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c©Birkhäuser Verlag, Basel, 2008 Algebra Universalis

Pseudocomplemented semilattices are finite-to-finite
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To Věra Trnková on the occasion of her 70th birthday.

Abstract. It is shown that the category of directed graphs is isomorphic to a subcategory

of the variety S of all pseudocomplemented semilattices which contains all homomorphisms
whose images do not lie in the subvariety B of all Boolean pseudocomplemented semilat-
tices. Moreover, the functor exhibiting the isomorphism may be chosen such that each
finite directed graph is assigned a finite pseudocomplemented semilattice. That is to say,

it is shown that the variety S of all pseudocomplemented semilattices is finite-to-finite
B-relatively universal.

This illustrates the complexity of the endomorphism monoids of pseudocomplemented
semilattices since it follows immediately that, for any monoid M , there exists a proper

class of non-isomorphic pseudocomplemented semilattices such that, for each member S,
the endomorphisms of S which do not have an image contained in the skeleton of S form a
submonoid of the endomorphism monoid of S which is isomorphic to M .

1. Introduction

For a class K of algebras of similar type, let H(K), S(K), and P(K) respectively

denote the classes of all homomorphic images, subalgebras, and products of algebras

in K. A class K is a variety provided K = HSP(K), which, by a classical result of

Birkhoff [5], is equivalent to being an equational class.

A pseudocomplemented semilattice (S;∧, ∗, 0, 1) is an algebra where (S;∧) is a

semilattice with a least element 0, a greatest element 1, and a unary operation ∗ such

that, for all s, t ∈ S, s∧t = 0 if and only if t ≤ s∗. The class of pseudocomplemented

semilattices is a variety, see Frink [9]. Further, as established by Jones [14] (see

also Sankappanavar [26]), the lattice of all subvarieties of pseudocomplemented

semilattices ordered by inclusion is a 3-element chain consisting of the trivial variety

T of all 1-element algebras, the variety B (determined by the identity x = x∗∗)

of Boolean pseudocomplemented semilattices (where x ∨ y = (x∗ ∧ y∗)∗), and the

variety S of all pseudocomplemented semilattices.
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A variety V of algebras is universal if every category of algebras of finite type (or,

equivalently, as shown by Pultr [23], Hedrĺın and Pultr [13], and Vopěnka, Hedrĺın,

and Pultr [31], the category G of all connected directed graphs together with all

compatible mappings) is isomorphic to a full subcategory of V. If an embedding of

G may be effected by a functor Φ : G −→ V which assigns a finite algebra to each

finite graph, then V is said to be finite-to-finite universal. A number of examples,

as well as properties, of universal varieties are already known (see, for example,

Pultr and Trnková [24].) In particular, if V is universal, then, for every monoid M ,

there exists a proper class of non-isomorphic algebras belonging to V each of which

has an endomorphism monoid isomorphic to M . If V is finite-to-finite universal,

then, in addition, for a finite monoid M , there exist infinitely many non-isomorphic

finite algebras in V with the preceding property.

The variety S of all pseudocomplemented semilattices is not universal since,

for any pseudocomplemented semilattice S, the mapping γS : S −→ S given by

γS(x) = x∗∗ is an endomorphism (referred to as the Glivenko endomorphism) onto

the skeleton S∗ of S, where S∗ = {x∗ : x ∈ S} is Boolean and belongs to the subva-

riety B. In particular, if S is not Boolean, then it has a non-trivial endomorphism

onto its skeleton S∗. Furthermore, the endomorphism monoid of S then has at

least as many endomorphisms as the skeleton (which is non-trivial whenever the

Boolean skeleton is). It follows that every non-trivial pseudocomplemented semi-

lattice has a non-trivial endomorphism. Since, by the above remarks, any universal

variety contains a proper class of non-isomorphic algebras each of which has a triv-

ial endomorphism monoid, it follows that the variety S of all pseudocomplemented

semilattices is not universal.

On the other hand, as shown in [3], there does exist a proper class of non-

isomorphic pseudocomplemented semilattices for each of which the identity is the

only endomorphism which does not have an image contained in the respective skele-

ton (although, there is no bound on the cardinalities of the skeletons of the pseu-

docomplemented semilattices in this class). The situation is reminiscent of that for

the variety of idempotent semigroups.

Universal varieties of semigroups have been completely characterised by Koubek

and Sichler [18]. However, since any non-trivial idempotent semigroup has at least

as many non-trivial endomorphism as there are elements in the semigroup, arguing

as above, the variety of idempotent semigroups is not universal. This led Demlová

and Koubek to introduce a notion of relatively universal. A variety V is relatively

universal to a subvariety W (or, briefly, W-relatively universal), providing G is

isomorphic to a subcategory of V whose morphisms consist of all those homomor-

phisms whose images does not lie in the variety W. In the course of a remarkable

series of papers [6], [7], and [8], Demlová and Koubek completely determine which
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varieties of idempotent semigroups are relatively universal. (We remark that pre-

cursors to Demlová and Koubek’s notion of W-relatively universal date back as far

as Sichler [30].)

Our principal result is the following, which, since Boolean algebras with isomor-

phic endomorphism monoids are isomorphic (Magill [20], Maxson [21], and Schein

[27]), is sharp.

Theorem 1.1. The variety S of all pseudocomplemented semilattices is finite-to-

finite B-relatively universal, where B is the subvariety of all Boolean pseudocom-

plemented semilattices.

An immediate consequence of Theorem 1.1 is a strengthening of the aforemen-

tioned result from [3], namely, for any monoid M , there exists a proper class of

non-isomorphic pseudocomplemented semilattices such that, for each member S,

the endomorphisms of S which do not have an image contained in S∗ form a sub-

monoid of the endomorphism monoid of S which is isomorphic to M . In passing,

we mention that Theorem 1.1 was first conjectured to hold at the time of [3], but

we were unable to prove it.

Although the primary objective here is a better understanding of pseudocom-

plemented semilattices and, in particular, of their endomorphisms, we mention a

topical related notion.

A class K of algebras of similar type is a quasivariety provided K = ISPPu(K),

where I(K) and Pu(K) respectively denote the classes of all isomorphic images

and ultraproducts of algebras in K. Every variety is a quasivariety, but not every

quasivariety is a variety.

For a quasivariety Q, let L(Q) denote the lattice (ordered by set inclusion) of

all quasivarieties contained in Q. As defined by Sapir (see, for example, Gorbunov

[10]), a variety V is Q-universal providing that, for any quasivariety Q of finite

type, L(Q) is a homomorphic image of a sublattice of L(V). Amongst the most

noteworthy properties of a Q-universal variety V are the facts that a free lattice on

ω free generators is embeddable in L(V) (hence, L(V) fails to satisfy any non-trivial

lattice identity) and |L(V)| = 2ω.

In [1], it was shown that every finite-to-finite universal variety is Q-universal.

It is not known whether every finite-to-finite W-relatively universal variety V is

Q-universal (see, for example, Koubek and Sichler [19]). It is in this context that we

note Theorem 1.1 shows S is finite-to-finite B-relatively universal whilst, in [2], it

was shown that S is Q-universal. That is, pseudocomplemented semilattices are an

example in support of the existing conjecture that every finite-to-finite W-relatively

universal variety V is Q-universal.
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Returning to Theorem 1.1, to begin the proof we need to find a suitable pseu-

docomplemented semilattice that will act as a basic component in a š́ıp-type con-

struction (see, for example, Mendelsohn [22] for a lucid general discussion of this

technique). In [3], for each undirected connected graph, a pseudocomplemented

semilattice was constructed. This appeared to be a promising source to find such

algebras. Ultimately this proved inadequate for our purposes. Consequently, in

§2.1 we give a new construction which associates a pseudocomplemented semilat-

tice with every finite undirected graph. Then, in §2.2, we choose one such algebra

in particular, to be denoted M .

To establish the universality of a variety, instead of all directed graphs it is

sufficient to find a full embedding of the category Gc of all connected directed

graphs which are (i) strongly loopless (that is, for vertices u and v, it is never the

case that both (u, v) and (v, u) are edges), (ii) for every vertex v, there are edges

(u, v) and (v, w), and (iii) considered as undirected graphs, are triangle-free (that

is, they do not contain a subgraph isomorphic to K3, the complete graph on 3

vertices). These properties are required for technical reasons in order to simplify

the many constructions to follow. With this in mind, for each G = (V ;E) in Gc, we

will consider the S-free product
∐

S
(Me : e ∈ E) where, for e ∈ E, Me denotes an

isomorphic copy of M , a particular pseudocomplemented semilattice to be specified

in §2.2. We then define a suitable congruence Θ over
∐

S
(Me : e ∈ E) to obtain

the G-reduced free product SG = (
∐

S
(Me : e ∈ E))/Θ. The desired functor Φ will

be determined by Φ(G) = SG. The precise definition of Φ will be given in §3.

We remark that the use of quotients of free products of algebras which, in some

sense, forces them to act like graphs is not new. For example, in [11], Grätzer and

Sichler consider a suitably defined quotient of the free (0, 1)-lattice generated by V

for every triangle-connected undirected graph G = (V ;E), a particular instance of

a so called C-reduced free product.

Thus, having defined the functor Φ in §3, two problems lie ahead. One is to

unmask enough characteristics of G-reduced free products that it is possible to show

that, with respect to their homomorphims, they mimic the compatible mappings

of the corresponding graphs. The other is to do so without needing to solve the

word problem in the process, and thereby avoid all that this would entail. As will

be seen, we do so by the skin of our teeth.

It is to these ends that, in §4, we begin by first finding relevant properties of

the skeletons of G-reduced free products. Since each of these is a quotient of a

free products of Boolean algebras, our approach will be to use Stone’s topological

duality for Boolean algebras.

In §5, we return from the topological setting to essentially an algebraic one.

Two constructions are presented which will be used in the proof of Theorem 1.1
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as testing pseudocomplemented semilattices, thereby enabling us to side step the

need to find a complete solution of the word problem for G-reduced free products.

In §6, with the information gleaned from §4 and §5, we proceed to show that, with

respect to homomorphisms, G-reduced free products mimic their graphs, thereby

completing the proof of Theorem 1.1.

Finally, we conclude with a tantalizing problem in §7.

2. Preliminaries

2.1. The basic construction. An undirected graph G = (V ;E) is a set V of

vertices together with a set E of edges the members of which are 2-element subsets

of V .

The immediate goal of this section is to associate a pseudocomplemented semi-

lattice S(G) to each finite undirected graph G with 4 or more elements (that G has

4 or more elements will not actually be needed until Lemma 2.6).

Recall that, for a pseudocomplemented semilattice S, the endomorphism

γS : S −→ S given by γ(x) = x∗∗ is referred to as the Glivenko endomorphism.

The Glivenko congruence ΓS is the congruence on S induced by γS , that is ΓS =

{(x, y) ∈ S × S : x∗ = y∗}. Accordingly, its congruence classes are called Glivenko

classes. A Glivenko class is trivial iff it is a singleton. Note that S/ΓS is isomorphic

to the skeleton S∗ = {x ∈ S : x = x∗∗} = {x ∈ S : x = y∗ for some y ∈ S} of S.

For a finite undirected graph G = (V ;E), let B(G) denote the Boolean lattice

whose elements are all subsets of V ordered by inclusion. The pseudocomplemented

semilattice S(G) to be associated with G will have a copy of B(G) as its skeleton,

and prescribed Glivenko classes as follows: The classes of ∅ and V are trivial, if

|A| = 1 or A ∈ E, its class is the two-element chain, and for all other A its class is

a copy of the Boolean lattice of all subsets of V \A.

More formally, let S(G) be the set of all pairs (A,B) ∈ B(G) ×B(G) satisfying

one the four following mutually exclusive conditions:
(i) A = B = ∅. (ii) |A| = 1, and B ∈ {∅, V }.

(iii) |A| = 2, A ∈ E, and B ∈ {∅, V }. (iv) |A| ≥ 2, A /∈ E, and A ⊆ B.
and let ≤ denote the restriction of the order on B(G) ×B(G) to S(G).

Lemma 2.1. (S(G);∧) is a semilattice such that, for (A,B), (C,D) ∈ S(G),

(A,B) ∧ (C,D) =



































(A ∩ C,B ∩D) if |A ∩ C| ≥ 2 and A ∩ C 6∈ E,

(A ∩ C, V ) if A ∩ C ∈ E and B = D = V,

(A ∩ C, ∅) if A ∩ C ∈ E and B ∩D ⊂ V,

(A ∩ C, V ) if A ∩ C = {x} and B = D = V,

(A ∩ C, ∅) if A ∩ C = {x} and B ∩D ⊂ V,

(∅, ∅) if A ∩ C = ∅.
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Proof. Since (B(G);⊆) is a poset, so too is (S(G);≤).

Let (A,B), (C,D) ∈ S(G). Since (∅, ∅) ∈ S(G), it is always the case that a lower

bound for (A,B) and (C,D) exists. Suppose that (R,S) ∈ S(G) is a lower bound

of (A,B) and (C,D). In particular, R ⊆ A ∩ C and S ⊆ B ∩D.

If |A∩C| ≥ 2 and A∩C 6∈ E, then, since B∩D ⊇ A∩C, (A∩C,B∩D) ∈ S(G)

and (A,B) ∧ (C,D) = (A ∩ C,B ∩D) ∈ S(G).

If A ∩ C = {x, y} ∈ E, then either B = D = V or B ∩D ⊂ V . If B = D = V ,

then B∩D = V , (A∩C,B∩D) ∈ S(G), and (A,B)∧(C,D) = (A∩C, V ) ∈ S(G). If

B∩D ⊂ V , then either R = {x, y}, {x}, {y}, or ∅. In each case, since (R,S) ∈ S(G),

S = ∅ and, in particular, (R,S) ≤ ({x, y}, ∅). That is, (A,B)∧ (C,D) = (A∩C, ∅).

Suppose A∩C = {x}. If B = D = V , it follows that (A,B)∧(C,D) = (A∩C, V ).

Otherwise, since B ∩D ⊂ V and R = {x} or ∅, it again follows that S = ∅, giving

(A,B) ∧ (C,D) = (A ∩ C, ∅).

Finally, if A ∩ C = ∅, then R = S = ∅ and (A,B) ∧ (C,D) = (∅, ∅). �

Lemma 2.2. (S(G);∧, ∗, (∅, ∅), (V, V )) is a pseudocomplemented semilattice where

(V, V )∗ = (∅, ∅) and, for (V, V ) 6= (A,B) ∈ S(G), (A,B)∗ = (A∗, V ). Hence, the

skeleton S(G)∗ of S(G) is isomorphic to B(G).

Proof. Then, (V, V )∗ = (∅, ∅). If (V, V ) 6= (A,B) ∈ S(G), then it follows that

A ⊂ V . Thus, A∗ 6= ∅ and, in particular, (A∗, V ) ∈ S(G). By Lemma 2.1,

(A,B) ∧ (A∗, V ) = (∅, ∅). Further, by Lemma 2.1, if (A,B) ∧ (C,D) = (∅, ∅), then

A ∩ C = ∅. Thus, C ⊆ A∗ and, hence, (C,D) ≤ (A∗, V ), as required. Finally,

the isomorphism between S(G)∗ and B(G) is given by sending (A, V ) ∈ S(G) to

A ∈ B(G). �

Having established that S(G) is a pseudocomplemented semilattice for any undi-

rected graph G, we now consider properties of S(G) and, in particular, endomor-

phisms of S(G) (see Lemma 2.6).

Lemma 2.3. S(G) is generated by {(V \ {x}, V \ {x}) : x ∈ V }.

Proof. By Lemma 2.2, (V \{x}, V \{x})∗∗ = (V \{x}, V ), so S(G)∗ may be obtained

from {(V \{x}, V \{x}) : x ∈ V } by ∧ and ∗. Since G is finite, for (A,B) ∈ S(G) and

B ⊂ V , (A,B) =
∧

((V \{x}, V }) : x ∈ V \A)∧
∧

((V \{x}, V \{x}) : x ∈ V \B). �

As the following lemma shows, a non-skeletal element is only greater than the

zero of the skeleton. This fact will prove crucial in establishing Lemma 2.6 (see

Lemma 2.5).

Lemma 2.4. For (A,B), (C,D) ∈ S(G), if (A,B) ≥ (C,D)∗ 6= (∅, ∅), then

(A,B) ∈ S(G)∗.
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Proof. By Lemma 2.2, (C,D) 6= (V, V ), C ⊂ V , and (C,D)∗ = (C∗, V ). Thus,

∅ 6= C∗ ⊆ A and V ⊆ B. Either A = V and (A,B) = (V, V ) or else A ⊂ V and

(A,B)∗∗ = (A∗, V )∗ = (A∗∗, V ) = (A,B). Either way, (A,B) ∈ S(G)∗. �

Although Lemma 2.4 need not be true for all quotients of S(G), as the follow-

ing shows, when it holds we can sometimes conclude that the naturally induced

congruence associated with the quotient contains the Glivenko congruence.

Lemma 2.5. Let Θ be a congruence on (S(G);∧, ∗, (∅, ∅), (V, V )). If, for some

x ∈ V , (V \ {x}, V \ {x}) ≡ (V \ {x}, V )(Θ), then Θ ⊇ ΓS(G) or, for some

(A,B), (C,D) ∈ S(G), (A,B) 6≡ (A, V )(Θ) and [(A,B)]Θ ≥ [(C,D)∗]Θ 6= [(∅, ∅)]Θ.

Proof. Suppose, for some x ∈ V , (V \ {x}, V \ {x}) ≡ (V \ {x}, V )(Θ) and that

Θ 6⊇ ΓS(G), that is, for some A,B ⊆ V , (A,B) 6≡ (A, V )(Θ).

First consider the case that, in addition, (V \ {x}, V ) ≡ (V, V )(Θ). It follows

that ({x}, V ) = (V \ {x}, V )∗ ≡ (V, V )∗ = (∅, ∅)(Θ) and that, for y ∈ V \ {x},

({y}, ∅) = ({y}, V ) ∧ (V \ {x}, V \ {x}) ≡ ({y}, V ) ∧ (V \ {x}, V ) = ({y}, V )(Θ).

Since A ⊆ V is finite, A = {x0, . . . , xn−1} for some n < ω. If ({xi}, V ) ≡ (∅, ∅)(Θ)

for every i < n, then (A, V ) =
∨

(({xi}, V ) : i < n) ≡ (∅, ∅)(Θ), which is absurd.

Thus, for some i < n, ({xi}, V ) 6≡ (∅, ∅)(Θ). Since xi 6= x and (A,B) ∧ ({xi}, V ) =

({xi}, ∅), setting (C,D)∗ = (V \ {xi}, V )∗ = ({xi}, V ) will suffice.

Thus, it remains to consider the case that, for every y ∈ V , (V \ {y}, V ) 6≡

(V, V )(Θ). That is, we now need only consider the case when Θ|̀S(G)∗ = ∆|̀S(G)∗

where Θ|̀S(G)∗ denotes the restriction of Θ to S(G)∗. If (V \ {x}, V \ {x}) ≡

(V \ {x}, V )(Θ), then, once more, for y ∈ V \ {x}, ({y}, ∅) = ({y}, V ) ∧ (V \

{x}, V \ {x}) ≡ ({y}, V ) ∧ (V \ {x}, V ) = ({y}, V )(Θ). If there exists x 6= y ∈ A,

then (C,D)∗ = (V \ {y}, V )∗ = ({y}, V ) will suffice since (A,B) ∧ ({y}, V ) =

({y}, ∅) ≡ ({y}, V )(Θ). If there does not exist x 6= y ∈ A, then A = {x} and

B = ∅. Choose some y 6= x. Then ({x, y}, R) ∈ S(G) for some R ⊂ V . Were

it the case that ({x, y}, R) ≡ ({x, y}, V )(Θ), then it would follow that ({x}, ∅) =

({x}, V ) ∧ ({x, y}, R) ≡ ({x}, V ) ∧ ({x, y}, V ) = ({x}, V )(Θ), contrary to the hy-

pothesis that (A,B) 6≡ (A, V )(Θ). Thus, ({x, y}, R) 6≡ ({x, y}, V )(Θ). In partic-

ular, since ({y}, ∅) ≡ ({y}, V )(Θ), the proof is complete if the given A and B are

replaced by {x, y} and R, respectively, in the preceding argument. �

Let End(S(G)) denote the monoid (semigroup with identity) of all endomor-

phisms of S(G) with composition as multiplication. Let ϕ ∈ End(S(G)) and let Θ

denote the congruence on S(G) induced by ϕ. Also, call a mapping ψ : G −→ G

compatible if {ψ(x), ψ(y)} ∈ E whenever {x, y} ∈ E), and let Aut(G) be the auto-

morphism group of G.

Lemma 2.6. Let Θ 6⊇ ΓS(G).
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(i) If (A,B) ∈ S(G) and ϕ((A,B)) = (C,D), then |C| = |A|, and

(ii) for x ∈ V , ϕ({x}, V ) = ({ψ(x)}, V ) defines a bijective compatible mapping

ψ : G −→ G. Since V is finite, ψ ∈ Aut(G).

Proof. If, for some x ∈ V , ϕ((V \ {x}, V )) = (V, V ), then (V \ {x}, V \ {x}) ≡ (V \

{x}, V )(Θ). By Lemma 2.5, for some (A,B), (C,D) ∈ S(G), (A,B) 6≡ (A, V )(Θ)

and [(A,B)]Θ ≥ [(C,D)∗]Θ 6= [(∅, ∅)]Θ. Since ϕ ∈ End(S(G)) and [(A,B)]Θ 6∈

(S(G)/Θ)∗, this contradicts Lemma 2.4. We conclude that, for x ∈ V , ϕ((V \

{x}, V )) 6= (V, V ). In particular, ϕ|̀S(G)∗ is one-to-one. Since S(G) is finite,

it follows that ϕ|̀S(G)∗ is an automorphism. Hence, for any (A, V ) ∈ S(G)∗,

ϕ(A, V ) = (C, V ) where |C| = |A|, completing the verification of (i).

By (i), for x ∈ V , ϕ({x}, V ) = ({ψ(x)}, V ) defines a bijection ψ : V −→ V .

In particular, for x, y ∈ V , ϕ(V \ {x}, V ) = (V \ {ψ(x)}, V ) and ϕ(({x, y}, V )) =

ϕ(({x}, V ) ∨ ({y}, V )) = ({ψ(x)}, V ) ∨ ({ψ(y)}, V ) = ({ψ(x), ψ(y)}, V ). Suppose

{x, y} ∈ E. Since |V | ≥ 4, it is possible to choose u, v ∈ V \ {x, y}. Then, by

Lemma 2.1, ({x, y}, V )∧ (V \{u}, V \{u}) = ({x, y}, ∅) = ({x, y}, V )∧ (V \{v}, V \

{v}). Suppose {ψ(x), ψ(y)} 6∈ E. Then, by Lemma 2.1 again, ϕ(({x, y}, V ) ∧ (V \

{u}, V \ {u})) = ({ψ(x), ψ(y)}, V ) ∧ (V \ {ψ(u)}, V \ {ψ(u)}) = ({ψ(x), ψ(y)}, V \

{ψ(u)}) and ϕ(({x, y}, V )∧(V \{v}, V \{v})) = ({ψ(x), ψ(y)}, V )∧(V \{ψ(v)}, V \

{ψ(v)}) = ({ψ(x), ψ(y)}, V \ {ψ(v)}). Since V \ {ψ(u)} 6= V \ {ψ(v)}, this is

impossible. We conclude that, whenever {x, y} ∈ E, it follows that {ψ(x), ψ(y)} ∈

E, as required. �

2.2. A particular instance. We now choose a specific graph G = (V;E) where

V = {a, b} ∪ {ci : 0 ≤ i < 4} and E = {{a, c1}, {b, c3}, {c0, c2}} ∪ {{ci, ci+1} : 0 ≤

i < 3} (see Figure 1). In particular, |V| = 6, which as required above is ≥ 4. We

distinguish the pair of vertices a, b ∈ V solely for future reference (see §3). Then,

|Aut(G)| = 1.

Henceforth, let M denote the pseudocomplemented semilattice S(G) for this

particular undirected graph G. It is M that will act as the basic component in

the š́ıp-type construction presented here. Observe, again for future reference, that

corresponding to a and b are ({a},V) and ({b},V), respectively, which are atoms

of M∗, and (V \ {a},V) and (V \ {b},V), respectively, which are co-atoms of M∗.

By Lemma 2.6, for ϕ ∈ End(S(G)), if Θ 6⊇ ΓS(G), then, for x ∈ V , ϕ({x}, V ) =

({ψ(x)}, V ) defines ψ ∈ Aut(G). For M , this implies

Lemma 2.7. For ϕ ∈ End(M), if Θ 6⊇ ΓM where Θ denotes the congruence induced

by ϕ, then ϕ is the identity.

Proof. By Lemma 2.6 (i), for x ∈ V, ϕ(V \ {x},V) = (V \ {y},V) for some y ∈ V.

By Lemma 2.5 and Lemma 2.4, (V \ {x},V \ {x}) 6≡ (V \ {x},V)(Θ) for any x ∈ V.
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Figure 1. G = (V;E)

Thus, by Lemma 2.6, ϕ((V\{x},V\{x})) = (V\{ψ(x)},V\{ψ(x)}) for every x ∈ V.

Since M is generated by {(V \ {x},V \ {x}) : x ∈ V} by Lemma 2.3, it follows from

the choice of G = (V;E) that ϕ is the identity. �

3. The functor

In [12], Hedrĺın and Pultr gave a full and faithful embedding from the category

of all connected directed graphs to the category of all connected undirected graphs,

based on a specific directed graph G0 = (V0;E0) ∈ G with two distinguished

vertices s0 and t0 as diagrammed in Figure 2, respectively on its undirected version

G′

0 = (V0;E
′

0). They specified a functor Ψ from G to the the category of all

connected undirected graphs together with all of their compatible mappings as

follows: For G = (V ;E) ∈ G, define an undirected graph Ψ(G) by taking a copy

of G′

0 for every edge in E and, for e, f ∈ E, identifying the element t0 of the

copy representing e with the element s0 of the copy representing f precisely when

e = (u, v) and f = (v, w) for vertices u, v, w ∈ V .

If we proceed analogously, but with G0 itself instead of G′

0, it is readily seen that

we obtain a full and faithful functor Ψ : G −→ Gc, where Gc denotes the category

of all connected directed graphs which are (i) strongly loopless (that is, for vertices

u and v, it is never the case that both (u, v) and (v, u) are edges), (ii) for every

vertex v, there are edges (u, v) and (v, w), and (iii) considered as undirected graphs,

they are triangle-free (that is, they do not contain a subgraph isomorphic to K3, the

complete graph on 3 vertices). Thus, in order for us to show that S is finite-to-finite

B-relatively universal, it is sufficient to define a suitable functor Φ : Gc −→ S.
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Figure 2. G0 = (V0;E0)

For a variety V of pseudocomplemented semilattices, let (Si : i ∈ I) be a family

of pseudocomplemented semilattices such that, for i ∈ I, Si ∈ V. A pseudocomple-

mented semilattice S ∈ V is a free V-product of (Si : i ∈ I), denoted
∐

V
(Si : i ∈ I),

providing there is an embedding εi : Si −→ S for every i ∈ I such that

(i) S is generated by
⋃

(εi(Si) : i ∈ I) in V, and

(ii) if T is any pseudocomplemented semilattice in V and, for every i ∈ I,

ϕi : Si −→ T is a homomorphism, then there exists a homomorphism ϕ : S −→

T satisfying ϕi = ϕ ◦ εi for every i ∈ I.

In [16], Katriňák and Heleyová characterize S-free products. In particular, they

show that an S-free product exists provided every component is a singleton or

no component is a singleton. We remark that their characterization includes a

characterization of free pseudocomplemented semilattices (that is, S-free products

of free pseudocomplemented semilattices with 1 free generator, each of which is

order isomorphic to a 5-element non-modular lattice.) Free pseudocomplemented

semilattices have also been considered in Balbes [4], Jones [15], and [29]. Although

familiarity with [16] will not be required, we will make reference to it.

Let G = (V ;E) be a connected strongly loopless directed graph where, for v ∈ V ,

there exist (u, v) and (v, w) ∈ E and, viewed as an undirected graph, no subgraph

of it is isomorphic to K3 (that is to say, G ∈ Gc.) For each e ∈ E, let Me denote

a copy of the pseudocomplemented semilattice M , and (A,B)e denote the copy of

(A,B) ∈M in Me.

Notation: For the rest of this paper S will always denote the free product

S =
∐

S
(Me : e ∈ E).
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Let ΘG be the least congruence on S containing all pairs ((V \ {a},V)e, (V \

{b},V)f ) and ((V \ {a},V \ {a})e, (V \ {b},V \ {b})f ) for e = (u, v) and f = (v, w)

in E.

Let SG be the G-reduced free product

SG = (
∐

S(Me : e ∈ E))/ΘG

and set

Φ(G) = SG.

Note that, since the S-free product exists, Φ is well-defined on objects. Further,

since pseudocomplemented semilattices are locally finite (see Jones [14] and also

Sankappanavar [26]), SG is finite for finite G. In particular, the functor Φ is finite-

to-finite.

If h : G −→ H is a compatible mapping between directed graphs G = (V ;E)

and H = (W ;F ) ∈ Gc, set

Φ(h) = ϕ,

where, for e = (u, v) ∈ E, ϕ : SG −→ SH is determined by

ϕ([(A,B)e]ΘG
) = [(A,B)(h(u),h(v))]ΘH

for (A,B) ∈M .

Let ψ :
∐

S
(Me : e ∈ E) −→

∐

S
(Mf : f ∈ F ) be the homomorphism determined

by ψ((A,B)e) = (A,B)(h(u),h(v)) for e = (u, v) ∈ E and let θH :
∐

S
(Mf : f ∈

F ) −→ SH be the natural homomorphism induced by ΘH . To see that ϕ is a well-

defined homomorphism, it is sufficient to show that the congruence Θ induced on
∐

S
(Me : e ∈ E) by θH ◦ψ :

∐

S
(Me : e ∈ E) −→ SH contains ΘG. In particular, it

is sufficient to show that, whenever e = (u, v) and f = (v, w) ∈ E, each of the pairs

((V\{a},V)e, (V\{b},V)f ) and ((V\{a},V\{a})e, (V\{b},V\{b})f ) are elements

of Θ. Consider, for example, the pair ((V \ {a},V)e, (V \ {b},V)f ). By definition,

ψ((V\{a},V)e) = (V\{a},V)(h(u),h(v)) and ψ((V\{b},V)f ) = (V\{b},V)(h(v),h(w)).

Since h : G −→ H is compatible, (h(u), h(v)) and (h(v), h(w)) ∈ F . Thus, θH(V \

{a},V)(h(u),h(v))) = θH(V \ {b},V)(h(v),h(w)), as required.

4. Free products of Boolean algebras

Let G = (V ;E) be a directed graph in Gc. By Katriňák and Heleyová [16],

S∗ = (
∐

S(Me : e ∈ E))∗ =
∐

B(M∗

e : e ∈ E) =: B,

where, by Lemma 2.2, M∗ = {(∅, ∅)} ∪ {(A,V) : ∅ 6= A ⊆ V}.

Let ΘG∗ be the least (Boolean) congruence relation on B containing all pairs

((V \ {a},V)e, (V \ {b},V)f ) for e = (u, v) and f = (v, w) in E and set
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BG = (
∐

B(M∗

e : e ∈ E))/ΘG∗ .

As might be expected, the skeleton S∗

G of the G-reduced free product SG is

BG, which will be confirmed in due course. Before proceeding to the proof of

Theorem 1.1 in §6, we will establish some properties of BG.

Since we are concerned only with Boolean algebras in this section, we can and

will use Stone’s topological representation for them. Although we will provide

some basic facts and terminology, for more background on Boolean algebras and

free B-products see, for example, Koppelberg [17].

Associated with each Boolean algebra (B;∨,∧, ∗, 0, 1) is a compact totally dis-

connected space (X; ρ). The set X is the set of prime ideals of B. Each element

of B is associated with the set of prime ideals to which it does not belong and, as

such, the elements of B are recognizable as the clopen subsets of X (which form

a basis for ρ). The Boolean operations join, meet, and complement are realized as

set union, intersection, and complement, respectively.

For a family of Boolean algebras (Bi : i ∈ I), the free B-product B =
∐

B
(Bi :

i ∈ I) is associated with the cartesian product P =
∏

(Xi : i ∈ I) where the

topology is the product topology. In particular, a subset Y ⊆ P is associated with

an element of B if and only if Y is a clopen subset of P if and only if Y is a finite

union of sets of the type Hi0 × · · · × Hik−1
×

∏

(Xi : i 6= i0, . . . , ik−1 ∈ I) where

i0, . . . , ik−1 is any finite selection of pairwise distinct indices from I and, for each

0 ≤ j < k, Hij
is a clopen subset of Xij

. For each j ∈ I, B contains a canonical

copy B′

j of Bj as a subalgebra, given explicitly as the collection of all sets π−1
j (Hj)

with Hj ⊆ Xj clopen (where πj is the canonical projection of P =
∏

(Xi : i ∈ I)

onto Xj). If bj is an element of Bj , then we will write b′j for the copy of bj in B′

j .

Further, if bj is associated with a clopen subset Hj of Xj , then, abusing notation,

we will also write b′j for π−1
j (Hj).

Actually, (i) B is generated by
⋃

(B′

i : i ∈ I) (that is, the family (π−1
i (Hi) :

bi ∈ Bi for some i ∈ I) is an open subbasis for the product topology on P ) and

(ii) whenever bi0 , . . . , bik−1
is any finite collection of non-zero elements of pairwise

distinct co-factors Bi0 , . . . , Bik−1
, then the meet of their copies b′i0 , . . . , b

′

ik−1
in B is

non-zero (that is, for pairwise distinct spaces Xi0 , . . . ,Xik−1
and non-empty clopen

subsets Hij
⊆ Xij

, it is always the case that Hi0 × · · · × Hik−1
×

∏

(Xi : i 6=

i1, . . . , ik ∈ I) is non-empty). In fact, properties (i) and (ii) characterize B up to

isomorphism. The following special case of (ii) will be of interest. Whenever i, j ∈ I

and i 6= j, then b′i ≤ b′j implies b′i = 0 or b′j = 1 for any b′i, b
′

j ∈ B.

Let G = (V ;E) be a directed graph which, for the moment, we only assume

to be strongly loopless. The topic at hand is the effect of the congruence ΘG∗ on

B :=
∐

B(M∗

e : e ∈ E). Given an arrow e = (u, v) ∈ E, let σe and τe denote its
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source u and target v, respectively. Also, call vertices u, v ∈ V neighbours provided

either (u, v) ∈ E or (v, u) ∈ E (but not both, by strong looplessness) are in E.

Informally, we will assign labels a, b, or c to the arrows of G subject to the

following admissibility rule. Whenever, at some vertex, some incoming arrow has

label a or some outgoing arrow has label b, then at this vertex all incoming arrows

must be labelled a and all outgoing arrows must be labelled b. Formally, a labelling

for G is a map ℓ from E into the three-element set {a, b, c}. A labelling ℓ is called

G-admissible at a vertex v if and only if the following holds: if τe = v = σf and

ℓ(e) = a or ℓ(f) = b, then ℓ(e′) = a for all e′ with τe′ = v and ℓ(f ′) = b for all f ′

with σf ′ = v. The labelling ℓ is called G-admissible if and only if it is G-admissible

at every vertex. Let ℓc be the labelling with constant value c and, for any v ∈ V ,

let ℓv be the labelling given by ℓv(e) = a if and only if τe = v, ℓv(e) = b if and

only if σe = v, and ℓv(e) = c in all other cases. Then, each of these labellings is

G-admissible.

Recall that M = S(G) for G = (V,E) where V = {a, b} ∪ {ck : 0 ≤ k < 4}. In

particular, by Lemma 2.2, M∗ = {(∅, ∅)}∪{(A,V) : ∅ ⊂ A ⊆ V} ordered point-wise

by inclusion. Thus, M∗ is a finite Boolean algebra with 6 atoms. As such, it has

an associated Stone space (X; ρ) with | X |= 6 and discrete topology ρ. We will

identify X with V and for each e ∈ E, Ve stands for a copy of the discrete space

(V; ρ) with elements {ae, be} ∪ {ck,e : 0 ≤ k < 4}. Let P be the product space

P :=
∏

(Ve : e ∈ E).

An explicit description of the Stone space associated with BG∗ is now obtained

as follows. An element x = (. . . , xe, . . . , ) ∈ P is called G-admissible provided it

satisfies xe = ae if and only if xf = bf whenever τe = σf . It follows that if x is

G-admissible, then the labelling ℓ of G given by ℓ(e) = a whenever xe = ae, ℓ(e) = b

whenever xe = be, and ℓ(e) = c whenever xe ∈ {ck,e : 0 ≤ k < 4} is G-admissible.

Conversely, given a G-admissible labelling ℓ of G, any element x ∈ P satisfying

xe = ae whenever ℓ(e) = a, xe = be whenever ℓ(e) = b, and xe ∈ {ck,e : 0 ≤ k < 4}

whenever ℓ(e) = c will be G-admissible. In which case, we will say that x is an

instance of ℓ. Let AD denote the set of all G-admissible elements of P . Then BG∗

has as its Stone space the closed subset AD of P . The clopen subsets of AD are

precisely the sets of the form H ∩ AD for clopen H ⊆ P . The canonical projection

πG : B −→ BG is given explicitly as the map sending the element of B associated

with the clopen set H ⊆ P to the element of BG associated with H ∩ AD.

We had agreed to write b′e for π−1
e (He) when be is the element of M∗

e that is

associated with He ⊆ Ve. When be is an atom of M∗

e , b′e = π−1
e ({xe}) for some

xe ∈ Ve. In this case, abusing notation, we may write x′e instead of b′e. Likewise,

when be is a co-atom of M∗

e , then b′e = π−1(Ve \ {xe}) for some xe ∈ Ve. Further

abusing notation, we may write (x∗e)
′ instead of b′e in this case.
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In order to make the presentation more readable, we will use the following ab-

breviations. For xe ∈ Ve and yf ∈ Vf , write xe ⊥ yf to mean πG(x′e) ∧ πG(y′f ) = 0,

and xe ≡ yf to mean πG(x′e) = πG(y′f ). Throughout, k and k′ will denote natural

numbers between 0 and 3, if not stated otherwise explicitly.

As the following shows, there are enough admissible labellings with a prescribed

value.

Lemma 4.1. For any e ∈ E and k ∈ {a, b, c} there is a G-admissible labelling ℓ of

G such that ℓ(e) = k.

Proof. If k = c, let ℓ = ℓc. If k = a, let ℓ = ℓτe, and if k = b, let ℓ = ℓσe. �

This already suffices to see that ΘG∗ does not collapse any of the subalgebras

(M∗

e )′ of B.

Lemma 4.2. The restriction of ΘG∗ to any of the subalgebras (M∗

e )′ of B is the

identity; in other words, πG[(M∗

e )′] ∼= (M∗

e )′ ∼= M∗

e .

Proof. It suffices to show that no atom x′e of (M∗

e )′ is collapsed to 0 by ΘG∗ .

Equivalently, it must be shown that, for xe ∈ Ve, π
−1
e ({xe}) ∩ AD 6= ∅. Depending

on whether xe = ae, be, or ck,e, let k = a, b, or c, respectively. By Lemma 4.1, there

is a G-admissible labelling ℓ of G such that ℓ(e) = k, so there is an instance y of ℓ

such that ye = xe. In particular, y ∈ π−1
e ({xe}) ∩ AD. �

Recall that b′e ≤ b′f implies b′e = 0 or b′f = 1 for any b′e, b
′

f ∈ B whenever e 6= f .

This is no longer true in BG. Indeed, if τe = σf , there is certainly no G-admissible

labelling ℓ of G such that ℓ(e) = ℓ(f) = a. Thus there is no G-admissible y ∈ P such

that ye = ae and yf = af . In particular, it follows that π−1
i (ae)∩π

−1
j (af )∩AD = ∅,

in other words, πG(y′e) ∧ πG(x′f ) = 0 in BG, that is, ae ⊥ af . But this is equivalent

to 0 6= πG(a′e) ≤ πG((a∗f )′) 6= 1.

We will need to know exactly when b′e ≤ b′f in BG. This happens iff x′e ≤ (x∗f )′

for any atom x′e ∈ (M∗

e )′ with x′e ≤ b′e and any coatom (x∗f )′ ∈ (M∗

f )′ with b′f ≤ (x∗f ).

But x′e ≤ (x∗f )′ iff x′e ∧ x′f = 0, so the problem boils down to determining disjoint

πG-images of atoms coming from different co-factors. Following along the lines of

the example in the preceding paragraph, we start by listing obstructions — imposed

by our constraints on the edges of G — to the existence of admissible labellings

with two prescribed values.

Lemma 4.3. Let e 6= f and k, l ∈ {a, b, c}. A G-admissible labelling ℓ satisfying

ℓ(e) = k and ℓ(f) = l fails to exist exactly in the following 5 cases:

(i) k = l = a and τe and τf are neighbours,

(ii) k = a, l = b and τe and σf are neighbours,

(iii) k = l = b and σe and σf are neighbours,
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(iv) k = c, l = a and τf ∈ {σe, τe},

(v) k = c, l = b and σf ∈ {σe, τe}.

Proof. Since the labelling with constant value c is admissible for any G, it is clear

that at least one of k, l must be in {a, b}, which — taking advantage of symmetries

— leads to the five cases listed.

(i) Let k = l = a. Suppose τe and τf are neighbours and assume, without loss of

generality, that there is an arrow g from τe to τf . Since ℓ(f) = a, we have ℓ(g) = a

because ℓ is G-admissible at τf . But ℓ(e) = a and, since ℓ is G-admissible at τe,

ℓ(g) = b, a contradiction.

Conversely, assume τe and τf are not neighbours. If τe = τf , ℓτe = ℓτf is a

G-admissible labelling satisfying ℓ(e) = ℓ(f) = a. If τe 6= τf , define ℓ by ℓ(g) = a

if and only if τg = τe or τg = τf , ℓ(g) = b if and only if σg = τe or σg = τf , and

ℓ(g) = c in all other cases. This is G-admissible if τe and τf do not have a common

neighbour v. If v is such a common neighbour, checking the 4 possible combinations

(of arrow directions in and out of v) shows that no violation of admissibility at v

occurs.

(ii) and (iii) are proved analogously.

(iv) Let k = c and l = a. In particular, ℓ is G-admissible at τf . If τf = σe,

then ℓ(f) = a implies ℓ(e) = b, a contradiction. If τf = τe, then ℓ(f) = a implies

ℓ(e) = a, a contradiction.

Conversely, suppose τf is different from σe and τe. Then the labelling ℓτf

satisfies ℓτf (e) = c and ℓτf
(f) = a.

(v) is proved analogously. �

In more algebraic terms, Lemma 4.3 reads:

Corollary 4.4. Let e 6= f and xe ∈ Ve, yf ∈ Vf . Then xe ⊥ yf in BG exactly if

(i) xe = ae, yf = af , and τe and τf are neighbours, or

(ii) xe = ae, yf = bf , and τe and σf are neighbours, or

(iii) xe = be, yf = bf , and σe and σf are neighbours, or

(iv) xe = ck,e, yf = af , and τf ∈ {σe, τe}, or

(v) xe = ck,e, yf = bf , and σf ∈ {σe, τe}.

Moreover, if ck,e ⊥ yf for some k and yf = af or yf = bf , then ck,e ⊥ yf for all k.

Proof. The five numbered statements translate the corresponding ones in Lemma

4.3, while the last assertion follows from (iv) and (v), respectively, since the condi-

tions given do not depend on the particular choice of k. �

The two following lemmata show that πG-images of atoms coming from different

co-factors are comparable only if they are equal, and that this only occurs for atoms

of type πG(a′e), πG(b′f ) when forced directly by admissibility.
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Lemma 4.5. Let e 6= f , xe ∈ Ve, yf ∈ Vf . Then πG(x′e) is comparable with πG(y′f )

in BG iff xe ≡ yf .

Proof. Assume πG(x′e) ≤ πG(y′f ). Hence, xe ⊥ zf for all zf ∈ Vf \ {yf}. In

particular,

Vf \ {yf} must include ck,f for some k. (†)

Since ck,e 6⊥ ck′,f by Corollary 4.4, this implies xe ∈ {ae, be}. On the other hand,

by the last statement of Corollary 4.4, Vf \ {yf} must then contain ck,f for all k

and thus yf ∈ {af , bf}.

Assume xe = ae. From (†) and Corollary 4.4 (iv) we obtain either τe = σf

or τe = τf . In the first case, τf and τe are neighbours and we get ae ⊥ af by

Corollary 4.4 (i), thus yf = bf and ae ≡ bf by admissibility at τe = σf . In the

second, τf and σf are neighbours and we arrive at ae ≡ af in the same way, using

Corollary 4.4 (ii).

The same line of reasoning works also for xe = be. �

In §6 we will also require the dual version of Lemma 4.5.

Corollary 4.6. Let e 6= f , xe ∈ Ve, yf ∈ Vf . Then πG((Ve \ {xe})
′) is comparable

with πG((Vf \ {yf})
′) in BG iff πG((Ve \ {xe})

′) = πG((Vf \ {yf})
′) iff xe ≡ yf .

Lemma 4.7. For e 6= f , xe ∈ Ve, yf ∈ Vf , we have xe ≡ yf iff either (i) τe = τf ,

xe = ae, and yf = af , or (ii) σe = σf , xe = be, and yf = bf , or (iii) τe = σf and

xe = ae, and yf = bf .

Proof. One direction of each of the equivalences (i)–(iii) is immediate by the defini-

tion of admissibility. For the other direction where xe ≡ yf , it will suffice to show,

using Lemma 4.5, that πG(x′e) 6≤ πG(y′f ) with the exception of the three cases listed.

Let xe = ck,e. Since ck,e 6⊥ ck′,f for all k′ by Corollary 4.4, we have πG(c′k,e) 6≤

πG(y′f ) for any yf .

Let xe = ae. Assume e and f have no vertex in common and consider the

admissible labelling ℓτe with values ℓτe(e) = a and ℓτe(f) = c, and its instances.

Again, it follows that xe 6⊥ ck′,f for all k′, and thus πG(a′e) 6≤ πG(y′f ) for any yf .

Assume e and f do have a vertex in common. If τe = τf , then ae ≡ af ; if τe = σf ,

then ae ≡ bf ; if σe ∈ {σf, τf}, consider the admissible labelling ℓτe and argue as

above.

The case xe = be is handled dually. �

The preceding two lemmata combined with the next lemma, will show in Corol-

lary 4.9 that πG-images of any two elements from different co-factors are comparable

only when forced directly by admissibility.
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Lemma 4.8. Assume e 6= f and consider πG(h′f ) ∈ πG[(M∗

f )′] ∼= (M∗

f )′ such that

πG(h′f ) is neither an atom nor a coatom of πG[(M∗

f )′]. Then there is no atom

πG(x′e) (where xe ∈ Ve), and coatom πG((y∗e)
′) (where ye ∈ Ve) of πG[(M∗

e )′] such

that simultaneously πG(x′e) ≤ πG(h′f ) and πG(h′f ) ≤ πG((y∗e)′).

Proof. Then, πG(h′f ) is neither an atom nor a coatom of πG[(M∗

f )′] iff h′f =

π−1
f (Hf ), Hf ⊆ Vf , 1 <| Hf |< 5. Put H∗

f := Vf \Hf . Now

πG(x′e) ≤ πG(h′f ) iff xe ⊥ zf for all zf ∈ H∗

f , (†)

and analogously

πG(h′f ) ≤ πG((y∗e)′) iff ye ⊥ zf for all zf ∈ Hf . (††)

It is clear that xe 6= ye whenever (†) and (††) are satisfied simultaneously.

Suppose, contrary to hypothesis, that there is an atom πG(x′e) and a coatom

πG((y∗e)′) of πG[(M∗

e )′] such that simultaneously πG(x′e) ≤ πG(h′f ) and πG(h′f ) ≤

πG((y∗e)′).

By Corollary 4.4 (iv) and (v), ze ⊥ ck,f has a (unique) solution iff either τe ∈

{σf, τf} or σe ∈ {σf, τf}. Now at least one of Hf and H∗

f must contain some

ck,f , so the solvability of (†) and (††) implies that exactly one of the four possible

relative positions of e and f as indicated prevails. Assume ck,f ∈ Hf for some k,

and τe = σf . Then, by Corollary 4.4 again, ae is the unique candidate for ye in (††).

Turning to (†), suppose first that ck′,f ∈ H∗

f for some k′ 6= k. The argument just

used gives, again, ae as the unique candidate for xe, and thus xe = ye. If H∗

f does

not contain any ck,f , we must have H∗

f = {af , bf}. But then by Corollary 4.4 (i)–

(iii), there is no common solution for xe ⊥ af and xe ⊥ bf . The cases τe = τf and

σe ∈ {σf, τf} are handled analogously. �

Corollary 4.9. Let e 6= f and D = (πG[(M∗

e )′] ∩ πG[(M∗

f )′]) \ {0, 1}. Then D 6= ∅

iff either (i) τe = τf and D = {πG(a′e) = πG(a′f ), πG((a∗e)
′) = πG((a∗f )′)}, or (ii)

σe = σf and D = {πG(b′e) = πG(b′f ), πG((b∗e)
′) = πG((b∗f )′)}, or (iii) τe = σf and

D = {πG(a′e) = πG(b′f ), πG((a∗e)
′) = πG((b∗f )′)}.

Proof. Combine Lemma 4.5, Lemma 4.7, and Lemma 4.8. �

The following lemma says that disjointness of πG-images of atoms coming from

different co-factors is rare, and that it is in some sense unique whenever it occurs.

It depends heavily on the fact that G is triangle-free, so we will assume that G is

strongly loopless and triangle-free from this point on.

Lemma 4.10. Let f 6= e, xf ∈ Vf and suppose πG(x′f ) /∈ πG[(M∗

e )′]. Then there

exists at most one ye ∈ Ve such that ye ⊥ xf .
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Proof. There are five possibilities for the relative positions of e and f : (1) σe = σf ,

(2) τe = σf , (3) σe = τf , (4) τe = τf , and (5) e and f have no vertex in common.

Then Lemma 4.7 implies for (1) that be ≡ bf , for (2) that ae ≡ bf , for (3) that

be ≡ af , and for (4) that ae ≡ af .

Case 1: xf = af .

• Assume (1).

– af ⊥ ae iff τe and τf are neighbours by Corollary 4.4 (i) which violates

triangle-free, so this case is not possible.

– af ⊥ be is true since be ≡ bf .

– af ⊥ ck,e iff τf ∈ {σe, τe} by Corollary 4.4 (iv), contradicting σe = σf ,

so this case is not possible.

• Assume (2).

– af ⊥ ae is true since ae ≡ bf .

– af ⊥ be iff σe and τf are neighbours by Corollary 4.4 (ii) which violates

triangle-free, so this case is not possible.

– af ⊥ ck,e iff τf ∈ {σe, τe} by Corollary 4.4 (iv), contradicting σe = σf ,

so this case is not possible.

• Assume (3). Since be ≡ af , we infer πG(a′f ) = πG(b′e) ∈ πG[(M∗

e )′], violating

our hypothesis.

• Assume (4). Since ae ≡ af , we infer πG(a′f ) = πG(a′e) ∈ πG[(M∗

e )′], violating

our hypothesis.

• Assume (5).

– af ⊥ ae iff τe and τf are neighbours by Corollary 4.4 (ii). If g1 is an arrow

from τe to τf , then af ≡ ag1
⊥ ae since ae ≡ bg1

by Lemma 4.7. If g2 is

an arrow from τf to τe, then af ≡ bg2
⊥ ae since ae ≡ ag2

by Lemma 4.7.

Note that exactly one of g1 and g2 exists since G is strongly loopless.

– af ⊥ be iff σe and τf are neighbours by Corollary 4.4 (ii). If g1 is an arrow

from σe to τf , then af ≡ ag1
⊥ be since be ≡ bg1

by Lemma 4.7. If g2 is

an arrow from τf to σe, then af ≡ bg2
⊥ be since be ≡ ag2

by Lemma 4.7.

Note that the two preceding cases exclude one another: τf can’t be a

neighbour of σe and τe at the same time as G is triangle-free.

– af ⊥ ck,e iff τf ∈ {σe, τe} by Corollary 4.4 (iv), contradicting the fact

that e and f have no common vertex.

So ye ⊥ af has a (unique) solution just for (1): ye = be, for (2): ye = ae and for

(5): ye = ae iff τe and τf are neighbours or ye = be iff σe and τf are neighbours,

respectively.

Case 2: xf = bf .
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Arguing as in Case 1, we obtain that ye ⊥ bf has a (unique) solution just for

(3): ye = be, for (4): ye = ae and for (5): ye = ae iff τe and σf are neighbours or

ye = be iff σe and σf are neighbours, respectively.

Case 3: xf = ck,f .

• Assume (1).

– ck,f ⊥ ae iff τe ∈ {σf, τf} by Corollary 4.4 (iv), contradicting σe = σf ,

so this case is not possible.

– ck,f ⊥ be is true by Corollary 4.4 (v) since σe ∈ {σf, τf}.

– ck,f ⊥ ck′,e is not possible by Corollary 4.4.

• Assume (2).

– ck,f ⊥ ae is true by Corollary 4.4 (iv) since τe ∈ {σf, τf}.

– ck,f ⊥ be iff σe ∈ {σf, τf} by Corollary 4.4 (v), contradicting τe = σf , so

this case is not possible.

– ck,f ⊥ ck′,e is not possible by Corollary 4.4.

• Assume (3).

– ck,f ⊥ ae iff τe ∈ {σf, τf} by Corollary 4.4 (iv), contradicting σe = τf ,

so this case is not possible.

– ck,f ⊥ be is true by Corollary 4.4 (v) since σe ∈ {σf, τf}.

– ck,f ⊥ ck′,e is not possible by Corollary 4.4.

• Assume (4).

– ck,f ⊥ ae is true by Corollary 4.4 (iv) since τe ∈ {σf, τf}.

– ck,f ⊥ be iff σe ∈ {σf, τf} by Corollary 4.4 (v), contradicting τe = τf , so

this case is not possible.

– ck,f ⊥ ck′,e is not possible by Corollary 4.4.

• Assume (5).

– ck,f ⊥ ye is not possible for any ye ∈ Ve by Corollary 4.4 (iv) and (v).

So ye ⊥ ck,f has a (unique) solution for (1): ye = be, for (2): ye = ae, for (3):

ye = be, and for (4): ye = ae. �

Remark: Actually, Lemma 4.10 holds exactly if G is triangle-free. It is not hard

to construct, given any three arrows e, f, g forming a triangle, an element xf ∈ V

such that πG(x′f ) /∈ πG[(M∗

e )′], and two elements ye 6= ze ∈ Ve such that xf ⊥ ye, ze.

Our next concern is sets of atoms coming from different co-factors πG[(M∗

ei
)′]

which are pairwise disjoint. It too will depend on the fact that G is triangle-free.

Lemma 4.11. Let e1, . . . , en ∈ E (for n > 2), and xei
∈ Vei

for 1 ≤ i ≤ n. Suppose

xei
⊥ xej

for 1 ≤ i < j ≤ n. Then, for some 1 ≤ j ≤ n, there exist yi,ej
∈ Vej

(for

1 ≤ i ≤ n) such that xei
≡ yi,ej

and, in particular, it follows that n ≤ 6.



322 M. E. Adams and J. Schmid Algebra univers.

Proof. Let 2 < n. Suppose (with no loss in generality) we find xei
∈ {aei

, bei
} for

i = 1, 2, 3. Select τei ∈ V iff xei
= aei

, σei ∈ V iff xei
= bei

. The three selected

vertices of G are pairwise neighbours by Corollary 4.4, violating triangle-free. So at

most two of these xei
are in {aei

, bei
}, and thus (with no loss in generality) xe3

= ck,e3

for some k. Suppose xe1
= ae1

. From ae1
⊥ ck,e3

we infer, using Corollary 4.4 (iv),

that τe1 ∈ {σe3, τe3}. But then ae1
≡ be3

or ae1
≡ ae3

. The analogous argument

based on Corollary 4.4 (v) shows that xe1
= be1

implies be1
≡ be3

or be1
≡ ae3

. Finally,

ck,e3
6⊥ ck′,ei

for any k′ and i 6= 3, so all the atoms πG(x′ei
) are in πG[(M∗

e3
)′], and

there are at most 6 of them. �

Let 1 ≤ i < j ≤ 6 and assume that y1, . . . , y6 ∈ BG satisfy y1 ∨ · · · ∨ y6 = 1,

yi ∧ yj = 0, and yi ≥ πG(x′ei
) for ei ∈ E and xei

∈ Vei
. Since xei

⊥ xej
and

y1 ∨ · · · ∨ y6 = 1, it follows from Lemma 4.11 that, for some e ∈ E, xei
≡ zi,e for

1 ≤ i ≤ 6. However, yi ∧
∨

(πG(z′j,e) : j 6= i) ≤ yi ∧
∨

(yj : j 6= i) = 0. In particular,

yi ≤ (
∨

(πG(z′j,e) : j 6= i))∗ = πG(z′i,e). That is yi = πG(z′i,e). In §6, we will need a

dual version of this.

Corollary 4.12. Let 1 ≤ q, q′ ≤ 6 and assume y1, . . . , y6 ∈ BG satisfy y1∧· · ·∧y6 =

0, yq∨yq′ = 1 whenever q 6= q′, and yq ≤ πG((Veq
\{xeq

})′) for eq ∈ E and xeq
∈ Veq

.

Then there exists e ∈ E such that {y1, . . . , y6} = {πG((Ve \ {xe})
′) : xe ∈ Ve}.

5. Two constructions

5.1. Doubling elements of a Boolean lattice. For a subset X of a poset P ,

let (X] = {y : y ≤ x for some x ∈ X} and [X) = {y : y ≥ x for some x ∈ X}.

For brevity, whenever X = {x}, (x] and [x) will be used to denote (X] and [X),

respectively. For X 6= ∅, X is an order ideal or an order filter providing X = (X]

or [X), respectively.

We will now define a particular pseudocomplemented semilattice B[[F ]] for each

Boolean lattice B and non-trivial (that is, ∅ ⊂ F ⊂ B) order filter F defined on it.

The skeleton of B[[F ]] will be B, and the non-trivial Glivenko classes in B[[F ]] will

be 2-element chains containing an element from (B \ F ) \ {0}.

Thus let

B[[F ]] = (B × 2) \ ((F × {0}) ∪ {(0, 1)}),

where 2 denotes the 2-element chain {0, 1} with 0 < 1. Let ≤ denote the restriction

of the order on B × 2 to B[[F ]].
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Lemma 5.1. (B[[F ]];∧, ∗, (0, 0), (1, 1)) is a pseudocomplemented semilattice such

that, for (a, i), (b, j) ∈ B[[F ]],

(a, i) ∧ (b, j) =

{

(a ∧ b, i ∧ j) if a ∧ b 6= 0,

(0, 0) if a ∧ b = 0,

where (1, 1)∗ = (0, 0) and, for (a, i) 6= (1, 1), (a, i)∗ = (a∗, 1).

Proof. Since B[[F ]] is a subset of B × 2, (B[[F ]];≤) is a poset.

Since (0, 0) ∈ B[[F ]], (a, i) and (b, j) always have a lower bound. Say (c, k) is one

such. Then, as c ≤ a∧ b and k ≤ i∧ j, (a∧ b, i∧ j) will be the greatest lower bound

providing it is an element of B[[F ]]. If (a ∧ b, i ∧ j) 6∈ B[[F ]], then either a ∧ b = 0

and i ∧ j = 1 or else a ∧ b ∈ F \ {0} and i ∧ j = 0. In the former case, a ∧ b = 0

and i ∧ j = 1. Then, since ((0, 1)] = {(0, 0), (0, 1)} in B × 2, (a, i) ∧ (b, j) = (0, 0)

in B[[F ]]. In the latter case, a ∧ b ∈ F \ {0}. Then a, b ∈ F and, in particular,

i = j = 1. Thus, contrary to hypothesis, i ∧ j = 1, and we conclude that this case

does not arise.

Certainly, (1, 1)∗ = (0, 0). If (a, i) 6= (1, 1), a < 1. If (a, i) ∧ (b, j) = (0, 0), then

a ∧ b = 0 and, in particular, b ≤ a∗. Since (a, i) ∧ (a∗, 1) = (0, 0), (a, i)∗ = (a∗, 1),

as required. �

Lemma 5.2. For (a, i), (b, j) ∈ B[[F ]], if (a, i) ≥ (b, j)∗ 6= (0, 0), then (a, i) ∈

B[[F ]]∗.

Proof. By Lemma 5.1, (b, j) 6= (1, 1), b < 1, and (b, j)∗ = (b∗, 1). Thus, 0 < b∗ ≤ a

and 1 ≤ i. Either a = 1 and (a, i) = (1, 1) or else a < 1 and (a, i)∗∗ = (a∗, 1)∗ =

(a∗∗, 1) = (a, 1) = (a, i). �

We are interested in the special case where B equals M∗ and F is the nontrivial

order filter {(V,V)} on M∗.

Lemma 5.3. (i) M∗[[{(V,V)}]] is isomorphic to MV := {(∅, ∅), (V,V)}∪{(A,B); ∅ ⊂

A ⊂ Vand B = ∅ or B = V}, ordered by ⊆ component-wise.

(ii) The function ϕM : M −→MV, given by

ϕM ((A,B)) =

{

(A,V) if B = V,

(A, ∅) if B ⊂ V,

for (A,B) ∈M , is a homomorphism.

Proof. (i) By Lemma 2.2, M∗ = S(G)∗ is isomorphic to B(G) = P(V), the Boolean

lattice of all subsets V, and the order filter {(V,V)} on M∗ corresponds to the

order filter {V} on P(V) under this isomorphism. Realize P(V)[[{V}]] as defined

above but with 2 as {∅,V} ordered by ∅ ⊂ V. We obtain an isomorphic copy MV

of M∗[[{(V,V)}]] as described.
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(ii) Consider (A,B), (C,D) ∈ M . Case 1: A ∩ C = ∅. Then (A,B) ∧ (C,D) =

(∅, ∅) by Lemma 2.1 and thus ϕM ((A,B) ∧ (C,D)) = (∅, ∅) = ϕM ((A,B)) ∧

ϕM ((C,D)) by Lemma 5.1. Case 2: A ∩ C 6= ∅. Subcase 2.1: B ∩ D = V.

Then (A,V) ∧ (C,V) = (A ∩ C,V) and thus ϕM ((A,B) ∧ (C,D)) = (A ∩ C,V) =

ϕM ((A,V)) ∧ ϕM ((C,V)). Subcase 2.2: B ∩ D 6= V. Then, with no loss in gen-

erality, B 6= V and (A,B) ∧ (C,D) = (A ∩ C,Z) for some ∅ ⊆ Z ⊂ V, which

implies ϕM ((A,B) ∧ (C,D)) = (A ∩ C, ∅). But then also ϕM ((A,B)) = (A, ∅) and

thus ϕM ((A,B))∧ ϕM ((C,D)) = (A∩C, ∅). This shows that ϕM preserves meets.

Preservation of pseudocomplements is immediate from the definitions. �

A (closely related) case of interest is the following. Define a nontrivial order

ideal IG of BG by putting an element h ∈ BG into IG iff there are an edge e ∈ E

and a coatom q of πG[(M∗

e )′] such that h ≤ q. Consequently, FG := BG \ IG is a

nontrivial order filter of BG.

Imitating the description of M∗[[{(V,V)}]] given in Lemma 5.3 (i), we can realize

2 as {∅,X} this time, ordered by ∅ ⊂ X where X is any nonempty set (the choice

of X will be one purely of notational convenience, but in most cases it will be

chosen to be V or Ve for some e ∈ E). It is straightforward to see that BG[[FG]]

is isomorphic to BG[[FG]]X := {(∅, ∅)} ∪ {(πG(H), B) : ∅ 6= πG(H) ∈ BG and B =

∅ or B = X} \ {(πG(H), ∅) : πG(H) ∈ FG}, ordered by ⊆ component-wise (where,

since it will be only a matter of notational convenience, BG[[FG]]X ∼= BG[[FG]]V ∼=
BG[[FG]]Ve

∼= BG[[FG]].

Recall that BG contains a canonical copy of M∗

e as a subalgebra for any e ∈ E

by Lemma 4.2, realized as {πG(A′) : ∅ ⊆ A ⊆ Ve} ordered by ⊆. Appealing to

Lemma 5.3 (i) again, with Ve in place of V, we see thatM∗

e [[{(Ve,Ve)}]] is isomorphic

to MVe
:= {(∅, ∅), (Ve,Ve)} ∪ {(πG(A′), B) : ∅ ⊂ A ⊂ Ve and B = ∅ or B = Ve},

ordered by ⊆ component-wise. Observing that πG(A′) ∈ IG whenever A ⊂ Ve, we

conclude that MVe
is, in fact, a subalgebra of BG[[FG]]Ve

.

Let ϕe : Me −→ BG[[FG]]V be the map given by

ϕe((A,B)) =

{

(πG(A′),V) if B = Ve,

(πG(A′), ∅) if B ⊂ Ve,

By Lemma 5.3 (ii), ϕe is a homomorphism from Me into BG[[FG]]V ∼= BG[[FG]].

Corollary 5.4. There exists a homomorphism ϕ : S =
∐

S
(Me : e ∈ E) −→

BG[[FG]] extending ϕe for every e ∈ E.

5.2. A test algebra for G-reduced free products. Let FG and IG be as above

and choose a fixed vertex f ∈ E for the rest of this paragraph. A subset ZG,f of IG
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is now defined as the set of all h ∈ IG such that there are an atom p of πG[(M∗

f )′]

and a coatom q of πG[(M∗

f )′] satisfying p ≤ h ≤ q.

Since πG[(M∗

f )′] is a finite subalgebra of BG, there exists, for any h ∈ BG, a

uniquely determined largest element a ∈ πG[(M∗

f )′] such that a ≤ h; we call it

the lower cover of h in πG[(M∗

f )′] and denote it by λ(h). Note that λ : BG −→

πG[(M∗

f )′] is a ∧-retraction of BG onto πG[(M∗

f )′].

Our goal is to construct a pseudocomplemented semilattice Sf with skeleton BG

and prescribed Glivenko classes, as follows: Let h ∈ BG. Then its Glivenko class

in Sf shall be {h} if h = 0 or h ∈ FG, a copy of the Glivenko class of λ(h) in

Mf ⊇ M∗

f
∼= πG[(M∗

f )′] ∋ λ(h) if h ∈ ZG,f , and a two-element set if h 6= 0 and

h ∈ IG \ ZG,f . The construction of Sf generalizes that of S(G) given in §2, and is

based on the description of BG given in §4.

Recall that elements h ∈ BG are represented as sets πG(H) = H ∩ AD where

H is any clopen subset of P =
∏

(Ve : e ∈ E). Given such πG(H), there is

a unique largest subset A ⊆ Vf such that πG(A′) ⊆ πG(H), to be denoted by

A = Λ(πG(H)). It is easy to see that whenever πG(H) represents h ∈ BG and A =

Λ(πG(H)), then the lower cover λ(h) of h is represented by πG(A′); further, we have

Λ(πG(H1 ∩H2)) = Λ(πG(H1)) ∩ Λ(πG(H2)). Finally, the subset IG of BG defined

above is realized as the collection of all πG(H) such that πG(H) ⊆ πG((Ve \ {y})
′)

for some e ∈ E and some y ∈ Ve. Further, the subset ZG,f of BG defined above is

realized as the collection of all πG(H) such that πG({x}′) ⊆ πG(H) ⊆ πG((Vf\{y})
′)

for some x, y ∈ Vf . In particular, Λ(πG(H)) 6= ∅ whenever πG(H) ∈ ZG,f .

The pseudocomplemented semilattice Sf announced above is now defined as a

subset of BG × P(Vf ), ordered by set inclusion component-wise (where P(Vf ) is

the power set of Vf ), as follows.

Definition 5.5. A pair (πG(H), B) ∈ BG × P(Vf ) belongs to Sf iff one of the

following holds:

(i) πG(H) = ∅ and B = ∅,

(ii) πG(H) ∈ FG and B = Vf ,

(iii) πG(H) ∈ ZG,f , and (Λ(πG(H)), B) ∈Mf ,

(iv) ∅ 6= πG(H) ∈ IG \ ZG,f , and B = ∅ or B = Vf .

The cases listed are mutually exclusive. Writing ≤ for the order relation de-

fined on Sf , we will show that (Sf ,≤) is a pseudocomplemented semilattice. The

following fact, a direct consequence of Lemma 4.10, is crucial.

Lemma 5.6. Let πG(H1) ∈ ZG,f , πG(H2) ∈ IG \ ZG,f and πG(H1) ⊆ πG(H2).

Then ΛπG(H1) = {xf} for some πG(x′f ) ∈ ZG,f .

Proof. Let A := ΛπG(H1). Then A 6= ∅ since πG(H1) ∈ ZG,f . Pick xf ∈ A. It

follows that πG(x′f ) ⊆ πG(A′) ⊆ πG(H1). Now if πG(H1) ⊆ πG(H2), then πG(x′f ) ⊆
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πG(H2) ∈ IG \ ZG,f implies that πG(H2) ⊆ πG((Ve \ {ye})
′) for some ye ∈ Ve such

that e 6= f and ye 6≡ zf for any zf ∈ Vf . It follows that πG(x′f ) ⊆ πG((Ve \ {ye})
′),

in other words, xf ⊥ ye. But by Lemma 4.10, this equation has at most one solution

for xf , given ye as specified. �

Lemma 5.7. (Sf ,≤) is a pseudocomplemented semilattice.

Proof. Fix any pair (πG(H1), B1), (πG(H2), B2) of elements of Sf and consider

an arbitrary element (πG(H), B) ∈ Sf such that (πG(H), B) ≤ (πG(Hi), Bi) for

i = 1, 2. We have to show that there is a unique ≤-maximal element in Sf with

this property, to be denoted it by (πG(Hm), Bm).

Define πG(H0) := πG(H1) ∩ πG(H2) (= πG(H1 ∩ H2)) and B0 := B1 ∩ B2.

It is clear that πG(H) ⊆ πG(H0) and B ⊆ B0. Note that (πG(H0), B0) is not

necessarily a member of Sf . However, we will show that in all cases, we have either

(πG(Hm), Bm) = (πG(H0), B0) (with B0 6= ∅) or (πG(Hm), Bm) = (πG(H0), ∅).

We may assume that πG(H0) 6= ∅ for otherwise (πG(Hm), Bm) equals (∅, ∅).

Observe further that (πG(H),Vf ) ∈ Sf for any ∅ 6= πG(H) ∈ BG. This readily

implies that (πG(Hm), Bm) = (πG(H0),Vf ) whenever B1 = B2 = Vf , and takes

care, in particular, of all cases where πG(H1), πG(H2) both are in FG (by Defini-

tion 5.5 (ii)) and where ∅ 6= πG(H0) ∈ FG (since then both of πG(H1), πG(H2) must

be in FG = BG \ IG). So we may assume B0 6= Vf and ∅ 6= πG(H0) ∈ IG in the se-

quel. We will determine, given such πG(H0) and B0, all elements (πG(H), B) ∈ Sf

satisfying πG(H) ⊆ πG(H0) and B ⊆ B0.

For the purpose of this proof, call a subset of Vf small if it is a singleton or an

edge of Gf = (Vf ,Ef ). We distinguish three cases:

(1) πG(H0) ∈ IG \ ZG,f .

(2) πG(H0) ∈ ZG,f and ΛπG(H0) is small.

(3) πG(H0) ∈ ZG,f and ΛπG(H0) is not small.

Assume (1). If πG(H) ⊆ πG(H0) then either (1.1) πG(H) ∈ IG \ ZG,f or (1.2)

πG(H) ∈ ZG,f . If (1.1) holds, then (πG(H), B) ∈ Sf implies B = ∅ by Defini-

tion 5.5 (iv) since B = Vf is ruled out by B ⊆ B0 6= Vf . If (1.2) holds, then

Λ(πG(H)) is small by Lemma 5.6, which also implies B = ∅ by Definition 5.5 (iii)

and the properties ofMf
∼= M . Now (πG(H0), ∅) itself is in Sf by Definition 5.5 (iv),

and we conclude that indeed (πG(Hm), Bm) = (πG(H0), ∅).

Assume (2). If πG(H) ⊆ πG(H0) then either (2.1) πG(H) ∈ IG \ ZG,f or (2.2)

πG(H) ∈ ZG,f . If (2.1) holds, then B = ∅ as in subcase (1.1). If (2.2) holds, then

Λ(πG(H)) is small since πG(H) ⊆ πG(H0) implies Λ(πG(H)) ⊆ Λ(πG(H0)), and so

B = ∅ as in subcase (1.2). Moreover, (πG(H0), ∅) ∈ Sf by Definition 5.5 (iii) and

the properties of Mf , and thus again (πG(Hm), Bm) = (πG(H0), ∅).
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Assume (3). Observe first that πG(H0) ∈ ZG,f and ΛπG(H0) not small excludes

πG(Hi) ∈ IG \ZG,f by Lemma 5.6 for i = 1, 2. So either πG(Hi) /∈ IG and Bi = Vf ,

or πG(Hi) ∈ ZG,f with Λ(πG(Hi)) not small and thus Λ(πG(Hi)) ⊆ Bi ⊆ Vf .

We conclude that Λ(πG(H0)) = Λ(πG(H1 ∩ H2)) = Λ(πG(H1)) ∩ Λ(πG(H2)) ⊆

B1 ∩ B2 = B0 (and thus B0 6= ∅). But this means that (πG(H0), B0) ∈ Sf by

Definition 5.5 (iii) and the properties of Mf . Hence (πG(Hm), Bm) = (πG(H0), B0)

(with B0 6= ∅).

With that, we have established that (Sf ,≤) is a meet-semilattice with zero (∅, ∅).

Pseudocomplements are easy: consider (πG(Hi), Bi) ∈ Sf for i = 1, 2, and suppose

(πG(H1), B1) ∧ (πG(H2), B2) = (∅, ∅). This implies πG(H1) ∩ πG(H2) = ∅. Let

πG(H) be the complement of πG(H1) in BG; then certainly πG(H2) ⊆ πG(H), and

(πG(H),Vf ) is the largest element of Sf disjoint from (πG(H1), B1). �

Consider Mf . Then BG contains a canonical copy of M∗

f as a subalgebra by

Lemma 4.2, realized as {πG(A′) : ∅ ⊆ A ⊆ Vf} (ordered by ⊆). Observe that if

A 6= ∅,Vf , then πG(A′) ∈ ZG,f and Λ(πG(A′)) = A by the definition of Λ. It

follows that ψf : Mf −→ Sf , defined by

ψf ((A,B)) =

{

(∅, ∅) if A = ∅,

(πG(A′), B) otherwise

is an embedding of Mf into Sf .

Consider Me, e 6= f and the description of M∗[[{(V,V)}]] given in the proof

of Lemma 5.3. Using P(Ve) as the Boolean lattice and realizing 2 as {∅,Vf}

(ordered by ∅ ⊂ Vf ), we obtain an isomorphic copy of M∗

e [[{(Ve,Ve)}]] given as

MVe
:= {(∅, ∅), (Ve,Vf )}∪{(A,B) : ∅ ⊂ A ⊂ Ve and B = ∅ orB = Vf}, ordered by

⊆ component-wise.

Again, BG contains a canonical copy of M∗

e as a subalgebra, realized as {πG(A′) :

∅ ⊆ A ⊆ Ve} (ordered by ⊆). Define εe : MVe
−→ Sf ⊆ BG × P(Vf ) by

εe((A,B)) =

{

(πG(A′),Vf ) if B = Ve,

(πG(A′), ∅) if B = ∅.

We show that εe is an embedding ofMVe
into Sf , provided πG[(M∗

e )′]∩ πG[(M∗

f )′] =

{0, 1}. Assume not. Then there is ∅ ⊂ Ae ⊂ Ve such that πG(A′

e) ∈ πG[(M∗

e )′] ∩

πG[(M∗

f )′]. It follows by Corollary 4.9 that πG(A′

e) = πG(A′

f ) (where ∅ 6= Af 6= Vf

is of the same cardinality as Ae) is a uniquely determined common atom or coatom

of πG[(M∗

e )′] and πG[(M∗

f )′], and thus πG(A′

f ) ∈ ZG,f . We need to redefine

εe((A,B)) in case B = ∅ to account for clause (iii) of Definition 5.5. Recall that

Λ(πG(A′

f )) = Af . If πG(A′

f ) is an atom, (Af , C) ∈ Mf iff C = ∅ and no modifica-

tion of εe is necessary. So assume πG(A′

f ) is a coatom. To obtain (Af , C) ∈ Mf

with C 6= Vf , we must set εe((Ae, ∅)) := (πG(A′

f ), Af ) = (πG(A′

e), Af ) in this case.
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It remains to show that εe so modified preserves meets. Consider (A1, B1) ∈

MVe
such that (A1, B1) 6= (Ae, ∅); the meet of (Ae, ∅) and (A1, B1) in MVe

is

(Ae∩A1, ∅). Turning to εe-images, observe that neither πG(A′

1) nor πG((Ae∩A1)
′)

are in ZG,f by Corollary 4.9. So εe((A1, B1)) is either (πG(A′

1),Vf ) or (πG(A′

1), ∅),

and εe((Ae ∩ A1, ∅)) is (πG((Ae ∩ A1)
′), ∅), while still εe((Ae, ∅)) = (πG(A′

e), Af ).

By the proof of Lemma 5.7, case (1), the meet – taken in Sf – of (πG(A′

e), Af ) =

(πG(A′

f ), Af ) with either (πG(A′

1),Vf ) or (πG(A′

1), ∅) is indeed (πG((Af∩A1)
′), ∅) =

(πG((Ae ∩A1)
′), ∅), as required.

On the other hand, we have the homomorphism ϕMe
: Me −→MVe

provided by

Lemma 5.3. The composition εe◦ϕMe
thus defines a homomorphism ψe : Me −→ Sf

given explicitly by

ψe((A,B)) =















(πG(A′),Vf ) if B = Ve,

(πG(A′), Af ) if B ⊂ Ve, |A| = 5, and

πG(A′) = πG(A′

f ) ∈ ZG,f for Af ⊂ Vf ,

(πG(A′), ∅) if B ⊂ Ve, otherwise.

Corollary 5.8. There exists a homomorphism ψ : S =
∐

S
(Me : e ∈ E) −→ Sf

extending ψf and ψe for every e ∈ E with e 6= f .

6. Proof of Theorem 1.1

To establish Theorem 1.1, it is sufficient to show that (i) for any directed graphs

G and H ∈ Gc, Φ(h)(SG) 6⊆ S∗

H whenever h : G −→ H is a compatible mapping,

and that (ii) there exists a compatible mapping h : G −→ H such that ϕ = Φ(h)

whenever ϕ : SG −→ SH is a homomorphism for which ϕ(SG) 6⊆ S∗

H .

Let πG : S −→ SG be the canonical projection with kernel ΘG. There is an

intimate connection between πG and πG. The canonical copy of M∗

e within SG =

S/ΘG is {πG((A,V)e)} for e ∈ E and A ⊆ V and the canonical copy of M∗

e within

BG, as constructed in §4, is {πG(A′)} for A ⊆ Ve. We will freely switch between

these representations without explicitly specifying the associated isomorphism.

We start by observing that ΘG ⊆ kerϕ and ΘG ⊆ kerψ where ϕ : S −→ BG[[FG]]

and ψ : S −→ Sf (for any f ∈ E) are the homomorphisms given by Corollaries 5.4

and 5.8, respectively. Indeed, recall that ΘG is the least congruence on S containing

all pairs ((V \ {a},V)e, (V \ {b},V)f ) and ((V \ {a},V \ {a})e, (V \ {b},V \ {b})f )

for e = (u, v) and f = (v, w) in E. But then τe = σf and πG((V \ {a})′e) =

πG((Ve \ {ae})
′) = πG((Vf \ {bf})

′) = πG((V \ {b})′f ). It follows that the partial

homomorphisms ϕe and ψe used to define ϕ and ψ take the same values on both

components of the pairs generating ΘG (check the definitions of ϕe and ψe), and

so these pairs are in kerϕ and kerψ, respectively.
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It follows that there exists homomorphisms

ϕG : SG −→ BG[[FG]] and ψG : SG −→ Sf

such that ϕ = ϕG ◦ πG and ψ = ψG ◦ πG.

There are a number of immediate conclusions that we wish to make from these

observations, namely Lemmas 6.1–6.5.

Lemma 6.1. πG is one-to-one on Me for each e ∈ E.

Proof. Consider some fixed f ∈ E. Then ψ extends ψf (see §5.2) which embeds

Mf into Sf . Hence ψG ◦ πG, and with that, πG must be one-to-one on Mf . �

Lemma 6.2. Let x ∈Me. Then πG(x) ∈ S∗

G iff x ∈M∗

e .

Proof. Consider x ∈ Me \ M∗

e . If πG(x) ∈ S∗

G, then πG(x∗∗) = πG(x). But

x 6= x∗∗ ∈M∗

e , violating Lemma 6.1. �

Lemma 6.3. For G = (V ;E) and H = (W ;F ) ∈ Gc, if h : G −→ H is a compatible

mapping, then Φ(h)(SG) 6⊆ S∗

H .

Proof. Let (A,B)e ∈Me. By Lemma 6.2, πG((A,B)e) /∈ S∗

G iff (A,B)e /∈M∗

e which

is the case iff A 6= ∅ andB ⊂ V, by the properties ofMe. Since Φ(h)(πG((A,B)e)) =

πH((A,B)(h(u),h(v))) for e = (u, v) ∈ E, Φ(h)(SG) 6⊆ S∗

H . �

Thus Lemma 6.3 provides part (i) of our proof of Theorem 1.1.

The following applies to any pseudocomplemented semilattice S. Let Z be any

generating set for S, and x ∈ S. Then x may be written as x = x∗∗∧z0∧· · ·∧zn−1

for some n ∈ N and zi ∈ Z \S∗ (see, for example, [29]). In any such representation,

x /∈ S∗ iff n 6= 0 ; thus, x /∈ S∗ implies x ≤ z for some z ∈ Z \ S∗.

Lemma 6.4. For y, z ∈ SG, if 0 6= y∗ ≤ z, then z ∈ S∗

G.

Proof. By Lemma 2.3, SG is generated by {πG((V \ {x},V \ {x})e) : x ∈ V and e ∈

E}. Assume y, z ∈ SG and y∗ ≤ z 6∈ S∗

G. Thus y∗ ≤ πG((V \ {x},V \ {x})e) for

some x ∈ V and e ∈ E by the preceding remark. Now ϕG(y∗) ∈ BG[[FG]]∗ while

ϕG(πG((V \ {x},V \ {x})e)) = ϕ((V \ {x},V \ {x})e) = ϕe((V \ {x},V \ {x})e) =

(πG((Ve \ {xe})
′), ∅) /∈ BG[[FG]]∗. As ϕG is order-preserving, this implies ϕG(y∗) =

(∅, ∅) = 0 in BG[[FG]]∗ and thus y∗ = 0 since ϕG is one-to-one on S∗

G
∼= BG[[FG]]∗ ∼=

BG. �

Lemma 6.5. For x ∈ V and e ∈ E, the Glivenko class of πG((V \ {x},V)e) in SG

has precisely two elements, namely πG((V \ {x},V)e) and πG((V \ {x},V \ {x})e).

Proof. By definition, the Glivenko class of (V \ {x},V)e in Me has precisely two

elements, namely (V \ {x},V)e and (V \ {x},V \ {x})e. By Lemma 6.1, the Glivenko

class of πG((V \ {x},V)e) in SG thus contains at least the two elements specified
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by the Lemma. Assume y ∈ SG is another member of this class, that is, y∗∗ =

πG((V \ {x},V)e). By the remark preceding Lemma 6.4, y may be written as y =

y∗∗∧z0∧· · ·∧zn−1 where the zi belong to Z \S∗

G, Z a set generating SG; thus y∗∗ =

y∗∗ ∧ z∗∗0 ∧ · · · ∧ z∗∗n−1 and y∗∗ ≤ z∗∗i for all 0 ≤ i ≤ n− 1. By Lemma 2.3, Z may be

chosen as {πG((V\{x},V\{x})e) : x ∈ V and e ∈ E}, whence Z∩S∗

G = ∅. Consider

a fixed zi. Then z∗∗i has the form πG((V \ {w},V)f ) = πG((Vf \ {wf},Vf ) for some

f ∈ E and wf ∈ Vf , and we obtain y∗∗ = πG((Ve \{xe},Ve)) ≤ πG((Vf \{wf},Vf ).

This comparability is within the Boolean algebra BG, so we may take complements

and obtain πG(({xe},Ve)) ≥ πG(({wf},Vf ), in terms of BG as constructed in §4

this reads as πG(x′e) ≥ πG(w′

f ). By Lemma 4.5 we obtain πG(x′e) = πG(w′

f ), thus

back in terms of SG we have πG((V\{x},V)e) = πG((V\{w},V)f ). By the definition

of ΘG then also πG((V \ {x},V \ {x})e) = πG((V \ {w},V \ {w})f ) and we are done

since this applies for every zi (0 ≤ i ≤ n− 1). �

To obtain part (ii) of the proof of Theorem 1.1, assume that, for G = (V,E) and

H = (W,F ) ∈ Gc, ϕ : SG −→ SH is any homomorphism for which ϕ(SG) 6⊆ S∗

H . It

must be shown that ϕ = Φ(h) for some compatible map h : G −→ H.

Suppose that, for some x ∈ V and e ∈ E, ϕ(πG((V \ {x},V)e)) = ϕ(πG((V \

{x},V \ {x})e)). Denoting the restriction of ϕ ◦ πG to Me ⊆ S by α, we obtain by

Lemma 2.5 that either kerα ⊇ ΓMe
or else that there exist (A,B)e, (C,D)e ∈ Me

such that α((A,B)e) 6= α((A,V)e) and α((A,B)e) ≥ α((C,D)∗e) 6= α((∅, ∅)e). The

latter option is ruled out by Lemma 6.4, thus kerα ⊇ ΓMe
. In particular, we have

α(V \ {x},V)e) = α((V \ {x},V \ {x})e) for all x ∈ V. Consider f ∈ E such that

either σf = τe or τf = σe. Then, by the definition of ΘG, we have πG((V \{a},V \

{a})e) = πG((V\{b},V\{b})f ) or πG((V\{a},V\{a})f )) = πG((V\{b},V\{b})e),

hence πG((V \ {b},V)f ) = πG((V \ {b},V \ {b})f ) or πG((V \ {a},V)f ) = πG((V \

{a},V \ {a})f ). So there is some y ∈ V and such that ϕ(πG((V \ {y},V)f )) =

ϕ(πG((V \ {y},V \ {y})f )). Repeating the procedure and using connectivity of G,

this implies by Lemma 6.5 that ϕ collapses the full Glivenko classes of all generators

of SG, implying ϕ(SG) ⊆ S∗

H , contrary to hypothesis.

We conclude that ϕ(πG((V \ {x},V)e)) 6= ϕ(πG((V \ {x},V \ {x})e)) for every

x ∈ V and every e ∈ E.

Observe that SH is generated by {πH((V \ {y},V \ {y})f ) : y ∈ V and f ∈ F}.

Since, for every x ∈ V and every e ∈ E, ϕ(πG((V \ {x},V)e)) 6= ϕ(πG((V \ {x},V \

{x})e)), we conclude that, for each x ∈ V and e ∈ E, ϕ(πG((V \ {x},V)e)) ≤

πH((V\{y},V)f ) for some y ∈ V and f ∈ F . Separated as it is by §5, Corollary 4.12

feels a long way away. However, this is precisely where it is needed. For each e ∈ E,

by Corollary 4.12 with {yi : 1 ≤ i ≤ 6} = φ(πG((V \ {x},V)e) : x ∈ V}, there exists

η(e) ∈ F such that φ(πG((V \ {x},V)e) = πH((V \ {ζ(x)},V)η(e)) where ζ : V −→ V

is one-to-one (and thus bijective). Furthermore, by Lemma 6.5, ϕ(πG((V \ {x},V \
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{x})e)) = πH((V \ {ζ(x)},V \ {ζ(x)})η(e)). By Lemma 2.7, ζ is the identity, that

is, for every x ∈ V and e ∈ E, ϕ(πG((V \ {x},V)e)) = πH((V \ {x},V)η(e)) and

ϕ(πG((V \ {x},V \ {x})e)) = πH((V \ {x},V \ {x})η(e)).

Consider v ∈ V . Then, since G ∈ Gc, there exist e1, e2 ∈ E such that τe1 =

v = σe2. In particular, πG((V \ {a},V)e1
) = πG((V \ {b},V)e2

). Thus, ϕ(πG((V \

{a},V)e1
)) = ϕ(πG((V \ {b},V)e2

)). Whence, ϕ(πG((V \ {a},V)η(e1))) = ϕ(πG((V \

{b},V)η(e2))). Even further away are Corollary 4.6 and Lemma 4.7. However, this

is the point where they are needed. By Corollary 4.6 and Lemma 4.7, this is only

possible if η(e1) = f1 and η(e2) = f2, for f1, f2 ∈ F such that τf1 = w = σf2.

Set h(v) = w. By Corollary 4.6 and Lemma 4.7, h : V −→ W is a well-defined

compatible mapping. Since Φ(h)(πG((V \ {x}, V \ {x})e)) = ϕ(πG((V \ {x}, V \

{x})e)) for every x ∈ V and e ∈ E and SG is generated by {(V \ {x},V \ {x})e : x ∈

V and e ∈ E}, we have ϕ = Φ(h), as required.

7. Concluding remark

A pseudocomplemented semilattice is relatively rigid providing the only endo-

morphism ϕ : S −→ S for which ϕ(S) 6⊆ S∗ is the identity. Since there exists a

proper class of non-isomorphic rigid connected strongly loopless graphs, it follows

from Theorem 1.1 that there exists a proper class of non-isomorphic relatively rigid

pseudocomplemented semilattices. Inspection of the functor Φ shows that, for a

graph G = (V ;E) ∈ Gc, |Φ(SG)∗| ≥ |E|, which increases with |V |. This leads

us to the following problem. Does there exist some cardinal κ for which there is

a proper class of non-isomorphic relatively rigid pseudocomplemented semilattices

such that, for each member S, |S∗| ≤ κ?

Since the time of submission, Václav Koubek and Jǐŕı Sichler have shown that

every finite-to-finite almost universal variety V is Q-universal (Almost ff-universal-

ity imples Q-universality, to appear).
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