX] [Za’X’+'B’Y”Z’Ble_a’Y’:| —42 O‘ +/3

where ¢ # 0. This completes the proof of the proposition. O

4 Proof of the main result

In this section, we prove the statements of Theorem 1 which are the main results of this
paper. We start first by showing that the pair (R¥, H") does not  have the Lipschitz extension
property for k > n. To do so, we define a Lipschitz function f : §” ¢ R"T! — H" which

admits no Lipschitz continuous extension to B"*1. This map will be obtained as a lift of a
Lagrangian map f : 8" C R"*! — R?" for which the image of any continuous extension to
B"+1 must have positive jfé’“ measure. Let us recall the following definition.

Definition 5 A %!'-smooth map f : M"™ — R?" from an m-dimensional manifold M™ to
the Euclidean space R?" equipped with the standard symplectic form o = > dxi Ady; is
said to be isotropic if f*w = 0 on M™. In the case m = n, the map is also called Lagrangian.

Proposition 2 For every n € N, there is a Lagrangian map

f LS Rn-‘rl N RZn

such that %E"H (F(B"t1)) > 0 for every continuous extension
F: Bl c R"™ S R¥ with Flgn = f.

Proof We consider a function f : " — R2" which was given in [8] as an example of an
exact Lagrangian immersion. This map is defined as follows:

. +1 2 .
FiSTCRY™ SR, (X1, Xy X 1) B> (X1, X1 e ey Xy XX 1y X2Xn4 15 -+ s XnXng1),

where x12 x4+ x,% 41 = 1. We leave it to the reader to check that this map is indeed
Lagrangian, i.e. f*» = 0 on §", where w denotes the standard symplectic form on R>".
To do so, it is crucial that we only ask the pullback form to vanish on the set S” where the
additional constraint Z:’ff x; = 1 holds—the trivial extension of f to the ambient would
no longer be Lagrangian.

Next, we show that the image of an arbitrary continuous extension F : B+ — R?" of
f has positive (n 4 1)-dimensional (Euclidean) Hausdorff measure. Actually, it suffices to
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Rectifiability and Lipschitz extensions 679

1
Fig. 1 Knotted sphere—projection of f (8%) C R* to R?

prove that the projection of the image to an (n + 1)-dimensional subspace has non-vanishing
measure. This follows from the fact that

Tt D RPN — R (o sty ey y20) B (V1 ey Yut1)

is 1-Lipschitz continuous and hence %”E"H (Tp+1 (F(BH 1Y) < %g’*l(F(B"H)).
We wish therefore to show that for any continuous extension F of f the composition

Tpq1 0 F : BrH1 — R

is onto on a set of positive (n + 1)-dimensional Hausdorff measure. This will be achieved by
using a degree theory (see e.g. [21]) argument as follows.
Let us consider the function

. . +1
g:=mpp10f 8" >R (xp, ., Xy X 1) > (X1, o0, X, XXy 1)
and its trivial extension to B"*! given by
. 1
G'Bn+l _)RnJr s (-xla"'sxnv-xn+l)'_) (-xlv"'»xnaxl-xn+1)'

Consider for example the point p = (%, 0,...,0) in R"™*!, Its preimage is uniquely
determined and equals (x1, ..., Xy, Xo11) = (1,0,...,0), hence p ¢ G(B"1) = g(s").
Computing the Jacobian of G, we find that J(;(%, 0,...,0) = % # 0, which shows that the
point p is a regular value of G and its Brouwer degree is non-vanishing, d(G, B"*!, p) # 0.
Note here, that the map G, obtained by projecting f and taking its trivial extension to the
interior of $", gives a smooth map from an open subset of R"+! to R"+!, which ensures that
the degree theory is applicable. Since the set R"11\ g(§") is open, there exists ¢ > 0 such
that

B(p, &) C R™ M\ G(aB"+).
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680 Z. M. Balogh, K. S. Fissler

Using the fact that the degree is constant on the connected components of R” T\ G (9 Bn+1),
we find that d(G, B"T!, ¢) # 0 forall g € B(p, ¢) and thus also d (7,41 o F, B!, q) #£0
on B(p, ¢) for an arbitrary continuous extension F of f. This is so, because two continuous

functions on B"*+! which coincide on the boundary 9 B"+!1 = S§" have the same Brouwer
degree relative to B"*! for all points p which do not lie in the image of the boundary. Recall
that d (41 o F, BTl q) # 0 guarantees the existence of a point x € B"*t1 such that
41 © F(x) = q. We conclude that

B(p, ) C Muy1 0 F(B"H),
which yields
0 < A3 (B(p, &) < A7 (g1 0 F(B'Y) < A (F(B™)
and thus completes the proof of the proposition. O
We are now in a position to prove Theorem 1:

Proof of Theorem 1 We start with the first statement of the theorem, i.e. we show that the
pair (R¥, H") does not have the Lipschitz extension property for k > n. It suffices to find an
index m € {0, ..., k — 1} and a Lipschitz function f . §™ < R™T1 s H" which admits no
Lipschitz extension F: B+l c R 5 [, Proposition 2 will be helpful to construct an
example of such a function f for m = n. The non-existence of the Lipschitz extension for f
will be shown using the unrectifiability result in Theorem 3.

The desired mapping f will be the so called Legendrian lift of the Lagrangian mapping
f from Proposition 2. To explain the construction of a Legendrian lift consider the 1-form
0 =2 Zl'-’:l yidx; — x;jdy; on R?". We note that d0 = —4w, where » denotes the standard
symplectic form. One can lift the function f from Proposition 2 to a map f=(fh:
§" — R¥ x R = H", where h is defined up to an additive constant uniquely by the
relation f*0 = dh. To see that & is well defined by the above condition, we use the Poincaré
lemma, the fact that S” is simply connected and the closedness of the one-form f*6. The
last condition follows since f is Lagrangian: d f*0 = f*d0 = —4 f*w = 0. Alternatively,
h can be obtained by choosing an arbitrary point xo € S” and setting

h(x)::/@ xe s

foa

where « : [0, 1] — S” is a smooth curve in S which joins xg to x. One can apply Stokes’
theorem and the fact that f is Lagrangian on the simply connected manifold S” in order to
see that & is well-defined by the above formula, that is, the integral does not depend on the
choice of the curve o. We leave it as an exercise for the interested reader to verify that for
the Lagrangian mapping f from Proposition 2 the function / described as above is given by
h(x) = %x2 - 2x,4+1 + ¢, where ¢ € R is an arbitrary additive constant.

Now observe that the mapping f : 8" — H" is indeed Legendrian, i.e. it satisfies the
condition f*g =0, where § = dr — 2 >0 yidx; — x;dy;. It is a well-known fact (see e.g.
[11]), that every smooth Legendrian map f : §" — R2"*! is Lipschitz as a map from S” to
H". In particular, our function f = (f,h) : S* — H" is Lipschitz. Projecting this map to
R?", we obtain the function f : " — R>" from Proposition 2. We know that

AP (F(B1)) > 0

for any continuous extension F : Br+1 — R,
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Now, assume that our function f : §” — H" could be extended to a Lipschitz continuous
function F : B"+! — H". Its projection F : B"+! — R?* would then also be Lipschitz
continuous and should hence satisfy jfg’“ (F(B"+1)) > 0. But then

AN(E(Br YY) > T (F(BrtY)) > 0, )

where we have used the 1-Lipschitz continuity of the projection 7w : (H", d..) — (Rzi, dg)
(see Eq. (2)). Yet, (3) is a contradiction to Theorem 3. We conclude that the function f does

not possess any Lipschitz continuous extension F to B"+! and hence (R¥, H") does not have
the Lipschitz extension property. This concludes the proof of the first statement of Theorem 1.

We turn now to the second statement, i.e. we shall prove that the pair (]I-]Ik, H") does not
have the Lipschitz extension property for k > n. Let us consider the function f : §" C
R"*! — H" which was given in the proof of the first statement as an example of a Lipschitz

map which has no Lipschitz continuous extension to B"*!. This can also be considered as a
map from a subset of HF to H", k > n:

T:SCcH - H', Z:(x,y,00 80,0 = (X1, .0, Xnt1),s

where S := {(x1, ..., Xp41,0,...,0) € HF xlz—i-- . -+x,21+1 = 1}. Clearly, this new map is
also Lipschitz, since the d..-metric on {(x,0,0) : x € R} ¢ HF is just the usual Euclidean
one on RX.

Now, if (H¥, H") had the Lipschitz extension property, g could be extended to a Lip-
schitz map G : HF — H". But then restricting this to the set {(xq, ..., x,+1,0,...,0) :
(X1, ..., %nq1) € R"T1} © HF would yield a Lipschitz extension F : R"T! — H" of the
map f : §" ¢ R — H". We have explained in the first part of the proof why such an
extension cannot exist. We conclude that (H¥, H") does not have the Lipschitz extension
property for k > n. O

5 Final comments and questions

In this section we shall collect a number of remarks and questions related to the Lipschitz
extensions of mappings with Heisenberg group as targets.

Remark 1 Let us notice first that our Theorem 1 continues to hold for the Heisenberg group
equipped with any metric bi-Lipschitz equivalent to the Carnot-Carathéodory metric. This
includes the class of dilation invariant homogenous metrics.

Motivated by the non-existence of the Lipschitz extensions formulated in Theorem 1 we
can ask whether extensions exist in the larger class of Holder continuous functions and what
is the best Holder exponent for which extensions always exists. To state this question let us
formulate the following:

Definition 6 The pair of metric spaces (X, Y) satisfies the o (Holder) extension property if
any Lipschitz map f : A — Y defined on a subset A C X has an «- Holder continuous
extension F' : X — Y. We denote the Holder number of the pair (X, Y) by

a(X,Y) =sup{a < 1: the pair (X, Y) has the o extension property}.

Notice that ¢ (X, Y) = 1 if the pair (X, Y) has the Lipschitz extension property. We would
like to pose the problem
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682 Z. M. Balogh, K. S. Fissler

Question 1 Determine the numbers o (R¥, H") and o (HF, H").

Related to the above question we conjecture that if k& < n then the pairs (R, H") and
(H¥, H") have the Lipschitz extension property and so

ifk <n thena(RF, H") = a(HF, H") = 1.

Recall that o (R¥, H") = 1 for k < n is equivalent to H" being Lipschitz (k — 1)-connected
for k < n. If this is true, we would also obtain that the pair (X, H"), where X is an arbitrary
metric space with Nagata dimension less than or equal to n, had the Lipschitz extension
property.

To this date we only know that a(RK, H") = 1 for the values k < n, k = 1,2. As
mentioned in the introduction, the case k = 2 follows from the work of Allcock [1] as shown
in [9] and independently in [19]. It is at the moment not clear to us how to generalize Allcock’s
result to higher values of k. For the second problem with the Heisenberg group as source
space we do not know if the Lipschitz extension property holds even for k = 1 or k = 2.
It seems that the problem is of different nature than the one with Euclidean space as source
and a new technique should be developed.

Related to Question 1 we believe that the situation changes drastically in the case k > n.
Going beyond the result of Theorem 1 we conjecture that

ifk >n then a(RF, H") = a(HF, H") = 1/2.

This conjecture is motivated by a related conjecture of [11] asking for the best Holder
exponent of homeomorphisms f : R3 — H! where Gromov conjectures the same value
1/2. We mention the recent results of Hajtasz and Tyson [13] who construct onto maps
f : R3 — H' that are Holder continuous with exponent arbitrary close to 3/4. The same
authors are using the results of the present paper in their upcoming work [12] to show that
Lipschitz mappings are not dense in the space of Sobolev mapping with Heisenberg group
targets.

Remark 2 The phenomenon observed in Theorem 3—the purely k-unrectifiability of H" for
k > n—suggests that the Euclidean notion of rectifiability as given in Definition 4 is not
suitable for the geometry of the Heisenberg groups, at least not for k > n.

See [15] and [10] for a discussion on this subject and a new, alternative notion of rectifiabil-
ity which better fits the Heisenberg group. The authors introduce so-called H-regular surfaces
and observe very different properties of these objects, depending on their dimension k. The
k-dimensional H-regular surfaces (1 < k < n) are Euclidean submanifolds with equal topo-
logical, metric and Euclidean dimension—horizontal curves for k = 1, submanifolds of
Legendrian manifolds for k < n and Legendrian manifolds for X = n. On the other hand,
k-codimensional H-regular surfaces are in general far from being smooth Euclidean mani-
folds and their metric dimension exceeds their topological dimension. In fact it follows from
the results of [5,6] that not just for regular submanifolds but even for general sets there is a dis-
crepancy between the Hausdorff dimension of sets with respect to dg and d,.. An alternative
way of proving the failure of a certain extension property in some class of Holder regularity
would be to look at the obstruction given by the discrepancy of Hausdorff dimension of sets
in the two metrics.

Acknowledgments We thank Nathan Habegger, Raul Serapioni and Valentino Magnani for helpful com-
munications about the subject of this paper. Figure 1 was produced using MAPLE.
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