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Abstract We prove that several types of open Riemann surfaces, including the finitely
connected planar domains, embed properly into C

2 such that the values on any given discrete
sequence can be arbitrarily prescribed.
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1 Introduction

It is known that every Stein manifold of dimension n > 1 admits a proper holomorphic
embedding in C

N with N = [ 3n
2

] + 1, and this N is the smallest possible due to an example
of Forster [9]. The corresponding embedding result with N replaced by N ′ = [ 3n+1

2

] + 1
was announced by Eliashberg and Gromov in 1970 [13] and proved in 1992 [2]. For even
values of n ∈ N we have N = N ′ and hence the result of Eliashberg and Gromov is the best
possible. For odd n we have N ′ = N + 1, and in this case the optimal result was obtained by
Schürmann [17], also for Stein spaces with bounded embedding dimension. A key ingredient
in these results is the homotopy principle for holomorphic sections of elliptic submersions
over Stein manifolds [4,12].
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604 F. Kutzschebauch et al.

Combining the known embedding results and the theory of holomorphic automorphisms
of C

N Forstneric, Ivarsson, Prezelj and the first author [5] proved the above mentioned
embedding results with additional interpolation on discrete sequences.

In the case n = 1 the above mentioned methods do not apply. It is still an open problem
whether every open Riemann surface embeds properly into C

2. Recently the third author
achieved results concerning that problem, and in this paper we prove the corresponding
results with interpolation on discrete sequences, thus solving the second part of Problem 1.6
in [5]:

Let X be a Riemann surface. We say that X embeds into C
2 with interpolation if the

following holds for all discrete sequences {a j } ⊂ X and {b j } ⊂ C
2 without repetition: There

exists a proper holomorphic embedding f : X ↪→ C
2 with f (a j ) = b j for j = 1, 2, . . .

Theorem 1 If X is one of the following Riemann surfaces then X embeds into C
2 with

interpolation:

(1) A finitely connected planar domain.
(2) A finitely connected planar domain with a regularly convergent sequence of points

removed.
(3) A domain in a torus with at most two complementary components.
(4) A finitely connected subset of a torus whose complementary components do not reduce

to points.
(5) A Riemann surface whose double is hyperelliptic.
(6) A smoothly bounded Riemann surface in C

2 with a single boundary component.

This list includes all instances of open Riemann surfaces we are aware of admitting proper
holomorphic embeddings into C

2. We note that embeddings of hyperelliptic Riemann surfaces
were obtained by Forstnerič and Černe in [1].

Our method of proof follows the idea of the third author in [7] to embed X as a Riemann
surface in C

2 with unbounded boundary components and then construct a Fatou Bieberbach
domain whose intersection with the closure is exactly X . We construct the Fatou-Bieberbach
domain not as a basin of attraction, but as the set where a certain sequence of holomorphic
automorphisms of C

2 converges. The main ingredient is a version of Lemma 1 in [6]. We
tried to formalize the ingredients in the proof and formulate a more general technical theorem
(Theorem 2) which implies Theorem 1.

At each step of the inductive construction we take care of the additional interpolation
condition in the same clever way as in [5].

The above theorem has already been proved in the special case that X is the unit disc
by Globevnik in [10] and in the special case that X is an algebraic curve in C

2 (e.g. X =
C\{finitely many points}) by Forstneric, Ivarsson, Prezelj and the first author in [5].

More results on embedding with interpolation can be found in [14].

2 Proof of theorem 1

We shall use the theory of holomorphic automorphisms of C
N .

Let π1 : C
2 → C denote the projection onto the first coordinate, �R denotes the open

disc of radius R in C, �R its closure, BR is the ball of radius R in C
2 and B R its closure.

Definition 2.1 Given finitely many disjoint smooth real curves in C
2 without self intersection

�i = {γi (t) : t ∈ [0,∞) or t ∈ (−∞,∞)} i = 1, 2, . . . ,m, � = ⋃m
i=1 �i , and a
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countable subset E ⊂ C
2 \�, which is discrete in C

2 \�. We say that (�, E) has the nice
projection property if there is a holomorphic automorphism α ∈ Authol(C

2) of C
2 such

that,if βi (t) = α(γi (t)), �′ = α(�′) and E ′ = α(E), then the following holds:

(1) lim|t |→∞ |π1(βi (t))| = ∞ i = 1, 2, . . . ,m
(2) There is an M ∈ R such that for all R ≥ M C\(π1(�

′) ∪ �R) does not contain any
relatively compact connected components.

(3) The restriction of the projection π1 to �′ ∪ E ′ is a proper map into C.

Lemma 2.2 Given a polynomially convex compact set K ⊂ C
2, a finite set of points

c1, c2, . . . , cl ∈ K and a ball B containing K and a positive number ε > 0 . Moreover
given a finite number of real curves � = ⋃m

i=1 �i and a discrete subset E ⊂ C
2 \� as in

the definition above having the nice projection property , such that (� ∪ E) ∩ K = ∅. Then
there is an automorphism ψ ∈ Authol(C

2) such that

(a) supz∈K |ψ(z)− z| < ε

(b) ψ(ci ) = ci i = 1, 2, . . . , l
(c) ψ(� ∪ E) ⊂ C

2\B

Proof To simplify notation, we will assume we already have appliedα, i.e. that (1),(2) and (3)
hold with βi ,�′, E ′ replaced by γi , �, E . It is clear that the result will follow by conjugating
with α, if we choose a slightly larger polynomially convex set and a sufficiently big ball.

In order to construct ψ assume that B = BR where R is so big that R > M (remember
M is from the nice projection property) and K ⊂ �R × C.

Set �̃ = �∩(�R ×C) and Ẽ = E ∩(�R ×C). By the nice projection property (3) �̃∪ Ẽ is
compact. Take an isotopy of diffeomorphisms removing �̃ ∪ Ẽ from B not intersecting K at
any time (first do it for the curves �, this will automatically remove all points from E except
finitely many, then remove the finite number of remaining points) and apply the Andersen-
Lempert theorem to K ∪ �̃ ∪ Ẽ . By a theorem of Stolzenberg [16] K ∪ �̃ is polynomially
convex. By lemma 2.3 K ∪ �̃ ∪ Ẽ is also polynomially convex and the same is true for all
isotopies of that set. We get a holomorphic automorphism ϕ ∈ Authol(C

2) with

(a’) supz∈K |ϕ(z)− z| < ε
2

(b’) ϕ(ci ) = ci i = 1, 2, . . . , l
(c’) ϕ(�̃ ∪ Ẽ) ⊂ C

2\B R

To achieve (b’) either correct the approximating automorphism by suitable shears which
are small on a certain ball containing the whole situation or working in the proof of the
Andersen- Lempert theorem with the geometric structure of vector fields vanishing on a
finite number of points in C

2.
We will correct this automorphism ϕ, which could move points from �∪ E into BR which

have not been there before, by precomposing it with a shear. For that set �ER = {z ∈ �∪ E :
ϕ(z) ∈ B = BR}. By assumption the complement of �R ∪ π1(� ∪ E) does not contain any
bounded component and by construction π1(�ER) ⊂ π1(� ∪ E)\�R .

Now define a Mergelyan setting like in the proof of lemma 1 in [6] on�R ∪π1(�∪ E) to
construct a shear automorphism s of C

2 of the form s(z, w) = (z, w+ f (z)) which removes
�ER from the compact ϕ−1(BR) not bringing new points from the set E into ϕ−1(BR).
To achieve this last property the crucial facts are first that the limit set of the sequence E is
contained in � and second that the projection π1 restricted to �∪ E is proper. Finally observe
that in the approximating function f from Mergelyan’s theorem can be chosen to be zero at
the finite number of points π1(ci ) i = 1, 2, . . . , l contained in �R (where f approximates
zero). Finally, let ψ = ϕ ◦ s. 
�
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606 F. Kutzschebauch et al.

We shall refer to K , F = {c1, · · · , cl}, B, �, E as data for the lemma.

Lemma 2.3 Given a polynomially convex compact set M ⊂ C
N and a finite or countably

infinite set E ⊂ C
N \M such that M ∪ E is compact. Then M ∪ E is polynomially convex.

Proof Let z ∈ C
N be an arbitrary point in the complement of M ∪ E . Choose a polynomially

convex compact neighborhood M̃ of M which contains M in its interior but does not contain
the point z. Observe that E\M̃ consists of finitely many points.

Let f, g ∈ O(CN ) be a holomorphic functions with

f (z) = 1 sup
w∈M̃

| f (w)| < 1

2

and

g(z) = 1 g(w) = 0∀w ∈ E\M̃ .

Then h = f ng satisfies 1 = h(z) > supw∈M∪E |h(w)| for n sufficiently big. Thus z does
not belong to the polynomial convex hull of M ∪ E . 
�
Definition 2.4 An open Riemann surface X ⊂ C

2 together with a discrete sequence without
repetition A = {a j } ⊂ X are called suitable if X is a bordered submanifold of C

2 such that
∂X is a collection ∂1, · · · , ∂m of unbounded smooth curves, and (�, A) satisfies the nice
projection property, where � = ⋃m

i=1 ∂i .

Here is a lemma on polynomial convexity that is needed for our main lemma:

Lemma 2.5 Let X ⊂ C
2 be a bordered Riemann surface with unbounded boundary compo-

nents ∂1, · · · , ∂m. Then there is an exhaustion M j of X by polynomially convex compact sets
such that if K ⊂ C

2\∂X is polynomially convex and K ∩ X ⊂ Mi for some i, then K ∪ Mi

is polynomially convex.

Proof This follows from (the proof of) Proposition 3.1 of [7]. 
�
Lemma 2.6 Let X ⊂ C

2 be an open Riemann surface and A = {a j } ⊂ X a discrete sequence
without repetition which are suitable. Let {b j } ⊂ C

2 be a discrete sequence without repetition.
Let B ⊂ B ′ ⊂ C

2 be closed balls such that � ∩ B ′ = ∅ and let L = X ∩ B ′. Assume that
if b j ∈ B ∪ L then b j = a j and if b j /∈ B ∪ L then a j /∈ B ′,i.e. a j ∈ X \L. Given ε > 0
and a compact set K ⊂ X, there exist a ball B ′′ ⊂ C

2 containing B ′ (B ′′ may be chosen
as large as desired), a compact polynomially convex set M ⊂ X with L ∪ K ⊂ M, and a
holomorphic automorphism θ of C

2 satisfying the following properties:

(i) |θ(z)− z| < ε for all z ∈ B ∪ L,
(ii) if a j ∈ M for some index j then θ(a j ) = b j ∈ B ′′,

(iii) If b j ∈ B ′ ∪ (θ(X) ∩ B ′′), then a j ∈ M
(iv) θ(M) ⊂ IntB ′′
(v) if a j ∈ X \M for some j then θ(a j ) /∈ B ′′.

(vi) θ(�) ∩ B ′′ = ∅

Remark 2.7 This is the fundamental inductive step of the construction. Notice that the lemma
states that the geometric situation is preserved after applying θ , i.e. that if X, A, B, B ′, � are
replaced by θ(X), θ(A), B ′, B ′′, θ(�), then the hypotheses of the lemma still hold.
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Proof An automorphism θ with the required properties will be constructed in two steps,
θ = ψ ◦ ϕ.

By lemma 2.5 there is a polynomially convex compact set M ⊂ X such that L ∪ K ∪
{a j ; b j ∈ B ′} ⊂ M and B ∪ M is polynomially convex.

Since B ∪ L is also polynomially convex, by (repeated application of) Proposition 2.1 of
[3] there is an automorphism ϕ such that

(a) |ϕ(z)− z| < ε
2 for all z ∈ B ∪ L

(b) ϕ(a j ) = b j for all a j ∈ M

Now, ϕ(B ∪ M) is polynomially convex and if E ′ = {a j ; a j /∈ M}, then (ϕ(�), ϕ(E ′))
has the nice projection property. Let B ′′ be a large ball containing ϕ(B ∪ M) ∪ B ′. By
lemma 2.2, applied to the data ϕ(B ∪ M), F = {b j ; a j ∈ M}, B ′′, ϕ(�), ϕ(E ′), there is an
automorphism ψ satisfying the following:

(a’) |ψ(w)− w| < ε
2 when w ∈ ϕ(B ∪ M),

(b’) ψ(b j ) = b j for all b j ∈ F
(c’) ψ(ϕ(�) ∪ ϕ(E ′)) ⊂ C

2\B ′′

Let θ = ψ ◦ ϕ. (i) follows from (a) and (a’). (ii) follows from (b) and (b’). (iv) follows
from (a’) and the definition of B ′′. (v) follows from (c’) and the definition of E ′. (vi) follows
from (c’).

To prove (iii), notice that if b j ∈ B ′, then a j ∈ M by the definition of M . Let F ′ = {b j ∈
B ′′} ⊃ F . If b j ∈ θ(X)\F , then there is a shear s such that s is close to the identity on B ′′,
s(bi ) = bi for all bi ∈ F \{b j } and such that s ◦ θ(X) avoids b j . Replacing θ by s ◦ θ does
not destroy the other properties. Hence we may assume that θ(X) avoids b j and therefore all
points in F ′ \F . This implies (iii). 
�
Theorem 2 Let X be an open Riemann surface and A = {a j } ⊂ X a discrete sequence
without repetition which are suitable. Let {b j } ⊂ C

2 be a discrete sequence without repetition.
Then there exists a proper holomorphic embedding f : X ↪→ C

2 satisfying f (a j ) = b j for
j = 1, 2, . . ..

Proof Choose an exhaustion K1 ⊂ K2 ⊂ · · · ⊂ ⋃∞
j=1 K j = X by compact sets. Fix a

number ε with 0 < ε < 1. We shall inductively construct the following:

(a) a sequence of holomorphic automorphisms k of C
2,

(b) an exhaustion L1 ⊂ L2 ⊂ · · · ⊂ ⋃∞
j=1 L j = X by compact, polynomially convex sets

(c) a sequence of balls B1 ⊂ B2 ⊂ · · · ⊂ ⋃∞
j=1 B j = C

2 centered at 0 ∈ C
2 whose radii

satisfy rk+1 ≥ rk + 1 for k = 1, 2, . . .,

such that the following hold for all k = 1, 2, . . . (conditions (iv) and (v) are vacuous for
k = 1):

(i) k(Lk) = k(X) ∩ Bk+1,
(ii) if a j ∈ Lk for some j then k(a j ) = b j ,

(iii) if b j ∈ k(Lk) ∪ Bk for some j then a j ∈ Lk and k(a j ) = b j ,
(iv) Lk−1 ∪ Kk−1 ⊂ IntLk ,
(v) |k(z)−k−1(z)| < ε 2−k for all z ∈ Bk−1 ∪ Lk−1.

(vi) k(�) ⊂ C
2\Bk+1

To begin we set B0 = ∅,L0 = ∅ and K0 = ∅ and choose a pair of balls B1 ⊂ B2 ⊂ C
2

of radii 1 and 2. Let A0 = {a j ; b j ∈ B2}. There is an automorphism ϕ such that ϕ(a j ) = b j
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608 F. Kutzschebauch et al.

for all a j ∈ A0 (for instance by Proposition 2.1 of [3]). Taking ci = bi for bi ∈ B2,
E = ϕ(A\ A0) and replacing � by ϕ(�) in lemma 2.2, there is an automorphism ψ such
that, if we let 1 = ψ ◦ ϕ, we have 1(a j ) = b j for all those (finitely many) indices j for
which b j ∈ B2,1(a j ) ∈ C

2\B2 for the remaining indices j , and1(�) ⊂ C
2\B2. Setting

L1 = {z ∈ X : 1(z) ∈ B2}, the properties (i), (ii), (iii) and (vi) are satisfied for k = 1 and
the remaining two properties (iv), (v) are void.

Assume inductively that we have already found sets L1, . . . , Lk ⊂ X , balls
B1, . . . , Bk+1 ⊂ C

2 and automorphisms 1, . . . , k such that (i)–(vi) hold up to index k.
We now apply lemma 2.6 with B = Bk , B ′ = Bk+1, X replaced by Xk = k(X) ⊂ C

2,
� replaced by k(�), A by k(A), K by k(K ) and L = k(Lk) ⊂ Xk . This gives us a
compact polynomially convex set M = Mk ⊂ Xk containingk(Kk ∪Lk), an automorphism
θ = θk of C

2, and a ball B ′′ = Bk+2 ⊂ C
2 of radius rk+2 ≥ rk+1 +1 such that the conclusion

of lemma 2.6 holds. In particular, θk(Mk) ⊂ Bk+2, the interpolation condition is satisfied
for all points b j ∈ θk(Mk) ∪ Bk+1, and the remaining points in the sequence {k(a j )} j∈N

together with the curves k(�) are sent by θk out of the ball Bk+2. Setting

k+1 = θk ◦k, Lk+1 = {z ∈ X : k+1(z) ∈ Bk+2}
one easily checks that the properties (i)–(vi) hold for the index k +1 as well. (Note that Lk+1

corresponds to the set L ′ in remark 2.7). The induction may now continue.
Let � ⊂ C

2 denote the set of points z ∈ C
2 for which the sequence {k(z) : k ∈ N}

remains bounded. Proposition 5.2 in [3] (p. 108) implies that limk→∞k =  exists on �,
the convergence is uniform on compacts in �, and  : � → C

2 is a biholomorphic map of
� onto C

2 (a Fatou-Bieberbach map). In fact, � = ⋃∞
k=1

−1
k (Bk) (Proposition 5.1 in [3]).

>From (v) we see that X ⊂ �, from (vi) it follows that �∪� = ∅ i.e. X is a closed subset of
� implying that restricted to X gives a proper holomorphic embedding into C

2. Properties
(ii), (iii) imply the interpolation condition (a j ) = b j for all j = 1, 2, . . .. This completes
the proof of the theorem. 
�

We may now prove the following generalization of Theorem 1 in [7]:

Theorem 3 Let X ⊂ C
2 be a Riemann surface whose boundary components are smooth

Jordan curves ∂1, . . . , ∂m. Assume that there are points pi ∈ ∂i such that

π−1
1 (π1(pi )) ∩ X = pi .

Assume that X is a smoothly embedded surface, and that all pi are regular points of the
projectionπ1. If in additionπ1(X) ⊂ C is bounded, then X embeds into C

2 with interpolation.

Proof Let α1, . . . , αm ∈ C be constants and define the following rational map F : C
2 → C

2:

F(x, y) =
⎛

⎝x, y +
m∑

j=1

α j

x − p j

⎞

⎠.

Let � denote ∂F(X). It is not hard to see that the constants α j can be chosen such that the
� satisfies the conditions on the curves in the definition of the nice projection property. Let
A = {a j } ⊂ X be a discrete sequence without repetition. Since π1(X) is bounded it follows
the π2 is proper when restricted to � ∪ A so the pair (�, A) has the nice projection property.
The result follows from Theorem 2. 
�
Proof of Theorem 1 We start by proving (1): Let X be a finitely connected planar domain,
and let x1, . . . , xk be the complementary components of X consisting of isolated points
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(if such components exist). Let g : X ↪→ C
2 be the embedding

g(x) :=
⎛

⎝x,
k∑

j=1

1

x − xi

⎞

⎠ .

If there are no other complementary components than the points xi then (∂g(X), A) has the
nice projection property for any discrete sequence A = {a j } ⊂ X (project onto the plane
x = y). If there are more complementary components we may assume that X is a circled
subset of the unit disk, and it is clear that g(X) satisfies the condition in Theorem 3.

To prove (2) let S1, . . . , Sm ⊂ C be smooth compact slits with an endpoint qi for each
curve, let L denote the closed negative real axis, and let {x j } ⊂ C be a discrete sequence
without repetition. Let these sets be pairwise disjoint. We may assume that X is of one of the
following two types

(a) X = C\(∪m
i=1Sm ∪ {x j }),

(b) X = C\(∪m
i=1Sm ∪ {x j } ∪ L),

and that all Si are contained in �. Let A = {a j } ⊂ X be a discrete sequence without repetition.
We want to construct an embedding f : X ↪→ C

2 such that the boundary� = ∂ f (X) satisfies
the conditions on the curves in the definition of the nice projection property with projection
on the plane x = y, and such that f (A) is contained in the set

D := {
(x, y) ⊂ C

2; |x | ≤ 1 or |y| ≤ 1 or |y| ≥ 2|x |} .
In that case we see that the projection onto the plane x = y is proper when restricted to
� ∪ f (A).

We will define f as a mapping on the form f (ζ ) = (ζ, h(ζ ) + g(ζ )) with h(ζ ) =
∑m

j=1
α j
ζ−q j

, g(ζ ) = ∑∞
j=1(

β j
ζ−x j

)N j for some choice of constants α j , β j ∈ C, N j ∈ N.
If ε > 0 is small enough we have that generic choices of α j ∈ �ε gives that the map

ζ �→ (ζ, h(ζ )) maps X onto a surface with a nice projection of the boundary curves onto
the plane x = y. If we choose g such that ‖g‖C1(∂X\{x j }) is small then f will have the same

property. If ε is small we also have |h(a j )| < 1
2 for all a j ∈ C\�.

For each j ∈ N choose β j > 0 such that the disks � j := �β j
(x j ) are pairwise disjoint

and such that �β j
(x j ) ∩ ∂X \x j = ∅ for all j ∈ N. Make sure that ∂�β j (x j ) ∩ A = ∅ for

each j . Since (
β j
ζ−x j

)N → ∞ as N → ∞ on � j and (
β j
ζ−x j

)N → 0 as N → ∞ on C\� j it
is clear that we may choose the sequence N j such that |g(ai )| ≥ 3|ai | if ai ∈ � j for some
j and g(ai ) <

1
2 otherwise. For any choice of δ > 0 we may also choose the N j ’s such

that ‖g‖C1(∂X\{x j }) < δ. If δ is small enough then ∂ f (X) has a nice projection onto the plane
x = y and f (A) ⊂ D.

To prove (3) let λ ∈ C be contained in the upper half plane and let �λ be the Weierstrass
p−function:

�λ(ζ ) := 1

ζ 2 +
∑

m,n∈N2\{0}

1

(ζ − (m + nλ))2
− 1

(m + nλ)2
.

If 2p ∈ C is not contained in the lattice Lλ := {ζ ∈ C; ζ = m + λn} we have that the map

ϕp(ζ ) := (�(ζ ), �(ζ − p)),

determines is a proper holomorphic embedding of Tλ \{[0], [p]} into C
2, where Tλ is the

torus obtained by dividing out C by the lattice group Lλ, and [0] and [p] are the equivalence
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610 F. Kutzschebauch et al.

classes of the points 0 and p (see [7] for details). We treat three different cases: Assume first
that the complementary components of X are two distinct points, i.e. X is some quotient
Tλ with two points [x1] and [x2] removed. By a linear change of coordinates on C we may
assume that x2 = −x1 and 2x1 /∈ Lλ. Then ϕx1 is a proper embedding of Tλ\{[0], [x1]} into
C

2. Now �λ(x1) = �λ(x2) = q ∈ C so we may chose a Möbius transformation m : Ĉ ↪→ Ĉ

such that m(q) = ∞. We get that the map

f (ζ ) = ( f1(ζ ), f2(ζ )) = (m ◦ �λ(ζ ), �λ(ζ − x1))

determines a proper embedding of X = T \ {[x1], [x2]} into C
2. Moreover since

limζ→x j f1(ζ ) = ∞ for j = 1, 2 we have that the pair (∂ f (X), f (A)) has the nice projec-
tion property for all discrete sequences A = {a j } ⊂ X . Next assume that the complementary
components K1 and K2 of X are not both points. If neither of them are points the result
follows from (4) so we may assume that K1 is the point [0] and that K2 is not a point. We
may then assume that K2 is a smoothly bounded disk in Tλ and by choosing [p] ∈ K2 appro-
priately one sees that the map ϕp embeds X onto a surface in C

2 satisfying the conditions in
Theorem 3 above after the coordinate change (x, y) �→ (y, x) (see [7] for more details).

To prove (4) we recall from Theorem 1’ in [8] that a subset of a torus without isolated
points in the boundary embeds onto a surface in C

2 satisfying the conditions in Theorem 3
above.

Next let X be as in (5). Then X can be obtained by removing a finite set D1, . . . , Dm of
smoothly bounded (topological) disks from a closed Riemann surface R, so X = R\∪m

i=1 Di .
There exists a separating pair of inner functions f, g ∈ A(X), i.e. f and g separate points
on X and | f (x)| = |g(x)| = 1 for all x ∈ ∂X [11,15]. Then the map h := ( f, g) embeds
X properly into the unit polydisk in C

2, and by perturbing the boundary h(∂X) slightly one
obtains a surface satisfying the conditions in Theorem 3 above.

If X is a surface as in (6) we have by the maximum principle that either X is a planar
domain or the projection π1 takes its maximum at a finite set of points q1, . . . , qs ∈ ∂X . By
a linear change of coordinates X satisfies the conditions in Theorem 3. 
�
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4. Forstnerič, F., Prezelj, J.: Oka’s principle for holomorphic submersions with sprays. Math. Ann. 322,
633–666 (2002)
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