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Abstract

We study nonparametric maximum likelihood estimation of a log-concave probability
density and its distribution and hazard function. Some general properties of these estima-
tors are derived from two characterizations. It is shown that the rate of convergence with
respect to supremum norm on a compact interval for the density and hazard rate estimator is
at least (log(n)/n)1/3 and typically (log(n)/n)2/5 whereas the difference between the empir-
ical and estimated distribution function vanishes with rate op(n−1/2) under certain regularity
assumptions.
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1 Introduction

Two common approaches to nonparametric density estimation are smoothing methods and qual-
itative constraints. The former approach includes, among others, kernel density estimators, esti-
mators based on discrete wavelets or other series expansions, and estimators based on roughness
penalization. Good starting points for the vast literature in this field are Silverman (1982, 1986)
and Donoho et al. (1996). A common feature of all these methods is that they involve certain
tuning parameters, e.g. the order of a kernel and the bandwidth. A proper choice of these pa-
rameters is far from trivial, since optimal values depend on unknown properties of the underlying
density f . The second approach avoids such problems by imposing qualitative properties on f ,
e.g. monotonicity or convexity on certain intervals in the univariate case. Such assumptions are
often plausible or even justified rigorously in specific applications.

Density estimation under shape constraints was first considered by Grenander (1956), who
found that the nonparametric maximum likelihood estimator (NPMLE) f̂mon

n of a non-increasing
density function f on [0,∞) is given by the left derivative of the least concave majorant of
the empirical cumulative distribution function on [0,∞). This work was continued by Prakasa
Rao (1969) and Groeneboom (1985, 1988), who established asymptotic distribution theory for
n1/3(f − f̂mon

n )(t) at a fixed point t > 0 under certain regularity conditions and analyzed the
non-gaussian limit distribution. For various estimation problems involving monotone functions,
the typical rate of convergence is Op(n−1/3) pointwise. The rate of convergence with respect to
supremum norm is further decelerated by a factor of log(n)1/3 (Jonker and van der Vaart 2001).
For applications of monotone density estimation consult e.g. Barlow et al. (1972) or Robertson et
al. (1988).

Monotone estimation can be extended to cover unimodal densities. Remember that a density
f on the real line is unimodal if there exists a number M = M(f) such that f is non-decreasing
on (−∞,M ] and non-increasing on [M,∞). If the true mode is known a priori, unimodal density
estimation boils down to monotone estimation in a straightforward manner, but the situation is
different if M is unknown. In that case, the likelihood is unbounded, problems being caused by
observations too close to a hypothetical mode. Even if the mode was known, the density estimator
is inconsistent at the mode, a phenomenon called “spiking”. Several methods were proposed to
remedy this problem, see Wegman (1970), Woodroofe and Sun (1993), Meyer and Woodroofe
(2004) or Kulikov and Lopuhaä (2006), but all of them require additional constraints on f .

The combination of shape constraints and smoothing was assessed by Eggermont and La-
Riccia (2000). To improve the slow rate of convergence of n−1/3 in the space L1(R) for arbitrary
unimodal densities, they derived a Grenander type estimator by taking the derivative of the least
concave majorant of an integrated kernel density estimator rather than the empirical distribution
function directly, yielding a rate of convergence of Op(n−2/5).

Estimation of a convex decreasing density on [0,∞) was pioneered by Anevski (1994, 2003).
The problem arose in a study of migrating birds discussed by Hampel (1987). Groeneboom et al.
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(2001) provide a characterization of the estimator as well as consistency and limiting behavior at a
fixed point of positive curvature of the function to be estimated. They found that the estimator has
to be piecewise linear with knots between the observation points. Under the additional assumption
that the true density f is twice continuously differentiable on [0,∞), they show that the MLE
converges at rate Op(n−2/5) pointwise, fairly better than in the monotone case. Monotonicity
and convexity constraints on densities on [0,∞) have been embedded into the general framework
of k–monotone densities by Balabdaoui and Wellner (2008). See Section 5 for a more thorough
discussion of the similarities and differences between k–monotone density estimation and the
present work.

In the present paper we impose an alternative and quite natural shape constraint on the density
f , namely, log-concavity. That means,

f(x) = expϕ(x)

for some concave function ϕ : R → [−∞,∞). This class is rather flexible in that it generalizes
many common parametric densities. These include all nondegenerate normal densities, all Gamma
densities with shape parameter≥ 1, all Weibull densities with exponent≥ 1, and all beta densities
with parameters≥ 1. Further examples are the logistic and Gumbel densities. Log-concave densi-
ties are of interest in econometrics, see Bagnoli and Bergstrom (2005) for a summary and further
examples. Barlow and Proschan (1975) describe advantageous properties of log-concave densities
in reliability theory, while Chang and Walther (2007) use log-concave densities as ingredient of
nonparametric mixture models. In nonparametric Bayesian analysis, log-concavity is of certain
relevance, too (Brooks 1998).

Note that log-concavity of a density implies that it is also unimodal. It will turn out that
by imposing log-concavity one circumvents the spiking problem mentioned before, which yields
a new approach to estimate a unimodal, possibly skewed density. Moreover, the log-concave
density estimator is fully automatic in the sense that there is no need to select any bandwidth,
kernel function or other tuning parameters. Finally, simulating data from the estimated density
is rather easy. All these properties make the new estimator appealing for its use in statistical
applications.

Little large sample theory is available for log-concave estimators so far. Sengupta and Paul
(2005) considered testing for log-concavity of distribution functions on a compact interval. Walther
(2002) introduced an extension of log-concavity in the context of certain mixture models, but his
theory doesn’t cover asymptotic properties of the density estimators themselves. Pal et al. (2006)
proved the log-concave NPMLE to be consistent, but without rates of convergence.

Concerning the computation of the log-concave NPMLE, Walther (2002) and Pal et al. (2006)
used a crude version of the iterative convex minorant (ICM) algorithm. A detailed description and
comparison of several algorithms can be found in Rufibach (2007), while Dümbgen et al. (2007a)
describe an active set algorithm, which is similar to the vertex reduction algorithms presented by
Groeneboom et al. (2008) and seems to be the most efficient one by now. The ICM and active
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set algorithms are implemented within the R package "logcondens", accessible via "CRAN".
Corresponding Matlab code is available from the first author’s homepage.

In Section 2 we introduce the log-concave maximum likelihood density estimator, discuss its
basic properties and derive two characterizations. In Section 3 we illustrate this estimator with
a real data example and explain briefly how to simulate data from the estimated density. Con-
sistency of this density estimator and the corresponding estimator of the distribution function are
treated in Section 4. It is shown that the supremum norm between estimated density, f̂n, and true
density on compact subsets of the interior of {f > 0} converges to zero at rate Op

(
(log(n)/n)γ

)
with γ ∈ [1/3, 2/5] depending on f ’s smoothness. In particular, our estimator adapts to the un-
kown smoothness of f . Consistency of the density estimator entails consistency of the distribution
function estimator. In fact, under additional regularity conditions on f , the difference between the
empirical c.d.f. and the estimated c.d.f. is of order op(n−1/2) on compact subsets of the interior of
{f > 0}.

As a by-product of our estimator note the following. Log-concavity of the density function
f also implies that the corresponding hazard function h = f/(1 − F ) is non-decreasing (cf.
Barlow and Proschan 1975). Hence our estimators of f and its c.d.f. F entail a consistent and
non-decreasing estimator of h, as pointed out at the end of Section 4.

Some auxiliary results, proofs and technical arguments are deferred to Section A.

2 The estimators and their basic properties

Let X be a random variable with distribution function F and Lebesgue density

f(x) = expϕ(x)

for some concave function ϕ : R → [−∞,∞). Our goal is to estimate f based on a random
sample of size n > 1 from F . Let X1 < X2 < · · · < Xn be the corresponding order statistics.
For any log-concave probability density f on R, the normalized log-likelihood function at f is
given by ∫

log f dFn =

∫
ϕdFn (1)

where Fn stands for the empirical distribution function of the sample. In order to relax the con-
straint of f being a probability density and to get a criterion function to maximize over the convex
set of all concave functions ϕ, we employ the standard trick of adding a Lagrange-term to (1),
leading to the functional

Ψn(ϕ) :=

∫
ϕdFn −

∫
expϕ(x) dx

(see Silverman, 1982, Theorem 3.1). The nonparametric maximum likelihood estimator of ϕ =

log f is the maximizer of this functional over all concave functions,

ϕ̂n := arg max
ϕ concave

Ψn(ϕ),
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and f̂n := exp ϕ̂n.

Existence, uniqueness and shape of ϕ̂n. One can easily show that Ψn(ϕ) > −∞ if, and only
if, ϕ is real-valued on [X1, Xn]. The following theorem was proved independently by Pal et al.
(2006) and Rufibach (2006). It follows also from more general considerations in Dümbgen et al.
(2007a, Section 2).

Theorem 2.1. The NPMLE ϕ̂n exists and is unique. It is linear on all intervals [Xj , Xj+1],
1 ≤ j < n. Moreover, ϕ̂n = −∞ on R \ [X1, Xn].

Characterizations and further properties. We provide two characterizations of the estimators
ϕ̂n, f̂n and the corresponding distribution function F̂n, i.e. F̂n(x) =

∫ x
−∞ f̂n(r) dr. The first

characterization is in terms of ϕ̂n and perturbation functions:

Theorem 2.2. Let ϕ̃ be a concave function such that {x : ϕ̃(x) > −∞} = [X1, Xn]. Then
ϕ̃ = ϕ̂n if, and only if, ∫

∆(x) dFn(x) ≤
∫

∆(x) exp ϕ̃(x) dx (2)

for any ∆ : R→ R such that ϕ̃+ λ∆ is concave for some λ > 0.

Plugging in suitable perturbation functions ∆ in Theorem 2.2 yields valuable information
about ϕ̂n and F̂n. For a first illustration, let µ(G) and Var(G) be the mean and variance, re-
spectively, of a distribution (function) G on the real line with finite second moment. Setting
∆(x) := ±x or ∆(x) := −x2 in Theorem 2.4 yields:

Corollary 2.3.
µ(F̂n) = µ(Fn) and Var(F̂n) ≤ Var(Fn).

Our second characterization is in terms of the empirical distribution function Fn and the esti-
mated distribution function F̂n. For a continuous and piecewise linear function h : [X1, Xn]→ R
we define the set of its “knots” to be

Sn(h) :=
{
t ∈ (X1, Xn) : h′(t−) 6= h′(t+)

}
∪ {X1, Xn}.

Recall that ϕ̂n is an example for such a function h with Sn(ϕ̂n) ⊂ {X1, X2, . . . , Xn}.

Theorem 2.4. Let ϕ̃ be a concave function which is linear on all intervals [Xj , Xj+1], 1 ≤ j < n,
while ϕ̃ = −∞ on R \ [X1, Xn]. Defining F̃ (x) :=

∫ x
−∞ exp ϕ̃(r) dr, we assume further that

F̃ (Xn) = 1. Then ϕ̃ = ϕ̂n and F̃ = F̂n if, and only if, for arbitrary t ∈ [X1, Xn],∫ t

X1

F̃ (r) dr ≤
∫ t

X1

Fn(r) dr (3)

with equality in case of t ∈ Sn(ϕ̃).
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A particular consequence of Theorem 2.4 is that the distribution function estimator F̂n is very
close to the empirical distribution function Fn on Sn(ϕ̂n):

Corollary 2.5.
Fn − n−1 ≤ F̂n ≤ Fn on Sn(ϕ̂n).

Figure 1 illustrates Theorem 2.4 and Corollary 2.5. The upper plot displays Fn and F̂n for a
sample of n = 25 random numbers generated from a Gumbel distribution with density f(x) =

e−x exp(−e−x) on R. The dotted vertical lines indicate the “kinks” of ϕ̂n, i.e. all t ∈ Sn(ϕ̂n).
Note that F̂n and Fn are indeed very close on the latter set with equality at the right endpoint Xn.
The lower plot shows the process

D(t) :=

∫ t

X1

(F̂n − Fn)(r) dr

for t ∈ [X1, Xn]. As predicted by Theorem 2.4, this process is nonpositive and equals zero on
Sn(ϕ̂n).

3 A data example

In a recent consulting case, a company asked for Monte Carlo experiments to predict the relia-
bility of a certain device they produce. The reliability depends in a certain deterministic way on
five different and independent random input parameters. For each input parameter a sample was
available, and the goal was to fit a suitable distribution to simulate from. Here we just focus on
one of these input parameters.

At first we considered two standard approaches to estimate the unknown density f , namely,
(i) fitting a gaussian density f̂par with mean µ(Fn) and variance σ̂2 := n(n− 1)−1Var(Fn), and
(ii) the kernel density estimator

f̂ker(x) :=

∫
φσ̂/
√
n(x− y) dFn(y),

where φσ denotes the density ofN (0, σ2). This very small bandwidth σ̂/
√
n was chosen to obtain

a density with variance σ̂2 and to avoid putting too much weight into the tails.
Looking at the data, approach (i) is clearly inappropriate because our sample of size n = 787

revealed a skewed and significantly non-gaussian distribution. This can be seen in Figure 2, where
the multimodal curve corresponds to f̂ker, while the dashed line depicts f̂par. Approach (ii) yielded
Monte Carlo results agreeing well with measured reliabilities, but the engineers questioned the
multimodality of f̂ker. Choosing a kernel estimator with larger bandwidth would overestimate the
variance and put too much weight into the tails. Thus we agreed on a third approach and estimated
f by a slightly smoothed version of f̂n,

f̂∗n :=

∫
φγ̂(x− y) dF̂n(y)
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Figure 1: Distribution functions and the process D(t) for a Gumbel sample.

with γ̂2 := σ̂2−Var(F̂n), so that the variance of f̂∗n coincides with σ̂2. Since log-concavity is pre-
served under convolution (cf. Prékopa 1971), f̂∗n is log-concave, too. For the explicit computation
of Var(F̂n), see Dümbgen et al. (2007a). By smoothing we also avoid the small discontinuities
of f̂n at X1 and Xn. This density estimator is the skewed unimodal curve in Figure 2. It yielded
convincing results in the Monte Carlo simulations, too.

Note that both estimators f̂n and f̂∗n are fully automatic. Moreover it is very easy to sample
from these densities: Let Sn(ϕ̂n) consist of x0 < x1 < · · · < xm, and consider the data Xi

temporarily as fixed. Now
(a) generate a random index J ∈ {1, 2, . . . ,m} with IP(J = j) = F̂n(xj)− F̂n(xj−1),
(b) generate

X := xJ−1 + (xJ − xJ−1) ·

log
(
1 + (eΘ − 1)U

)
/Θ if Θ 6= 0,

U if Θ = 0,

where Θ := ϕ̂n(xJ)− ϕ̂n(xJ−1) and U ∼ Unif[0, 1], and
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(c) generate
X∗ := X + γ̂Z with Z ∼ N (0, 1),

where J , U and Z are independent. Then X ∼ f̂n and X∗ ∼ f̂∗n.

Figure 2: Three competing density estimators.

4 Uniform consistency

Let us introduce some notation. For any integer n > 1 we define

ρn := log(n)/n,

and the uniform norm of a function g : I → R on an interval I ⊂ R is denoted by

‖g‖I∞ := sup
x∈I
|g(x)|.

We say that g belongs to the Hölder classHβ,L(I) with exponent β ∈ [1, 2] and constant L > 0 if
for all x, y ∈ I we have

|g(x)− g(y)| ≤ L|x− y| if β = 1,

|g′(x)− g′(y)| ≤ L|x− y|β−1 if β > 1.
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Uniform consistency of ϕ̂n. Our main result is the following theorem:

Theorem 4.1. Assume for the log-density ϕ = log f that ϕ ∈ Hβ,L(T ) for some exponent
β ∈ [1, 2], some constant L > 0 and a subinterval T = [A,B] of the interior of {f > 0}. Then,

max
t∈T

(ϕ̂n − ϕ)(t) = Op

(
ρβ/(2β+1)
n

)
,

max
t∈T (n,β)

(ϕ− ϕ̂n)(t) = Op

(
ρβ/(2β+1)
n

)
,

where T (n, β) :=
[
A+ ρ

1/(2β+1)
n , B − ρ1/(2β+1)

n

]
.

Note that the previous result remains true when we replace ϕ̂n−ϕwith f̂n−f . It is well-known
that the rates of convergence in Theorem 4.1 are optimal, even if β was known (cf. Khas’minskii
1978). Thus our estimators adapt to the unknown smoothness of f in the range β ∈ [1, 2].

Note also that concavity of ϕ implies that it is Lipschitz-continuous, i.e. belongs to H1,L(T )

for some L > 0, on any interval T = [A,B] with A > inf{f > 0} and B < sup{f > 0}. Hence
one can easily deduce from Theorem 4.1 that f̂n is consistent in L1(R) and that F̂n is uniformly
consistent:

Corollary 4.2. ∫ ∣∣f̂n(x)− f(x)
∣∣ dx →p 0 and ‖F̂n − F‖R∞ →p 0.

Distance of two consecutive knots and uniform consistency of F̂n. By means of Theorem 4.1
we can solve a “gap problem” for log-concave density estimation. The phrase “gap problem” was
first used by Balabdaoui and Wellner (2008) to describe the problem of computing the distance
between two consecutive knots of certain estimators.

Theorem 4.3. Suppose that the assumptions of Theorem 4.1 hold. Assume further that ϕ′(x) −
ϕ′(y) ≥ C(y − x) for some constant C > 0 and arbitrary A ≤ x < y ≤ B, where ϕ′ stands for
ϕ′(· −) or ϕ′(·+). Then

sup
x∈T

min
y∈Sn(ϕ̂n)

|x− y| = Op

(
ρβ/(4β+2)
n

)
.

Theorems 4.1 and 4.3, combined with a result of Stute (1982) about the modulus of continuity
of empirical processes, yield a rate of convergence for the maximal difference between F̂n and Fn
on compact intervals:

Theorem 4.4. Under the assumptions of Theorem 4.3,

max
t∈T (n,β)

∣∣F̂n(t)− Fn(t)
∣∣ = Op

(
ρ3β/(4β+2)
n

)
.

In particular, if β > 1, then

max
t∈T (n,β)

∣∣F̂n(t)− Fn(t)
∣∣ = op(n−1/2).
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Thus, under certain regularity conditions, the estimators F̂n and Fn are asymptotically equiv-
alent on compact sets. Conclusions of this type are known for the Grenander estimator (cf. Kiefer
and Wolfowitz 1976) and the least squares estimator of a convex density on [0,∞) (cf. Balabdaoui
and Wellner 2007).

The result of Theorem 4.4 is also related to recent results of Giné and Nickl (2007, 2008). In
the latter paper they devise kernel density estimators with data–driven choice of bandwidth which
are also adaptive with respect to β in a certain range while the integrated density estimator is
asymptotically equivalent to Fn on the whole real line. However, if β ≥ 3/2, they have to use
kernel functions of higher order, i.e. no longer being non-negative, and simulating data from the
resulting estimated density is not straightforward.

Example. Let us illustrate Theorems 4.1 and 4.4 with simulated data, again from the Gumbel
distribution with ϕ(x) = −x − e−x. Here ϕ′′(x) = −e−x, so the assumptions of our theorems
are satisfied with β = 2 for any compact interval T . The upper panels of Figure 3 show the true
log-density ϕ (dashed line) and the estimator ϕ̂n (line) for samples of sizes n = 200 (left) and
n = 2000 (right). The lower panels show the corresponding empirical processes n1/2(Fn − F )

(jagged curves) and n1/2(F̂n − F ) (smooth curves). First of all, the quality of the estimator ϕ̂n is
quite good, even in the tails, and the quality increases with sample size, as expected. Looking at
the empirical processes, the similarity between n1/2(Fn − F ) and n1/2(F̂n − F ) increases with
sample size, too, but rather slowly. Note also that the estimator F̂n outperforms Fn in terms of
supremum distance from F , which leads us to the next paragraph.

Marshall’s Lemma. In all simulations we looked at, the estimator F̂n satisfied the inequality

‖F̂n − F‖R∞ ≤ ‖Fn − F‖R∞, (4)

provided that f is indeed log-concave. Figure 3 shows two numerical examples for this phe-
nomenon. In view of such examples and Marshall’s (1970) lemma about the Grenander estimator
F̂mon
n , we first tried to verify that (4) is correct almost surely and for any n > 1. However, one

can construct counterexamples showing that (4) may be violated, even if the right hand side is
multiplied with any fixed constant C > 1. Nevertheless our first attempts resulted in a version
of Marshall’s lemma for convex density estimation; see Dümbgen et al. (2007b). For the present
setting, we conjecture that (4) is true with asymptotic probability one as n→∞, i.e.

IP
(
‖F̂n − F‖R∞ ≤ ‖Fn − F‖R∞

)
→ 1.

A monotone hazard rate estimator. Estimation of a monotone hazard rate is described, for in-
stance, in the book by Robertson et al. (1988). They solve directly an isotonic estimation problem
similar to that for the Grenander density estimator. For this setting, Hall et al. (2001) and Hall and
van Keilegom (2005) consider methods based upon suitable modifications of kernel estimators.
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Figure 3: Density functions and empirical processes for Gumbel samples of size n = 200 and
n = 2′000.

Alternatively, in our setting it follows from Lemma A.2 in Section A that

ĥn(x) :=
f̂n(x)

1− F̂n(x)

defines a simple plug-in estimator of the hazard rate on (−∞, Xn) which is non-decreasing as
well. By virtue of Theorem 4.1 and Corollary 4.2 it is uniformly consistent on any compact
subinterval of the interrior of {f > 0}. Theorems 4.1 and 4.4 entail even a rate of convergence:

Corollary 4.5. Under the assumptions of Theorem 4.3,

max
t∈T (n,β)

∣∣ĥn(t)− h(t)
∣∣ = Op

(
ρβ/(2β+1)
n

)
.

5 Estimation of convex or k–monotone densities on [0,∞)

Under assumptions comparable to ours for β = 2, Groeneboom et al. (2001) proved uniform
consistency of the maximum likelihood estimator p̂n,2 of a convex density p2 on [0,∞) as well
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as a rate of convergence of Op(n−2/5) at a fixed point xo > 0. Using these results, they further
provided the limiting distribution of p̂n,2 at a fixed point xo.

Monotone and convex densities are members of the broader class of k–monotone densities. A
density function pk : [0,∞) → [0,∞) is 1–monotone if it is non–increasing. It is 2–monotone
if it is non–increasing and convex, and k–monotone for k ≥ 3 if, and only if, (−1)jp

(j)
k is non–

negative, non–increasing, and convex for j = 0, ..., k − 2. Balabdaoui and Wellner (2008) gen-
eralized the results of Groeneboom et al. (2001) to these k–monotone densities. However, only
by assuming that a so far unverified conjecture about the upper bound on the error in a particular
Hermite interpolation via odd–degree splines holds true.

Similarly to ϕ̂n, the maximum likelihood estimators p̂n,k of pk are splines of order k − 1.
However, for any k > 1 the knots of p̂n,k fall strictly between observations, with probability equal
to one. This property makes it considerably difficult to obtain a result analogous to Theorem 4.3.

Remarkably, the characterization of f̂n in Theorem 2.4 by means of integrated distribution
functions coincides with that of the least squares estimator of a convex density on [0,∞), see
Lemma 2.2 of Groeneboom et al. (2001). This turns out to be crucial in finding the limiting
distribution of n`/(2`+1)(f̂n(xo) − f(xo)) for any xo ∈ R, see Balabdaoui et al. (2008). Here,
` indicates the first non–vanishing higher order derivative of ϕ at xo. That means, ` = 2 if
ϕ′′(xo) 6= 0. Otherwise, ` ≥ 4 is the smallest even integer such that ϕ(j)(xo) = 0 for 2 ≤ j < `

while ϕ(`)(xo) 6= 0.

6 Outlook

Starting from the results presented here, Balabdaoui et al. (2008) derived recently the pointwise
limiting distribution of f̂n. They also consider the limiting distribution of argmaxx∈Rf̂n(x) as
an estimator of the mode of f . Empirical findings of Müller and Rufibach (2006) show that the
estimator f̂n is even useful for extreme value statistics. Log-concave densities have also potential
as building blocks in more complex models (e.g. regression or classification) or when handling
censored data (cf. Dümbgen et al. 2007a).

Unfortunately, our proofs work only for fixed compact intervals, whereas simulations suggest
that the estimators perform well on the whole real line. Right now the authors are working on
a different approach where ϕ̂n is represented locally as a parametric maximum likelihood esti-
mator of a log-linear density. Presumably this will deepen our understanding of the log-concave
NPMLE’s consistency properties, particularly in the tails. For instance, we conjecture that Fn and
F̂n are asymptotically equivalent on any interval T on which ϕ′ is strictly decreasing.
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A Auxiliary results and proofs

A.1 Two facts about log-concave densities

The following two results about a log-concave density f = expϕ and its distribution function F
are of independent interest. The first result entails that the density f has at least subexponential
tails:

Lemma A.1. For arbitrary points x1 < x2,√
f(x1)f(x2) ≤ F (x2)− F (x1)

x2 − x1
.

Moreover, for xo ∈ {f > 0} and any real x 6= xo,

f(x)

f(xo)
≤


( h(xo, x)

f(xo)|x− xo|

)2
,

exp
(

1− f(xo)|x− xo|
h(xo, x)

)
if f(xo)|x− xo| ≥ h(xo, x),

where

h(xo, x) := F (max(xo, x))− F (min(xo, x)) ≤

F (xo) if x < xo,

1− F (xo) if x > xo.

A second well-known result (Barlow and Proschan 1975, Lemma 5.8), provides further con-
nections between the density f and the distribution function F . In particular, it entails that
f/(F (1− F )) is bounded away from zero on {x : 0 < F (x) < 1}.

Lemma A.2. The function f/F is non-increasing on {x : 0 < F (x) ≤ 1}, and the function
f/(1− F ) is non-decreasing on {x : 0 ≤ F (x) < 1}.

Proof of Lemma A.1. To prove the first inequality, it suffices to consider the nontrivial case of
x1, x2 ∈ {f > 0}. Then concavity of ϕ entails that

F (x2)− F (x1) ≥
∫ x2

x1

exp
( x2 − t
x2 − x1

ϕ(x1) +
t− x1

x2 − x1
ϕ(x2)

)
dt

= (x2 − x1)

∫ 1

0
exp
(
(1− u)ϕ(x1) + uϕ(x2)

)
du

≥ (x2 − x1) exp
(∫ 1

0

(
(1− u)ϕ(x1) + uϕ(x2)

)
du
)

= (x2 − x1) exp
(
ϕ(x1)/2 + ϕ(x2)/2

)
= (x2 − x1)

√
f(x1)f(x2),

where the second inequality follows from Jensen’s inequality.
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We prove the second asserted inequality only for x > xo, i.e. h(xo, x) = F (x) − F (xo), the
other case being handled analogously. The first part entails that

f(x)

f(xo)
≤
( h(xo, x)

f(xo)(x− xo)

)2
,

and the right hand side is not greater than one if f(xo)(x − xo) ≥ h(xo, x). In the latter case,
recall that

h(xo, x) ≥ (x− xo)
∫ 1

0
exp
(
(1− u)ϕ(xo) + uϕ(x)

)
du = f(xo)(x− xo)J

(
ϕ(x)− ϕ(xo)

)
with ϕ(x) − ϕ(xo) ≤ 0, where J(y) :=

∫ 1
0 exp(uy) du. Elementary calculations show that

J(−r) = (1− e−r)/r ≥ 1/(1 + r) for arbitrary r > 0. Thus

h(xo, x) ≥ f(xo)(x− xo)
1 + ϕ(xo)− ϕ(x)

,

which is equivalent to f(x)/f(xo) ≤ exp
(
1− f(xo)(x− xo)/h(xo, x)

)
. 2

A.2 Proofs of the characterizations

Proof of Theorem 2.2. In view of Theorem 2.1 we may restrict our attention to concave and
real-valued functions ϕ on [X1, Xn] and set ϕ := −∞ on R \ [X1, Xn]. The set Cn of all such
functions is a convex cone, and for any function ∆ : R→ R and t > 0, concavity of ϕ+ t∆ on R
is equivalent to its concavity on [X1, Xn].

One can easily verify that Ψn is a concave and real-valued functional on Cn. Hence, as well-
known from convex analysis, a function ϕ̃ ∈ Cn maximizes Ψn if, and only if,

lim
t↓0

Ψn(ϕ̃+ t(ϕ− ϕ̃))−Ψn(ϕ̃)

t
≤ 0

for all ϕ ∈ Cn. But this is equivalent to the requirement that

lim
t↓0

Ψn(ϕ̃+ t∆)−Ψn(ϕ̃)

t
≤ 0

for any function ∆ : R → R such that ϕ̃ + λ∆ is concave for some λ > 0. Now the assertion of
the theorem follows from

lim
t↓0

Ψn(ϕ̃+ t∆)−Ψn(ϕ̃)

t
=

∫
∆ dFn −

∫
∆(x) exp ϕ̃(x) dx. 2

Proof of Theorem 2.4. We start with a general observation. Let G be some distribution (func-
tion) with support [X1, Xn], and let ∆ : [X1, Xn] → R be absolutely continuous with L1–
derivative ∆′. Then it follows from Fubini’s theorem that∫

∆ dG = ∆(Xn)−
∫ Xn

X1

∆′(r)G(r) dr. (5)

14



Now suppose that ϕ̃ = ϕ̂n, and let t ∈ (X1, Xn]. Let ∆ be absolutely continuous on [X1, Xn]

with L1–derivative ∆′(r) = 1{r ≤ t} and arbitrary value of ∆(Xn). Clearly, ϕ̃ + ∆ is concave,
whence (2) and (5) entail that

∆(Xn)−
∫ t

X1

Fn(r) dr ≤ ∆(Xn)−
∫ t

X1

F̃ (r) dr,

which is equivalent to inequality (3). In case of t ∈ Sn(ϕ̃) \ {X1}, let ∆′(r) = −1{r ≤ t}. Then
ϕ̃+ λ∆ is concave for some λ > 0, so that

∆(Xn) +

∫ t

X1

Fn(r) dr ≤ ∆(Xn) +

∫ t

X1

F̃ (r) dr,

which yields equality in (3).
Now suppose that ϕ̃ satisfies inequality (3) for all t with equality if t ∈ Sn(ϕ̃). In view of

Theorem 2.1 and the proof of Theorem 2.2, it suffices to show that (2) holds for any function ∆

defined on [X1, Xn] which is linear on each interval [Xj , Xj+1], 1 ≤ j < n, while ϕ̃ + λ∆ is
concave for some λ > 0. The latter requirement is equivalent to ∆ being concave between two
consecutive knots of ϕ̃. Elementary considerations show that the L1–derivative of such a function
∆ may be written as

∆′(r) =
n∑
j=2

βj1{r ≤ Xj}

with real numbers β2, . . . , βn such that

βj ≥ 0 if Xj 6∈ Sn(ϕ̃).

Consequently, it follows from (5) and our assumptions on ϕ̃ that∫
∆ dFn = ∆(Xn)−

n∑
j=2

βj

∫ Xj

X1

Fn(r) dr

≤ ∆(Xn)−
n∑
j=2

βj

∫ Xj

X1

F̃ (r) dr

=

∫
∆ dF̃ . 2

Proof of Corollary 2.5. For t ∈ Sn(ϕ̂n) and s < t < u, it follows from Theorem 2.4 that

1

u− t

∫ u

t
F̂n(r) dr ≤ 1

u− t

∫ u

t
Fn(r) dr and

1

t− s

∫ t

s
F̂n(r) dr ≥ 1

t− s

∫ t

s
Fn(r) dr.

Letting u ↓ t and s ↑ t yields

F̂n(t) ≤ Fn(t) and F̂n(t) ≥ Fn(t−) = Fn(t)− n−1. 2
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A.3 Proof of ϕ̂n’s consistency

Our proof of Theorem 4.1 is a refinement and modification of methods introduced by Dümbgen
et al. (2004). A first key ingredient is an inequality for concave functions due to Dümbgen (1998)
(see also Dümbgen et al. 2004 or Rufibach 2006):

Lemma A.3. For any β ∈ [1, 2] and L > 0 there exists a constant K = K(β, L) ∈ (0, 1] with
the following property: Suppose that g and ĝ are concave and real-valued functions on a compact
interval T = [A,B], where g ∈ Hβ,L(T ). Let ε > 0 and 0 < δ ≤ K min{B −A, ε1/β}. Then

sup
t∈T

(ĝ − g) ≥ ε or sup
t∈[A+δ,B−δ]

(g − ĝ) ≥ ε

implies that
inf

t∈[c,c+δ]
(ĝ − g)(t) ≥ ε/4 or inf

t∈[c,c+δ]
(g − ĝ)(t) ≥ ε/4

for some c ∈ [A,B − δ].

Starting from this lemma, let us first sketch the idea of our proof of Theorem 4.1: Suppose we
had a family D of measurable functions ∆ with finite seminorm

σ(∆) :=
(∫

∆2 dF
)1/2

,

such that

sup
∆∈D

∣∣∣∫ ∆ d(Fn − F )
∣∣∣

σ(∆)ρ
1/2
n

≤ C (6)

with asymptotic probability one, where C > 0 is some constant. If, in addition, ϕ− ϕ̂n ∈ D and
ϕ− ϕ̂n ≤ C with asymptotic probability one, then we could conclude that∣∣∣∫ (ϕ− ϕ̂n) d(Fn − F )

∣∣∣ ≤ Cσ(ϕ− ϕ̂n)ρ1/2
n ,

while Theorem 2.2, applied to ∆ := ϕ− ϕ̂n, entails that∫
(ϕ− ϕ̂n) d(Fn − F ) ≤

∫
(ϕ− ϕ̂n) d(F̂ − F )

= −
∫

∆
(
1− exp(−∆)

)
dF

≤ −(1 + C)−1

∫
∆2 dF

= −(1 + C)−1σ(ϕ− ϕ̂n)2,

because y(1 − exp(−y)) ≥ (1 + y+)−1y2 for all real y, where y+ := max(y, 0). Hence with
asymptotic probability one,

σ(ϕ− ϕ̂n)2 ≤ C2(1 + C)2ρn.
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Now suppose that |ϕ− ϕ̂n| ≥ εn on a subinterval of T = [A,B] of length ε1/βn , where (εn)n is a
fixed sequence of numbers εn > 0 tending to zero. Then σ(ϕ − ϕ̂n)2 ≥ ε

(2β+1)/β
n minT (f), so

that
εn ≤ C̃ρ2β/(2β+1)

n

with C̃ =
(
C2(1 + C)2/minT (f)

)β/(2β+1).
The previous considerations will be modified in two aspects to get a rigorous proof of The-

orem 4.1: For technical reasons we have to replace the denominator σ(∆)ρ
1/2
n of inequality (6)

with σ(∆)ρ
1/2
n +W (∆)ρ

2/3
n , where

W (∆) := sup
x∈R

|∆(x)|
max

(
1, |ϕ(x)|

) .
This is necessary to deal with functions ∆ with small values of F ({∆ 6= 0}). Moreover, we
shall work with simple “caricatures” of ϕ − ϕ̂n, namely, functions which are piecewise linear
with at most three knots. Throughout this section, piecewise linearity does not necessarily imply
continuity. A function being piecewise linear with at most m knots means that the real line may
be partitioned into m + 1 nondegenerate intervals on each of which the function is linear. Then
the m real boundary points of these intervals are the knots.

The next lemma extends inequality (2) to certain piecewise linear functions:

Lemma A.4. Let ∆ : R → R be piecewise linear such that each knot q of ∆ satisfies one of the
following two properties:

q ∈ Sn(ϕ̂n) and ∆(q) = lim inf
x→q

∆(x), (7)

∆(q) = lim
r→q

∆(r) and ∆′(q−) ≥ ∆′(q+). (8)

Then ∫
∆ dFn ≤

∫
∆ dF̂n. (9)

Now we can specify the “caricatures” mentioned before:

Lemma A.5. Let T = [A,B] be a fixed subinterval of the interior of {f > 0}. Let ϕ − ϕ̂n ≥ ε

or ϕ̂n − ϕ ≥ ε on some interval [c, c + δ] ⊂ T with length δ > 0, and suppose that X1 < c and
Xn > c + δ. Then there exists a piecewise linear function ∆ with at most three knots each of
which satisfies condition (7) or (8) and a positive constant K ′ = K ′(f, T ) such that

|ϕ− ϕ̂n| ≥ ε|∆|, (10)

∆(ϕ− ϕ̂n) ≥ 0, (11)

∆ ≤ 1, (12)∫ c+δ

c
∆2(x) dx ≥ δ/3, (13)

W (∆) ≤ K ′δ−1/2σ(∆). (14)
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Our last ingredient is a surrogate for (6):

Lemma A.6. Let Dm be the family of all piecewise linear functions on R with at most m knots.
There exists a constant K ′′ = K ′′(f) such that

sup
m≥1,∆∈Dm

∣∣∣∫ ∆ d(Fn − F )
∣∣∣

σ(∆)m1/2ρ
1/2
n +W (∆)mρ

2/3
n

≤ K ′′

with probability tending to one as n→∞.

Before we verify all these auxiliary results, let us proceed with the main proof.

Proof of Theorem 4.1. Suppose that

sup
t∈T

(ϕ̂n − ϕ)(t) ≥ Cεn

or

sup
t∈[A+δn,B−δn]

(ϕ− ϕ̂n)(t) ≥ Cεn

for some constant C > 0, where εn := ρ
β/(2β+1)
n and δn := ρ

1/(2β+1)
n = ε

1/β
n . It follows from

Lemma A.3 with ε := Cεn that in case of C ≥ K−β and for sufficiently large n, there is a
(random) interval [cn, cn + δn] ⊂ T on which either ϕ̂n − ϕ ≥ (C/4)εn or ϕ − ϕ̂n ≥ (C/4)εn.
But then there is a (random) function ∆n ∈ D3 fulfilling the conditions stated in Lemma A.5. For
this ∆n it follows from (9) that∫

R
∆n d(F − Fn) ≥

∫
R

∆n d(F − F̂n) =

∫
R

∆n

(
1− exp

[
−(ϕ− ϕ̂n)

])
dF. (15)

With ∆̃n := (C/4)εn∆n, it follows from (10–11) that the right hand side of (15) is not smaller
than

(4/C)ε−1
n

∫
∆̃n

(
1− exp(−∆̃n)

)
dF ≥ (4/C)ε−1

n

1 + (C/4)εn
σ(∆̃n)2 =

(C/4)εn
1 + o(1)

σ(∆n)2,

because ∆̃n ≤ (C/4)εn by (12). On the other hand, according to Lemma A.6 we may assume that∫
R

∆n d(F − Fn) ≤ K ′′
(
31/2σ(∆n)ρ1/2

n + 3W (∆n)ρ2/3
n

)
≤ K ′′(31/2ρ1/2

n + 3K ′δ−1/2
n ρ2/3

n )σ(∆n) (by (14))

≤ K ′′(31/2ρ1/2
n + 3K ′ρ2/3−1/(4β+2)

n )σ(∆n)

≤ Gρ1/2
n σ(∆n)

for some constant G = G(β, L, f, T ), because 2/3 − 1/(4β + 2) ≥ 2/3 − 1/6 = 1/2. Conse-
quently,

C2 ≤ 16G2(1 + o(1))ε−2
n ρn

σ(∆n)2
=

16G2(1 + o(1))

δ−1
n σ(∆n)2

≤ 48G2(1 + o(1))

minT (f)
,

where the last inequality follows from (13). 2
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Proof of Lemma A.4. There is a sequence of continuous, piecewise linear functions ∆k converg-
ing pointwise isotonically to ∆ as k → ∞ such that any knot q of ∆k either belongs to Sn(ϕ̂n),
or ∆′k(q−) > ∆′k(q+). Thus ϕ̂n + λ∆k is concave for sufficiently small λ > 0. Consequently,
since ∆1 ≤ ∆k ≤ ∆ for all k, it follows from dominated convergence and (2) that∫

∆ dFn = lim
k→∞

∫
∆k dFn ≤ lim

k→∞

∫
∆k dF̂n =

∫
∆ dF̂n. 2

Proof of Lemma A.5. The crucial point in all the cases we have to distinguish is to construct a
∆ ∈ D3 satisfying the assumptions of Lemma A.4 and (10–13). Recall that ϕ̂n is piecewise linear.

Case 1a: ϕ̂n − ϕ ≥ ε on [c, c + δ] and Sn(ϕ̂n) ∩ (c, c + δ) 6= ∅. Here we choose a
continuous function ∆ ∈ D3 with knots c, c+ δ and xo ∈ Sn(ϕ̂n) ∩ (c, c+ δ), where ∆ := 0 on
(−∞, c] ∪ [c + δ,∞) and ∆(xo) := −1. Here the assumptions of Lemma A.4 and requirements
(10–13) are easily verified.

Case 1b: ϕ̂n − ϕ ≥ ε on [c, c+ δ] and Sn(ϕ̂n) ∩ (c, c+ δ) = ∅. Let [co, do] ⊃ [c, c+ δ] be
the maximal interval on which ϕ− ϕ̂n is concave. Then there exists a linear function ∆̃ such that
∆̃ ≥ ϕ− ϕ̂n on [co, do] and ∆̃ ≤ −ε on [c, c+ δ]. Next let (c1, d1) := {∆̃ < 0} ∩ (co, do). Now
we define ∆ ∈ D2 via

∆(x) :=

0 if x ∈ (−∞, c1) ∪ (d1,∞),

∆̃/ε if x ∈ [c1, d1].

Again the assumptions of Lemma A.4 and requirements (10–13) are easily verified; this time we
even know that ∆ ≤ −1 on [c, c + δ], whence

∫ c+δ
c ∆(x)2 dx ≥ δ. Figure 4 illustrates this

construction.
Case 2: ϕ − ϕ̂n ≥ ε on [c, c + δ]. Let [co, c] and [c + δ, do] be maximal intervals on which

ϕ̂n is linear. Then we define

∆(x) :=


0 if x ∈ (−∞, co) ∪ (do,∞),

1 + β1(x− xo) if x ∈ [co, xo],

1 + β2(x− xo) if x ∈ [xo, do],

where xo := c+ δ/2 and β1 ≥ 0 is chosen such that either

∆(co) = 0 and (ϕ− ϕ̂n)(co) ≥ 0 or

(ϕ− ϕ̂n)(co) < 0 and sign(∆) = sign(ϕ− ϕ̂n) on [co, xo].

Analogously, β2 ≤ 0 is chosen such that

∆(do) = 0 and (ϕ− ϕ̂n)(do) ≥ 0 or

(ϕ− ϕ̂n)(do) < 0 and sign(∆) = sign(ϕ− ϕ̂n) on [xo, do].

Again the assumptions of Lemma A.4 and requirements (10–13) are verified easily. Figure 5
depicts an example.
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Figure 4: The perturbation function ∆ in Case 1b.

It remains to verify requirement (14) for our particular functions ∆. Note that by our assump-
tion on T = [A,B], there exist numbers τ, Co > 0 such that f ≥ Co on To := [A− τ,B + τ ].

In Case 1a, W (∆) ≤ ‖∆‖R∞ = 1, whereas σ(∆)2 ≥ Co
∫ c+δ
c ∆(x)2 dx = Coδ

2/3. Hence
(14) is met if K ′ ≥ (3/Co)

1/2.
For Cases 1b and 2 we start with a more general consideration: Let h(x) := 1{x ∈ Q}(α+γx)

for real numbers α, γ and a nondegenerate intervalQ containing some point in (c, c+δ). LetQ∩To
have endpoints xo < yo. Then elementary considerations reveal that

σ(h)2 ≥ Co

∫ yo

xo

(α+ γx)2 dx ≥ Co
4

(yo − xo)
(
‖h‖To∞

)2
.

Now we deduce an upper bound for W (h)/‖h‖To∞ . If Q ⊂ To or γ = 0, then W (h)/‖h‖To∞ ≤ 1.
Now suppose that γ 6= 0 and Q 6⊂ To. Then xo, yo ∈ To satisfy yo − xo ≥ τ , and without loss of
generality let γ = −1. Now

‖h‖To∞ = max
(
|α− xo|, |α− yo|

)
= (yo − xo)/2 + |α− (xo + yo)/2|

≥ τ/2 + |α− (xo + yo)/2|.
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Figure 5: The perturbation function ∆ in Case 2.

On the other hand, since ϕ(x) ≤ ao − bo|x| for certain constants ao, bo > 0,

W (h) ≤ sup
x∈R

|α− x|
max(1, bo|x| − ao)

≤ sup
x∈R

|α|+ |x|
max(1, bo|x| − ao)

= |α|+ (ao + 1)/bo

≤ |α− (xo + yo)/2|+ (|A|+ |B|+ τ)/2 + (ao + 1)/bo.

This entails that
W (h)

‖h‖To∞
≤ C∗ :=

(|A|+ |B|+ τ)/2 + (ao + 1)/bo
τ/2

.

In Case 1b, our function ∆ is of the same type as h above, and yo − xo ≥ δ. Thus

W (∆) ≤ C∗‖h‖To∞ ≤ 2C∗C
−1/2
o δ−1/2σ(∆).

In Case 2, ∆ may be written as h1 +h2, with two functions h1 and h2 of the same type as h above
having disjoint support and both satisfying yo − xo ≥ δ/2. Thus

W (∆) = max
(
W (h1),W (h2)

)
≤ 23/2C∗C

−1/2
o δ−1/2 max

(
σ(h1), σ(h2)

)
≤ 23/2C∗C

−1/2
o δ−1/2σ(∆). 2
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To prove Lemma A.6, we need a simple exponential inequality:

Lemma A.7. Let Y be a random variable such that IE(Y ) = 0, IE(Y 2) = σ2 and C :=

IE exp(|Y |) <∞. Then for arbitrary t ∈ R,

IE exp(tY ) ≤ 1 +
σ2t2

2
+

C|t|3

(1− |t|)+
.

Proof of Lemma A.7.

IE exp(tY ) =

∞∑
k=0

tk

k!
IE(Y k) ≤ 1 +

σ2t2

2
+

∞∑
k=3

|t|k

k!
IE(|Y |k).

For any y ≥ 0 and integers k ≥ 3, yke−y ≤ kke−k. Thus IE(|Y |k) ≤ IE exp(|Y |)kke−k =

Ckke−k. Since kke−k ≤ k!, which can be verified easily via induction on k,

∞∑
k=3

|t|k

k!
IE(|Y |k) ≤ C

∞∑
k=3

|t|k =
C|t|3

(1− |t|)+
. 2

Lemma A.7 entails the following result for finite families of functions:

Lemma A.8. Let Hn be a finite family of functions h with 0 < W (h) < ∞ such that #Hn =

O(np) for some p > 0. Then for sufficiently large D,

lim
n→∞

IP

max
h∈Hn

∣∣∣∫ hd(Fn − F )
∣∣∣

σ(h)ρ
1/2
n +W (h)ρ

2/3
n

≥ D

 = 0.

Proof of Lemma A.8. SinceW (ch) = cW (h) and σ(ch) = cσ(h) for any h ∈ Hn and arbitrary
constants c > 0, we may assume without loss of generality that W (h) = 1 for all h ∈ Hn. Let X
be a random variable with log–density ϕ. Since

lim sup
|x|→∞

ϕ(x)

|x|
< 0

by Lemma A.1, the expectation of exp(tow(X)) is finite for any fixed to ∈ (0, 1), where w(x) :=

max(1, |ϕ(x)|). Hence

IE exp
(
to|h(X)− IEh(X)|

)
≤ Co := exp(to IEw(X)) IE exp(tow(X)) < ∞.

Lemma A.7, applied to Y := to(h(X)− IEh(X)), implies that

IE exp
[
t
(
h(X)− IEh(X)

)]
= IE

(
(t/to)Y

)
≤ 1 +

σ(h)2t2

2
+

C1|t|3

(1− C2|t|)+
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for arbitrary h ∈ Hn, t ∈ R and constants C1, C2 depending on to and Co. Consequently,

IE exp
(
t

∫
hd(Fn − F )

)
= IE exp

(
(t/n)

n∑
i=1

(h(Xi)− IEh(X))
)

=
(
IE exp

(
(t/n)(h(X)− IEh(X))

))n
≤

(
1 +

σ(h)2t2

2n2
+

C1|t|3

n3(1− C2|t|/n)+

)n
≤ exp

(
σ(h)2t2

2n
+

C1|t|3

n2(1− C2|t|/n)+

)
.

Now it follows from Markov’s inequality that

IP
(∣∣∣∫ hd(Fn − F )

∣∣∣ ≥ η) ≤ 2 exp

(
σ(h)2t2

2n
+

C1t
3

n2(1− C2t/n)+
− tη

)
(16)

for arbitrary t, η > 0. Specifically let η = D(σ(h)ρ
1/2
n + ρ

2/3
n ) and set

t :=
nρ

1/2
n

σ(h) + ρ
1/6
n

≤ nρ1/3
n = o(n).

Then the bound (16) is not greater than

2 exp

(
σ(h)2 log n

2(σ(h) + ρ
1/6
n )2

+
C1ρ

1/2
n log n

(σ(h) + ρ
1/6
n )3(1− C2ρ

1/3
n )+

−D log n

)

≤ 2 exp
[(1

2
+

C1

(1− C2ρ
1/3
n )+

−D
)

log n
]

= 2 exp
(
(O(1)−D) log n

)
.

Consequently, for sufficiently large D > 0,

IP

max
h∈Hn

∣∣∣∫ hd(Fn − F )
∣∣∣

σ(h)ρ
1/2
n +W (h)ρ

2/3
n

≥ D


≤ #Hn2 exp

(
(O(1)−D) log n

)
= O(1) exp

(
(O(1) + p−D) log n

)
→ 0. 2

Proof of Lemma A.6. LetH be the family of all functions h of the form

h(x) = 1{x ∈ Q}(c+ dx)

with any interval Q ⊂ R and real constants c, d such that h is nonnegative. Suppose that there
exists a constant C = C(f) such that

IP
(

sup
h∈H

∣∣∫ hd(Fn − F )
∣∣

σ(h)ρ
1/2
n +W (h)ρ

2/3
n

≤ C
)
→ 1. (17)

For any m ∈ N, an arbitrary function ∆ ∈ Dm may be written as

∆ =
M∑
i=1

hi
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with M = 2m+ 2 functions hi ∈ H having pairwise disjoint supports. Consequently,

σ(∆) =
( M∑
i=1

σ(hi)
2
)1/2

≥ M−1/2
M∑
i=1

σ(hi)

by the Cauchy-Schwarz inequality, while

W (∆) = max
i=1,...,M

W (hi) ≥ M−1
M∑
i=1

W (hi).

Consequently, (17) entails that

∣∣∣∫ ∆ d(Fn − F )
∣∣∣ ≤ M∑

i=1

∣∣∣∫ hi d(Fn − F )
∣∣∣

≤ C
( M∑
i=1

σ(hi)ρ
1/2
n +

M∑
i=1

W (hi)ρ
2/3
n

)
≤ 4C

(
σ(∆)m1/2ρ1/2

n +W (∆)mρ2/3
n

)
uniformly in m ∈ N and ∆ ∈ Dm with probability tending to one as n→∞.

It remains to verify (17). To this end we use a bracketing argument. With the weight function
w(x) = max

(
1, |ϕ(x)|

)
let −∞ = tn,0 < tn,1 < · · · < tn,N(n) = ∞ such that for In,j :=

(tn,j−1, tn,j ],

(2n)−1 ≤
∫
In,j

w(x)2f(x) dx ≤ n−1 for 1 ≤ j ≤ N(n)

with equality if j < N(n). Since 1 ≤
∫

exp(tow(x))f(x) dx < ∞, such a partition exists with
N(n) = O(n). For any h ∈ H we define functions hn,`, hn,u as follows: Let {j, . . . , k} be the set
of all indices i ∈ {1, . . . , N(n)} such that {h > 0} ∩ In,i 6= ∅. Then we define

hn,`(x) := 1{tn,j<x≤tn,k−1}h(x)

and
hn,u(x) := hn,`(x) + 1{x ∈ In,j ∪ In,k}W (h)w(x).

Note that 0 ≤ hn,` ≤ h ≤ hn,u ≤ W (h)w. Consequently, W (hn,`) ≤ W (h) = W (hn,u).
Suppose for the moment that the assertion is true for the (still infinite) familyHn :=

{
hn,`, hn,u :
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h ∈ H
}

in place ofH. Then it follows from w ≥ 1 that∫
hd(Fn − F ) ≤

∫
hn,u dFn −

∫
hn,` dF

=

∫
hn,u d(Fn − F ) +

∫
(hn,u − hn,`) dF

≤
∫
hn,u d(Fn − F ) +W (h)

∫
In,j∪In,k

w(x)2 dF

≤
∫
hn,u d(Fn − F ) + 2W (h)n−1

≤ C
(
σ(hn,u)ρ1/2

n + ρ2/3
n

)
+ 2n−1

≤ C
(
σ(h)ρ1/2

n + 21/2W (h)n−1/2ρ1/2
n + ρ2/3

n

)
+ 2W (h)n−1

≤ (C + o(1))
(
σ(h)ρ1/2

n +W (h)ρ2/3
n

)
uniformly in h ∈ H with asymptotic probability one. Analogously,∫

hd(Fn − F ) ≥
∫
hn,` d(Fn − F )− 2W (h)n−1

≥ −C
(
σ(hn,`)ρ

1/2
n +W (h)ρ2/3

n

)
− 2W (h)n−1

≥ −(C + o(1))
(
σ(h)ρ1/2

n +W (h)ρ2/3
n

)
uniformly in h ∈ H with asymptotic probability one.

To line up with Lemma A.8, we now have to deal with Hn. For any h ∈ H the function hn,`
may be written as

h(tn,j)g
(1)
n,j,k + h(tn,k−1)g

(2)
n,j,k

with the “triangular functions”

g
(1)
n,j,k(x) :=

tn,k−1 − x
tn,k−1 − tn,j

and

g
(2)
n,j,k(x) :=

x− tn,j
tn,k−1 − tn,j

for 1 ≤ j < k ≤ N(n), k − j ≥ 2.

In case of k − j ≤ 1 we set g(1)
n,j,k := g

(2)
n,j,k := 0. Moreover,

hn,u = hn,` +W (h)gn,j + 1{k > j}W (h)gn,k

with gn,i(x) := 1{x ∈ In,i}w(x). Consequently, all functions inHn are linear combinations with
nonnegative coefficients of at most four functions in the finite family

Gn :=
{
gn,i : 1 ≤ i ≤ N(n)

}
∪
{
g

(1)
n,j,k, g

(2)
n,j,k : 1 ≤ j < k ≤ N(n)

}
.

Since Gn contains O(n2) functions, it follows from Lemma A.8 that for some constant D > 0,∣∣∣∫ g d(Fn − F )
∣∣∣ ≤ D

(
σ(g)ρ1/2

n +W (g)ρ2/3
n

)
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for all g ∈ Gn with asymptotic probability one. Now the assertion about Hn follows from the
basic observation that for h =

∑4
i=1 αigi with nonnegative functions gi and coefficients αi ≥ 0,

σ(h) ≥
( 4∑
i=1

α2
i σ(gi)

2
)1/2

≥ 2−1
4∑
i=1

αiσ(gi),

W (h) ≥ max
i=1,...,4

αiW (gi) ≥ 4−1
4∑
i=1

αiW (gi). 2

A.4 Proofs for the gap problem and of F̂n’s consistency

Proof of Theorem 4.3. Suppose that ϕ̂n is linear on an interval [a, b]. Then for x ∈ [a, b] and
λx := (x− a)/(b− a) ∈ [0, 1],

ϕ(x)− (1− λx)ϕ(a)− λxϕ(b)

= (1− λx)
(
ϕ(x)− ϕ(a)

)
− λx

(
ϕ(b)− ϕ(x)

)
= (1− λx)

∫ x

a
ϕ′(t) dt− λx

∫ b

x
ϕ′(t) dt

= (1− λx)

∫ x

a

(
ϕ′(t)− ϕ′(x)

)
dt+ λx

∫ b

x

(
ϕ′(x)− ϕ′(t)

)
dt

≥ C(1− λx)

∫ x

a
(x− t) dt+ Cλx

∫ b

x
(t− x) dt

= C(b− a)2λx(1− λx)/2

= C(b− a)2/8 if x = xo := (a+ b)/2.

This entails that sup[a,b] |ϕ̂n−ϕ| ≥ C(b− a)2/16. For if ϕ̂n < ϕ+C(b− a)2/16 on {a, b}, then

ϕ(xo)− ϕ̂n(xo) = ϕ(xo)− (ϕ̂n(a) + ϕ̂n(b))/2

> ϕ(xo)− (ϕ(a) + ϕ(b))/2− C(b− a)2/16

≥ C(b− a)2/8− C(b− a)2/16 = C(b− a)2/16.

Consequently, if |ϕ̂n − ϕ| ≤ Dnρ
β/(2β+1)
n on Tn :=

[
A + ρ

1/(2β+1)
n , B − ρ

1/(2β+1)
n

]
with

Dn = Op(1), then the longest subinterval of Tn containing no points from Sn has length at most
4D

1/2
n C−1/2ρ

β/(4β+2)
n . Since Tn and T = [A,B] differ by two intervals of length ρ1/(2β+1)

n =

O
(
ρ
β/(4β+2)
n

)
, these considerations yield the assertion about Sn(ϕ̂n). 2

Proof of Theorem 4.4. Let δn := ρ
1/(2β+1)
n and rn := Dρ

β/(4β+2)
n = Dδ

1/2
n for some constant

D > 0. Since rn → 0 but nrn → ∞, it follows from boundedness of f and a theorem of
Stute (1982) about the modulus of continuity of univariate empirical processes that

ωn := sup
x,y∈R : |x−y|≤rn

∣∣(Fn − F )(x)− (Fn − F )(y)
∣∣

= Op

(
n−1/2r1/2

n log(1/rn)1/2
)

= Op

(
ρ(5β+2)/(8β+4)
n

)
.
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If D is sufficiently large, the asymptotic probability that for any point x ∈ [A+ δn, B − δn] there
exists a point y ∈ Sn(ϕ̂n) ∩ [A + δn, B − δn] with |x − y| ≤ rn is equal to one. In that case it
follows from Corollary 2.5 and Theorem 4.1 that∣∣(F̂n − Fn)(x)

∣∣ ≤ ∣∣(F̂n − Fn)(x)− (F̂n − Fn)(y)
∣∣+ n−1

≤
∣∣(F̂n − F )(x)− (F̂n − F )(y)

∣∣+ ωn + n−1

≤
∫ max(x,y)

min(x,y)
|f̂n − f |(x) dx+ ωn + n−1

≤ Op

(
rnρ

β/(2β+1)
n

)
+ ωn + n−1

= Op

(
ρ3β/(4β+2)
n

)
. 2
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[36] PRÉKOPA, A. (1971). Logarithmic concave measures with application to stochastic pro-
gramming. Acta Sci. Math. 32, 301–316.

29



[37] RAO, P. (1969). Estimation of a unimodal density. Sankhya Ser. A 31, 23–36.

[38] ROBERTSON, T., WRIGHT, F.T. and DYKSTRA, R.L. (1988). Order Restricted Statistical
Inference. Wiley, New York.

[39] RUFIBACH, K. (2006). Log–Concave Density Estimation and Bump Hunting for I.I.D. Ob-
servations. PhD Dissertation, Universities of Bern and Göttingen.

[40] RUFIBACH, K. (2007). Computing maximum likelihood estimators of a log-concave density
function. J. Statist. Comp. Sim. 77, 561–574.
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