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Abstract We study hypersurfaces of C
n+2
x̄,u,v given by equations of form uv = p(x̄) where

the zero locus of a polynomial p is smooth reduced. The main result says that the Lie
algebra generated by algebraic completely integrable vector fields on such a hypersurface
coincides with the Lie algebra of all algebraic vector fields. Consequences of this result for
some conjectures of affine algebraic geometry and for the Oka-Grauert-Gromov principle
are discussed.
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1 Introduction

The ground-breaking papers of Andersén and Lempert [1,3] were a starting point for inten-
sive study of the holomorphic automorphism group of C

n (n ≥ 2). Their central observation
was that

Each polynomial vector field on C
n (n ≥ 2) is a finite sum of completely integrable polynomial

vector fields
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116 S. Kaliman, F. Kutzschebauch

where a holomorphic vector field on a complex manifold is completely integrable if its
flow generates a holomorphic C+-action on this manifold. This observation lead to their
main result that implies, in particular, that any local holomorphic flow on a Runge domain
� in C

n can be approximated by global holomorphic automorphisms of C
n (for an exact

statement see Theorem 2.1 in [14]). This theorem has deep applications among which there
are examples of non-rectifiable proper holomorphic embeddings of C into C

2 1 [11] (see
also [5,8,9]) in sharp contrast with the algebraic situation where the famous Abhyankar–
Moh–Suzuki theorem states that any algebraic embedding of a line in a plane is always
equivalent to a linear one [4,28]. This was crucial for Derksen and the second author who
constructed counterexamples to the Holomorphic Linearization Problem (they showed exis-
tence of non-linearizable holomorphic C

∗-actions on C
m, m ≥ 4 and, moreover, existence

of such non-linearizable homomorphic actions for any compact Lie group K on C
n with n

sufficiently large see [7,8]).
We would like to mention in this context a well-known conjecture in the algebraic setting:

Conjecture 1.1 (Abhyankar–Sathaye) Every polynomial embedding ϕ : C
n−1 ↪→ C

n of
C

n−1 into C
n is equivalent to the standard embedding, i.e., there is an algebraic automor-

phism of the ambient space α ∈ Autalg(C
n) such that α ◦ ϕ(z) = (z, 0) ∀z ∈ C

n−1.

The next step in the development of the Andersén–Lempert theory was made by Varolin
who extended it from Euclidean spaces to a wider class of algebraic complex manifolds. He
realized also that instead of presenting algebraic vector fields as a finite sum of integrable
algebraic fields one can use Lie combinations of those fields (see Remark 5.6). This leads to
the following.

Definition 1.2 A complex manifold X has the density property if in the compact-open topol-
ogy the Lie algebra Liehol(X) generated by completely integrable holomorphic vector fields
on X is dense in the Lie algebra VFhol(X) of all holomorphic vector fields on X . An affine
algebraic manifold has the algebraic density property if the Lie algebra Liealg(X) generated
by completely integrable algebraic vector fields on it coincides with the Lie algebra VFalg(X)
of all algebraic vector fields on it (clearly the algebraic density property implies the density
property).

In this terminology Varolin’s version of the Andersén–Lempert observation says that C
n

(n ≥ 2) has the algebraic density property. Varolin and Tóth [29,30,32] established the
density property for some manifolds including semisimple complex Lie groups and some
homogenous spaces of semisimple Lie groups.

In fact, in our next paper, using new criteria, we shall prove the algebraic density property
for all linear algebraic groups different from tori or C+ [22]. However, in some cases this
new approach does not work (at least in our hands) while computations that are closer to the
original ideas of Andersén and Lempert give the desired result.

One of the aims of the paper is to present this computation which implies, in particular,
the algebraic density property for the following important class of affine algebraic varieties
(see Theorem 1).

Theorem (Main Theorem) Let p ∈ C[x1, x2, . . . , xn]be a polynomial with a smooth reduced
zero fiber. Then the hypersurface

1 Some non-rectifiable proper holomorphic embeddings of C
k into C

n were constructed earlier via the
Rosay–Rudin theory. This includes non-rectifiable embeddings C ↪→ C

n with n ≥ 3 [19]. However, the
case of n = 2 remained resistant until the Andersén–Lempert theory.
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Density property for hypersurfaces U V = P(X̄) 117

X p := {(x̄, u, v) ∈ C
n+2 : uv = p(x̄), x̄ = (x1, x2, . . . , xn)}

has the algebraic density property.

At this point we like to mention the ambitious problem to find a characterization of affine
space C

n among affine algebraic manifolds (n ≥ 3) in the algebraic category and among
Stein manifolds (n ≥ 2) in the holomorphic category. One attempt is to use the group of
automorphisms. Mentioning that all known examples of manifolds with the density prop-
erty except C

n itself have nontrivial topology, Varolin and Tóth formulated the following
conjecture:

Conjecture 1.3 (Tóth–Varolin) If X is a Stein manifold with the density property and X is
diffeomorphic to C

n , then X is biholomorphic to C
n .

There is also the following question relating the algebraic and holomorphic settings.

Question 1.4 (Zaidenberg) Is there a complex affine algebraic variety biholomorphic to C
n

but not isomorphic to C
n?

Among the hypersurfaces in our main theorem there is a class of smooth contractible
affine algebraic varieties (which are automatically diffeomorphic to Euclidean spaces as real
manifolds starting with complex dimension 3, see [6]) that do not admit obvious (algebraic
or holomorphic) isomorphisms with Euclidean spaces (as an example one can consider the
hypersurface of C

6 given by uv = x + x2 y + z2 + t3).
These examples allow us to relate the above mentioned conjectures of Tóth–Varolin and of

Abhyankar–Sathaye to Zaidenberg’s question. They give a counterexample to one of the two
conjectures or a positive answer to Zaidenberg’s question (see Proposition 4.6). Unfortunately
we can not decide at the moment which of the cases holds.

As an application of the holomorphic version of our main theorem (see Theorem 2)
we prove in the present paper that the Tóth–Varolin-Conjecture implies the existence of a
holomorphic action of the rotation group SO2(R) = S1 on C

n (n ≥ 4) with fixed point set
biholomorphic to the unit disc (see the Remarks after lemma 4.7).

Some implications of the density property which may not be so well-known to the
specialists in affine algebraic geometry are considered at the end of the paper:

We prove that any complex manifold X with the density property satisfies the Oka–
Grauert–Gromov principle since X admits a spray. Therefore, by the work of Gromov (see
[18] and for complete proofs see [12,13]) we extend the classical results of Grauert, Forster
and Ramspott about the validity of this principle to submersions with fibers that are smooth
hypersurfaces of the form given in the Main Theorem.

Another implication of the density property is that every point of a contractible smooth
hypersurface uv = p(x̄) in C

n+2, (n ≥ 2) possesses a (Fatou–Bieberbach) neighborhood
biholomorphic to C

n+1.
The paper is organized as follows. In Sect. 2 we give criteria ensuring the algebraic den-

sity property for a hypersurface uv = p(x̄) (this is the main technical part of the paper). In
Sect. 3 we give a holomorphic version of our results. In Sect. 4 we describe relations between
the density property for these hypersurfaces and the conjectures and to group actions on
C

n . Finally, in Sect. 5 we list some implications of the density property. Also we establish
the existence of a Gromov’s spray for manifolds with the density property and as a conse-
quence we prove the Oka–Grauert–Gromov principle for morphisms with fiber isomorphic
to hypersurfaces from Theorem 1.

We thank the referee for his valuable advice, especially in setting the results in the right
context.
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118 S. Kaliman, F. Kutzschebauch

2 Algebraic density property for a hypersurface uv = p(x̄)

Recall that a holomorphic vector field V ∈ VFhol(C
n) is completely integrable if for any

initial value z ∈ C
n there is an entire holomorphic function γ : C → C

n solving the ordinary
differential equation

γ̇ (t) = V (γ (t)), γ (0) = z. (1)

In this case the flow (i.e. the map C × C
n → C

n given by (t, z) �→ γz(t)) is a holomorphic
action of the additive group C+ on C

n , where index z in γz denotes the dependence on the
initial value. It is worth mentioning that this action is not necessarily algebraic in the case of
an algebraic vector field V ∈ VFalg(C

n).
In addition to the density property given in Definition 1.2, Varolin introduced the following

notion of volume density property.

Definition 2.1 Let ω be a holomorphic nowhere vanishing n-form on a complex manifold
X of dimension n (we call such ω a volume form). We say that X has the volume den-
sity property with respect to ω if the Lie algebra Lieωhol generated by completely integrable
holomorphic vector fields ν such that Lν(ω) = 0, is dense in the Lie algebra VFωhol(X) of all
holomorphic vector fields that annihilate ω.

If X is affine algebraic we say that X has the algebraic volume density property with
respect to ω if the Lie algebra Lieωalg generated by completely integrable algebraic vector
fields ν such that Lν(ω) = 0, coincides with the Lie algebra VFωalg(X) of all algebraic vector
fields that annihilate ω.

Let us discuss some simple properties of the divergence divω(ν) of a vector field ν on X
with respect to this volume form ω. The divergence is defined by the equation

divω(ν)ω = Lν(ω) (2)

where Lν is the Lie derivative. Furthermore, for any vector fields ν1, ν2 on X we have the
following relation between divergence and Lie bracket

divω([ν1, ν2]) = Lν1(divω(ν2))− Lν2(divω(ν1)). (3)

In particular, when divω(ν1) = 0 we have

divω([ν1, ν2]) = Lν1(divω(ν2)). (4)

Another useful formula is

divω( f ν) = f divω(ν)+ ν( f ) (5)

for any holomorphic function f on X .

Lemma 2.2 Let Y be a Stein complex manifold with a volume form � on it, and X be a
submanifold of Y which is a strict complete intersection (that is, the defining ideal of X is
generated by holomorphic functions P1, . . . , Pk on Y , where k is the codimension of X in
Y ). Suppose that ν is a vector field on X and µ is its extension to Y such that µ(Pi ) = 0 for
every i = 1, . . . , k. Then

(i) there exists a volume form ω on X such that �|X = d P1 ∧ . . . ∧ d Pk ∧ ω; and
(ii) divω(ν) = div�(µ)|X .
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Density property for hypersurfaces U V = P(X̄) 119

Proof Let x1, . . . , xn be a local holomorphic coordinate system in a neighborhood of a point
in X . Then P1, . . . , Pk, x1, . . . , xn is a local holomorphic coordinate system in a neighbor-
hood of this point in Y . Hence in the last neighborhood� = hd P1∧. . .∧d Pk ∧dx1∧. . .∧dxn

where h is a holomorphic function. Set ω = h|X dx1 ∧ . . .∧ dxn . This is the desired volume
form in (i).

Recall that Lν = d ◦ ıν + ıν ◦ d where ıν is the interior product with respect to ν ([24],
Chapt. 1, Proposition 3.10). Since µ(Pi ) = 0 we have Lµ(d Pi ) = 0. Hence by formula (2)
we have div�(µ)�|X = Lµ�|X = Lµ(d P1 ∧ . . . ∧ d Pk ∧ ω)|X = d P1 ∧ . . . ∧ d Pk |X ∧
Lνω + Lµ(d P1 ∧ . . . ∧ d Pk)|X ∧ ω = divω(ν)(d P1 ∧ . . . ∧ d Pk)|X ∧ ω = divω(ν)�|X

which is (ii). 	

Remark 2.3 1. Lemma 2.2 enables us conveniently to compute the divergence of a vector
field on X via the divergence of a vector field extension on an ambient space. It is worth
mentioning that there is another simple way to compute divergence on X which leads to the
same formulas in Lemma 2.6 below. Namely, X that we are going to consider will be an
affine modification σ : X → Z of another affine algebraic manifold Z with a volume form
ω0 (for definitions of affine and pseudo-affine modifications see [21] and Appendix 5.9). In
particular, for some divisors D ⊂ Z and E ⊂ X the restriction of σ produces an isomorphism
X \ E → Z \ D. One can suppose that D coincides with the zero locus of a regular (or holo-
morphic) function α on Z . In the situation we are going to study, the function α̃ = α ◦ σ has
simple zeros on E . Consider the form σ ∗ω0 on X . It may vanish on E only. Dividing this form
by some power α̃k we get a volume form on X . In order to compute divergence of a vector
field on X it suffices to find this divergence on the Zariski open subset X \ E � Y \ D, i.e.
we need to compute the divergence of a vector field ν on Y \ D with respect to a volume form
βω0 where β = α−k . The following formula relates it with the divergence with respect toω0:

divβω0(ν) = divω0(ν)+ Lν(β)/β.

In the cases, we need to consider, β will be often in the kernel of ν, i.e. divβω0(ν) =
divω0(ν) in these cases.

2. If the normal bundle of X ⊂ C
n is trivial we may choose ω as the restriction of the

standard volume form on C
n by Lemma 2.2. Indeed, taking n sufficiently large we can always

assume that X is a complete intersection in C
n (see for example [27]).

The condition in Lemma 2.2 that an algebraic field ν on X has an extension µ on Y with
µ(Pi ) = 0 is also very mild. We consider it in the case of hypersurfaces only.

Lemma 2.4 Let X be a smooth hypersurface in a complex Stein (resp. affine algebraic)
manifold Y given by zero of a reduced holomorphic (resp. algebraic) function P on Y . Then
every holomorphic (resp. algebraic) vector field ν on X has a similar extension µ to Y such
that µ(P) = 0.

Proof Consider, for instance, the algebraic case, i.e. P belongs to the ring C[Y ] of regu-
lar functions on Y . Since µ must be tangent to X we see that µ(P) vanishes on X , i.e.
µ(P) = P Q where Q ∈ C[Y ]. Any other algebraic extension of ν is of form τ = µ − Pθ
where θ ∈ VFalg(Y ). Thus if θ(P) = Q then we are done.

In order to show that such θ can be found consider the set M = {θ(P)|θ ∈ VFalg(Y )}.
One can see that M is an ideal of C[Y ]. Therefore, it generates a coherent sheaf F over Y .
The restriction Q|Y\X is a section of F |Y\X because Q = µ(P)/P . Since X is smooth for
every point x ∈ X there are a Zariski open neighborhood of X and an algebraic vector field
∂ such that ∂(P) does not vanish on U . Hence Q|U is a section of F |U . Since F is coherent
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120 S. Kaliman, F. Kutzschebauch

this implies that Q is a global section of F and, therefore, Q ∈ M which is the desired
conclusion. 	

2.5 Terminology and notation

In the rest of this section X is a closed affine algebraic submanifold of C
n , ω is a volume

form on X , p is a regular function on X such that the divisor p∗(0) is smooth reduced, X ′
is the hypersurface in Y = C

2
u,v × X given by the equation P := uv − p = 0.2 Note that

X ′ is smooth and, therefore, Lemma 2.4 is applicable. We shall often use the fact that every
regular function f on X ′ can be presented uniquely as the restriction of a regular function
on Y of the form

f =
m∑

i=1

(ai u
i + biv

i )+ a0 (6)

where ai = π∗(a0
i ), bi = π∗(b0

i ) are lift-ups of regular functions a0
i , b0

i on X via the natural
projection π : Y → X (as we mentioned by abusing terminology we shall say that ai and bi

themselves are regular functions on X ).
Let � = du ∧ dv ∧ ω, i.e. it is a volume form on Y . By Lemma 2.2 there is a volume

form ω′ on X ′ such that �|X ′ = d P ∧ ω′. Furthermore, for any vector field µ such that
µ(P) = 0 and ν′ = µ|X ′ we have divω′(ν′) = div�(µ)|X . Note also that any vector field ν
on X generates a vector field κ on Y that annihilates u and v. We shall always denote κ|X ′
by ν̃. It is useful to note for further computations that uiπ∗(divω(ν)) = div�(uiκ) for every
i ≥ 0. Note also that every algebraic vector field λ on X ′ can be written uniquely in the form

λ = µ̃0 +
m∑

i=1

(ui µ̃1
i + vi µ̃2

i )+ f0∂/∂u + g0∂/∂v (7)

where µ0, µ
j
i are algebraic vector fields on X , and f0, g0 are regular functions on X ′.

For any algebraic manifold Z with a volume form ω we denote by Liealg(Z) (resp.
Lieωalg(Z)) the Lie algebra generated by algebraic completely integrable vector fields on
Z (resp. that annihilate ω) and by VFalg(Z) we denote the Lie algebra of all algebraic vector
fields on Z . We have a linear map

P̃r : VFalg(X
′) → VFalg(X)

defined by P̃r(λ) = µ0 where λ and µ0 are from formula (7). The following facts are
straightforward calculations that follow easily from Lemma 2.2.

Lemma 2.6 Let ν1, ν2 be vector fields on X, and f be a regular function on X. For i ≥ 0
consider the algebraic vector fields

ν′
1 = ui+1ν̃1 + uiν1(p)∂/∂v, ν′

2 = vi+1ν̃2 + viν2(p)∂/∂u

and µ f = f (u∂/∂u − v∂/∂v) on Y . Then

(i) ν′
i and µ f are tangent to X ′ (actually they are tangent to fibers of P = uv − p(x)),

i.e., they can be viewed as vector fields on X ′;

2 By abusing notation we treat p in this formula as a function on Y , and, if necessary, we treat it as a function
on X ′. Furthermore, by abusing notation, for any regular function on X we denote its lift-up to Y or X ′ by the
same symbol.
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Density property for hypersurfaces U V = P(X̄) 121

(ii) µ f is always completely integrable on X ′, and ν′
i is completely integrable on X ′ if νi

is completely integrable on X;
(iii) divω′(µ f ) = 0, divω′(ν′

1) = ui+1 divω(ν1), divω′(ν′
2) = vi+1 divω(ν2), and

divω′([µ f , ν
′
1] = (i + 1)ui+1 f divω(ν1), divω′([ν′

2, µ f ] = (i + 1)vi+1 f divω(ν2);
(iv) we have the following Lie brackets

[µ f , ν
′
1] = (i + 1)ui+1 f ν̃1 + α1∂/∂u + β1∂/∂v,

[ν′
2, µ f ] = (i + 1)vi+1 f ν̃2 + α2∂/∂u + β2∂/∂v,

where αi and βi are some regular functions on X ′;
(v) more precisely, if i = 0 in formulas for ν′

1 and ν′
2 then

[µ f , ν
′
1] = f uν̃1 − u2ν1( f )∂/∂u + ν1( f p)∂/∂v,

[ν′
2, µ f ] = f vν̃2 − v2ν2( f )∂/∂v + ν2( f p)∂/∂u;

and
P̃r([[µ f , ν

′
1], ν′

2]) = ν1( f p)ν2 − ν2( f p)ν1 + f p[ν1, ν2]. (8)

2.7 Additional notation

For every affine algebraic manifold Z let C[Z ] be the algebra of its regular functions,
IVFalg(Z) be the set of completely integrable algebraic vector fields on Z . If there is a vol-
ume form ω on Z then we denote by DivZ : VFalg(Z) → C[Z ] the map that assigns to each
vector field its divergence with respect to ω, and set IVFωalg(Z) = Ker DivZ ∩ IVFalg(Z),
VFωalg(Z) = Ker DivZ ∩ VFalg(Z). For a closed submanifold C of Z denote by VFalg(Z ,C)
the Lie algebra of vector fields on Z that are tangent to C . Formula (6) yields a monomorphism
of vector spaces ι : C[X ′] ↪→ C[Y ] and the natural embedding X ↪→ X × (0, 0) ⊂ Y gener-
ates a projection Pr : C[Y ] → C[X ]. Note that Pr(ι( f )) = a0 in the notation of formula (6).

Proposition 2.8 Let C be the smooth zero locus of p in X. Suppose also that the following
conditions hold:

(A1) the linear space VFalg(X,C) is generated by vector fields that are of the form
P̃r([[µ f , ν

′
1], ν′

2])whereµ f andν′
i are as in formula (8) from Lemma 2.6 withνi ∈ IVFalg(X);

(A2) VFalg(X) is generated by IVFωalg(X) as a module over C[X ];
(A3) DivX (VFalg(X)) is generated by DivX (IVFalg(X)) over C[X ] (for instance, the ideal

generated by DivX (IVFalg(X)) in C[X ] coincides with C[X ]).
Then Liealg(X ′) coincides with VFalg(X ′), i.e., X ′ has the algebraic density property.

Proof Let λ, f0, and g0 be as in formula (7) and � = ι(λ) be the extension of λ to Y also
given by formula (7). By formula (6) f0 and g0 can be written uniquely in the form

f0 =
m∑

i=1

(ai u
i + biv

i )+ a0 and g0 =
m∑

i=1

(âi u
i + b̂iv

i )+ â0

where ai , âi , bi , b̂i ∈ C[X ].
Since � is a vector field tangent to X ′ = P−1(0) we have �(P)|X ′ = 0. Thus 0 =

Pr(ι(�(P)|X ′)) = p(a1 + b̂1)−µ0(p) (recall that P = uv − p(x)). Hence µ0(p) vanishes
on C , i.e. µ0 ∈ VFalg(X,C). Let µ f , ν

′
i ∈ IVFalg(X ′) be as in Lemma 2.6. Condition (A1)

implies that adding elements of the form [[µ f , ν
′
1], ν′

2] to λ we can suppose that µ0 = 0.
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122 S. Kaliman, F. Kutzschebauch

Now we have p(a1 + b̂1) = 0, i.e. a1 = −b̂1. This implies that Pr(ι(div�(�)|X ′)) = 0. By
Lemma 2.4 there exists a vector field of the form τ = � − Pθ on Y such that τ(P) = 0.
Hence

(uv − p)θ(uv − p) = �(uv − p).

Formula (7) and the form of f0 and g0 imply that �(P) does not contain nonzero mono-
mials ukvl with both k ≥ 2 and l ≥ 2 (as a polynomial in u and v). Thus θ(P) is of form
given by formula (6). We have also Pr(θ(P)) = 0 because Pr(�(P)) = 0, and, therefore,
Pr(ι(θ(P)|X ′) = 0. By Lemma 2.2 and formula (5) divω′(λ) = div�(τ)|X ′ = (div�(�) −
P div�(θ) − θ(P))|X ′ . Since ι(P div�(θ)|X ′) = 0 we have Pr(ι(divω′(λ))) = 0 now. By
condition (A3) DivX (VFalg(X)) is generated by DivX (IVFalg(X)) over C[X ] and, therefore,
adding vector fields of the form [µ f , ν

′
1] and [µ f , ν

′
2], we can suppose by Lemma 2.6 (iii)

that divω′(λ) = 0. Note that this addition leavesµ0 equal to 0 since P̃r([µ f , ν
′
i ]) = 0. Taking

into consideration condition (A2) and Lemma 2.6 (iv) we can make µ j
i = 0 by adding fields

of the form [µ f , ν
′
i ] with νi ∈ IVFωalg(X). Note that this addition leaves not only µ0 equal

to 0 but also divω′(λ) equal to 0, since divω′([µ f , ν
′
i ]) = 0 as soon as divω(νi ) = 0. Hence

λ = f ∂/∂u + g∂/∂v and �(P)|X ′ = f v + gu = 0.
Using formula (6) one can see that f must be divisible by u, and g by v. That is, there exists

a regular function h on X ′ for which f = uh and g = −vh. Hence λ = h(u∂/∂u − v∂/∂v).
Note that �(P) = 0 now. Thus 0 = divω′(λ) = div�(�)|X ′ = (u∂h/∂u − v∂h/∂v)|X ′ .
Taking h as in formula (6) we see that h is independent of u and v. Thus λ is integrable by
Lemma 2.6 (ii). 	

Lemma 2.9 Condition (A1) in Proposition 2.8 is a consequence of the following two
conditions:

(B1) VFalg(X) is generated as a C[X ]-module by vector fields of the form [ν1, ν2] where
the vector fields ν1, ν2 ∈ IVFalg(X) are proportional (here proportional is meant in the
C[X ]-module structure, i.e., there are functions f1 and f2 such that f1ν1 + f2ν2 = 0);

(B2) If C is the zero fiber of p then the C[C]-module VFalg(C) is generated by vector
fields of the form γ |C where γ = ν1(p)ν2 − ν2(p)ν1 with ν1, ν2 ∈ IVFalg(X).

Proof Note that when ν1 and ν2 are proportional P̃r([[µ, ν′
i ], ν′

2] = f p[ν1, ν2] in formula
(8). Condition (B1) implies that linear combinations of such vector fields produce any vector
field of the form pν with ν ∈ VFalg(X). Hence condition (B1) has the consequence that for
every κ ∈ VFalg(X) there exists λ ∈ Lie(X ′) [more specifically λ is a linear combination of
vector fields of the form P̃r([[µ f , ν

′
1], ν′

2]) as required in Condition (A1)] with P̃r(λ) = pκ .
Note further that γ in condition (B2) differs from a vector field in formula (8) by a vector

field divisible by p, i.e., of the form pκ .
Now take an arbitrary θ ∈ VFalg(X,C). By condition (B2) its restriction to C is a sum of

fields of the form f (ν1(p)ν2 − ν2(p)ν1). Thus subtracting from θ the corresponding sum of
fields of the form P̃r([[µ f , ν

′
1], ν′

2]) we get a field which is divisible by p, i.e., vanishes on
C . The mentioned consequence of condition (B1) concludes now the proof. 	


As a first application we set p(x) in the definition of X ′ equal to a nonzero constant, in
that case C is empty and X ′ is isomorphic to X × C

∗. This special case seems worth to be
stated separately.

Corollary 2.10 Let X be an affine algebraic manifold with a volume form ω such that
condition (B1) from Lemma 2.9 and conditions (A2) and (A3) from Proposition 2.8 hold.
Then X × C

∗ has the density property.
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Here comes the next application of Proposition 2.8 and Lemma 2.9:

Lemma 2.11 Let X = C
n with a coordinate system (x1, . . . , xn) and p1, . . . , pn be the

partial derivatives of p. Then:

(i) Condition (B1) holds.
(ii) Condition (B2) follows from the smoothness of the zero fiber C of p (i.e. from the fact

that the partial derivatives pi = ∂p/∂xi of p have no common zeros on C).
(iii) In particular, condition (A1) from Lemma 2.8 holds, when the zero fiber C of p is

smooth.

Proof Taking ν1 = ∂/∂xi and ν2 = xi∂/∂xi we get the vector field [ν1, ν2] = ∂/∂xi which
implies condition (i).

There is nothing to prove when n = 1. For n > 1 take ν1 = ∂/∂xi and ν2 = ∂/∂x j . We
get γ from condition (B2) equal to p j∂/∂xi − pi∂/∂x j . Hence C[X ]-combinations of such
fields include any field of the form

λ =
∑

i, j

qi, j (p j∂/∂xi − pi∂/∂x j ) (9)

where qi, j are arbitrary polynomials on X .
Since the partial derivatives of p have no common zeros on C , such vector fields λ|C

generate the tangent bundle T C of C at each point. By a standard application of Theorem B
of Serre they generate the global sections of T C as C[C]-module. This is (ii). 	


Combining Lemmas 2.11, 2.9 and Proposition 2.8 we conclude the main result of this
section:

Theorem 1 Let p ∈ C[x1, x2, . . . , xn] be a polynomial with smooth reduced zero fibre, i.e.,
the partial derivatives pi = ∂p/∂xi of p have no common zeros on the zero fiber of p. Then
the hypersurface

X p := {(x̄, u, v) ∈ C
n+2 : uv = p(x̄), x̄ = (x1, x2, . . . , xn)}

has the algebraic density property.

Proof We check that the conditions in Proposition 2.8 are fulfilled. Lemma 2.11 (iii) ensures
condition (A1). IVFωalg(C

n) with respect to the standard volume form ω contains the fields
∂/∂xi and those generates VFalg(C

n) as C[x1, x2, . . . , xn] module. Finally DivX (IVFalg(C
n))

contains divω(x1∂/∂x1) ≡ 1 and thus the ideal generated by it is equal to C[x1, x2, . . . , xn].
	


Example 2.12 (1) For n = 1 we get the density property for Danilievsky surfaces uv =
p(x) where the polynomial p has no multiple roots.

(2) For n = 2 (i.e. X = C
2
x,y) we have the density property for the hypersurface X ′ in

C
4
x,y,u,v given by xy − uv = 1 which is, of course, SL(2,C). Thus we got a new proof

of the fact that SL(2,C) has the density property, established first in [31].

3 Generalizations to analytic hypersurfaces

3.1 The analytic case

We need to change terminology and notation in order to give a holomorphic analog of the
results in Sect. 2.
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In this section X is a Stein manifold, ω is a holomorphic volume form on X , p is a holo-
morphic function on X such that the divisor p∗(0) is smooth reduced, X ′ is the hypersurface
in Y = X × C

2
u,v given by the equation P := uv − p = 0. Again by abusing notation, for

any holomorphic function on X (say p) we denote its lift-up to Y or X ′ by the same symbol.
Instead of working with holomorphic functions on Y = C

2
u,v × X we use the polynomial

algebra O(X)[u, v] in two variables u and v over the algebra O(X) of holomorphic functions
on X . We put A(X ′) := O(X)[u, v]|X ′ (note that every function f ∈ A(X ′) can be presented
uniquely as the restriction of a function from O(X)[u, v] of form given by Eq. (6) but with
ai = π∗(a0

i ), bi = π∗(b0
i ) being now the lift-ups of holomorphic functions a0

i , b0
i on X via

the natural projection π : Y → X ).
Consider the Lie algebra VFmixed(Y ) of vector fields on Y each of which maps the algebra

O(X)[u, v] into itself (if, say, Y is an affine algebraic variety then we have VFmixed(Y ) :=
O(X)[u, v]⊗C[Y ] VFalg(Y )). By VFmixed(X ′) we denote the restrictions to X ′ of fields from
VFmixed(Y ) that are tangent to X ′.

Every such vector field λ ∈ VFmixed(X ′) can be written again uniquely in the form given
by formula (7) but with µ0, µ

j
i being holomorphic vector fields on X , and f0, g0 ∈ A(X ′).

In particular, we have the linear map

P̃r : VFmixed(X
′) → VFhol(X)

defined by P̃r(λ) = µ0.
Let Liemixed(X ′) denote the Lie algebra generated by the set IVFmixed(X ′) of completely

integrable vector fields in VFmixed(X ′). Then instead of Proposition 2.8 one has.

Proposition 3.2 Let C be the smooth zero locus of p in X and VFhol(X,C) ⊂ VFhol(X)
consist of vector fields on X tangent to C. Suppose also that the following conditions hold:

(A1′) the linear space VFhol(X,C) is generated by vector fields that are of the form
P̃r([[µ f , ν

′
1], ν′

2]) where µ f and ν′
i are as in the holomorphic version of formula (8) from

Lemma 2.6 with νi ∈ IVFhol(X);
(A2′) VFhol(X) is generated by IVFωhol(X) as a module over O(X);
(A3′) DivX (VFhol(X)) is generated by DivX (IVFhol(X)) over O(X) (for instance, the

ideal generated by DivX (IVFhol(X)) in O(X) coincides with O(X)).
Then Liemixed(X ′) coincides with VFmixed(X ′), i.e., X ′ has the density property.

The proof of this Proposition goes Mutatis Mutandis and the only place that requires
additional comments is the following. The holomorphic vector field µ from Lemma 2.4 such
that µ(P) = µ(uv − p) = 0 on Y may not be a priori from VFmixed(Y ). However this
µ is of form � − Pθ where � ∈ VFmixed(Y ) and then the argument as in the proof of
Proposition 2.8 shows that θ(P) ∈ O(X)[u, v]. This fact suffices to continue the argument
practically without change.

Lemmas 2.9 and 2.11 have obvious holomorphic reformulations that lead to the following.

Theorem 2 Let p ∈ O(Cn) be a holomorphic function with a smooth reduced zero fibre,
i.e., the partial derivatives pi = ∂p/∂xi of p have no common zeros on the zero fiber of p.
Then the Stein manifold

X p := {(x̄, u, v) ∈ C
n+2 : uv = p(x̄), x̄ = (x1, x2, . . . , xn)}

has the density property.
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4 Connections to the conjectures

4.1 Contractible hypersurfaces and related conjectures

Note that X p from Sect. 5.1 can be viewed as an affine modification of C
n+1
x̄,v over the divisor

D = {v = 0} with center C = {v = p(x̄) = 0}. Then by Theorem 3.5 in [20] (see also [21],
Corollary 3.1), we have the following.

Proposition 4.2 Let C be contractible. Then X p is contractible. Furthermore, X p is diffeo-
morphic as a real manifold to R

2n+2 in the case of complex dimension dim X p = n + 1 ≥ 3.

It is an easy exercise to check that when C can be sent onto a coordinate hyperplane of C
n
x̄

by a polynomial automorphism of C
n
x̄ (we call such C rectifiable) then X p is isomorphic to

C
n+1. It is not clear whether this isomorphism is preserved when C � C

n−1 is not rectifiable.
The existence of non-rectifiable embeddings C

n−1 ↪→ C
n is an open question for n ≥ 3 and

we have the following.

Conjecture 4.3 (Abhyankar–Sathaye) Every polynomial embedding ϕ : C
n−1 ↪→ C

n of
C

n−1 into C
n is rectifiable.

However, one can use a smooth contractible C non-isomorphic to C
n−1. In this case it is

also unknown whether a hypersurface from Proposition 4.2 is isomorphic (or even biholo-
morphic) to C

n+1. As an example one can consider as C a zero locus in C
3 of the polynomial

p(x, y, z) = [(xz + 1)3 − (yz + 1)2 − z]/z which is a contractible (Ramanujam) surface
of Kodaira logarithmic dimension 1 [10] or the Russell cubic which is the hypersurface in
C

4
x,y,z,t given by x + x2 y + z2 + t3 = 0 [25]. That is, we have hypersurfaces

H1 = {P1(x, y, z, u, v) = uv − [(xz + 1)3 − (yz + 1)2 − z]/z = 0} ⊂ C
5

and

H2 = {P2(x, y, z, t, u, v) = uv − (x + x2 y + z2 + t3) = 0} ⊂ C
6.

If any of them were isomorphic to a Euclidean space we would have a counterexample to
the Abhyankar–Sathaye Conjecture since there is a singular fiber of P1 and nonzero fibers of
P2 are not homeomorphic to the zero one. By Theorem 1 the hypersurfaces X p from Propo-
sition 4.2 have the algebraic density property. Hence H1 and H2 would be biholomorphic to
complex Euclidean spaces if the following were true.

Conjecture 4.4 (Tóth–Varolin) If X is a Stein manifold with the density property and X is
diffeomorphic to R

2n , then X is biholomorphic to C
n .

Though we cannot say whether hypersurfaces like H1 and H2 are biholomorphic to Euclid-
ean spaces it is worth mentioning that by property (1) from Sect. 5.1 every point of an
((n + 1)-dimensional) hypersurface X p from Theorem 1 has a Fatou–Bieberbach neighbor-
hood biholomorphic to C

n+1. These arguments give hope that a hypersurface like H1 or H2

can produce a positive answer to the following question of Zaidenberg.

Question 4.5 (Zaidenberg) Is there a complex affine algebraic variety biholomorphic to C
n

but not isomorphic to C
n?

Summarizing we get
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Proposition 4.6 The hypersurfaces H1 and H2 are either counterexamples to one of the
conjectures of Abhyankar–Sathaye resp. Tóth–Varolin or they give a positive answer to
Zaidenbergs question.

Surfaces like H1 and H2 may be also viewed also as “potential counterexamples” to the
problem of linearizing of an algebraic C

∗-action on a Euclidean space. Consider say, the
C

∗-action on H2 given by (u, v, x, y, z, t) → (λu, λ−1v, x, y, z, t). Its fixed point set is
{u = v = 0} is isomorphic to the Russell cubic and, therefore, if H2 were isomorphic to C

5

the action would not be linearizable.
Furthermore, if the Tóth–Varolin conjecture were valid one would be able to construct in

a similar manner a holomorphic C
∗-action on a Euclidean spaces whose fixed point set is a

disc. This would yield examples of a new type for non-linearizable holomorphic C
∗-actions

on Euclidean spaces (the examples constructed by Derksen and the second author were based
on a different fact; namely on existence of actions with a non-rectifiable embedding of the
fixed point set into the quotient).

More precisely, consider a proper holomorphic embedding of the unit disc� := {ζ ∈ C :
|ζ | < 1} into C

2 which exists by the result of Kasahara, Nishino [23] (see also [2], [16]). By
the solution of the second Cousin problem the image of the disc coincides with the zeros of
a reduced holomorphic function F ∈ O(C2

x,y). Note that the partial derivatives of F have no
common zero on the zero fiber F−1(0).

As usual X F is the hypersurface in C
4
x,y,u,v given by

X F = {(x, y, u, v) : F(x, y) = uv}. (10)

Lemma 4.7 For all n ≥ 0 there is a holomorphic action of C
∗ on X F × C

n with fixed point
set biholomorphic to the unit disc �.

Proof Consider the linear action C
∗ × C

4
x,y,u,v × C

n
w̄ → C

4
x,y,u,v × C

n
w̄ given by

(θ, (x, y, u, v, w̄)) �→ (x, y, θu, θ−1v, θw̄).

It leaves invariant the hypersurface X F ×C
n and restricts therefore to a C

∗-action on X F ×C
n .

The fixed point set of this action is given by u = v = 0, w̄ = 0, F(x, y) = 0 which concludes
the proof. 	


By Theorem 2, X F and, therefore, X F ×C
n have the density property. In combination with

Proposition 5.10 this would lead to promised examples provided the Tóth–Varolin conjecture
were true. By the same reasoning one can prove that the Tóth–Varolin conjecture implies the
existence of holomorphic C

∗ actions on affine spaces with fixed point set biholomorphic
to any contractible domain � in C

n which can be properly holomorphically embedded into
C

n+1.

5 Implications of the density property

5.1 Properties inherited from the density property

We suppose below that X p ⊂ C
n+2 is an algebraic hypersurface in C

n+2 given by uv = p(x̄)
where x̄ = (x1, . . . , xn) and (x̄, u, v) is a coordinate system in C

n+2
x̄,u,v . Again we assume the

zero fiber C ⊂ C
n
x̄ of p to be smooth and reduced which implies that X p is also smooth.

We list below some properties of X p that hold for any complex manifold with the density
property (e.g., see [33] Corollaries 4.1, 4.3 ).
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1. (Fatou–Bieberbach maps of the first kind) For each point x ∈ X p there is an injective
but not surjective holomorphic map f : C

n+1 → X p with f (0) = x . In particular all
Eisenman measures on X p vanish identically.

2. (Fatou–Bieberbach maps of the second kind) For each point x ∈ X p there is an injective
but not surjective holomorphic map f : X p → X p with f (x) = x .

3. The holomorphic automorphism group of X acts k-transitively on X for all k ∈ N.

For the affine modifications from Theorem 1 property (3) was originally proved by
Zaidenberg and the first author in [21] even for the algebraic automorphism group. In the
holomorphic case it is a consequence of Theorem 0.2 in [33] whose weak version is as
follows.

Proposition 5.2 Let X be a Stein manifold with the density property, K be a compact in X,
x, y ∈ X be two points outside the holomorphic hull of K . Suppose also that x1, . . . , xn ∈ K .
Then there exists a holomorphic automorphism� of X such that�(xi ) = xi ,�|K is as close
to the identical map as we wish, and �(y) = x.

5.3 Density implies Gromov’s spray

The Oka principle is a fundamental principle in complex analysis stating that on Stein man-
ifolds analytic problems which can be formulated in cohomological terms have only topo-
logical obstructions.

Definition 5.4 Let h : Z → W be a holomorphic submersion of complex manifolds, and
let Cont(W, Z) (resp. Holo(W, Z)) be the set of continuous (resp. holomorphic) sections of
h with compact-open topology. We say that this submersion h satisfies the Oka–Grauert–
Gromov principle if the natural embedding Holo(W, Z) ↪→ Cont(W, Z) is a weak homotopy
equivalence (see [18]) (this implies, in particular, that each continuous section f 0 : W → Z
of h can be deformed to a holomorphic section f 1 : W → Z through a homotopy of con-
tinuous sections f t : W → Z (0 ≤ t ≤ 1), and any two holomorphic sections which are
homotopic through continuous sections are also homotopic through holomorphic sections).

The most powerful version of this principle was introduced by Gromov [18] who extended
the classical results of Oka [26], Grauert [17], and Forster and Ramspott [15] to manifolds
admitting sprays (for exact statements and proofs see [12,13]).

Definition 5.5 1. A (dominating) spray on a complex manifold F is a holomorphic vector
bundle ρ : E → F , together with a holomorphic map s : E → F , such that s is identical
on the zero section F ↪→ E , and for each x ∈ F the induced differential map sends the
fibre Ex = ρ−1(x) (which is viewed as a linear subspace of Tx E) surjectively onto Tx F .

2. A fiber-dominating spray for a surjective submersion h : Z → W of complex manifolds
is a vector bundle ρ : E → Z together with a map s : E → Z identical on the zero
section Z ↪→ E and such that h ◦ s = h ◦ ρ and for every z ∈ Z the induced differential
map sends Ez = ρ−1(z) (which is viewed as a linear subspace of Tz E) surjectively onto
the subspace of Tz Z tangent to the fiber h−1(h(z)).

Let us recall Theorem 4.5 from [18] (for a proof see [13])

Theorem 3 Suppose that h : Z → W is a holomorphic submersion of a complex manifold
Z onto a Stein manifold W for which every x ∈ W has a neighborhood U ⊂ W such that
h−1(U ) → U admits a fiber-dominating spray. Then h : Z → W satisfies the Oka–Grauert–
Gromov principle.
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Before we come to the main point of this subsection let us make a useful remark.

Remark 5.6 For a complex manifold Z the closure (in the compact-open topology) of
Liehol(Z) ⊂ VFhol(Z) (resp. Liealg(Z) ⊂ VFalg(Z)) coincides with the closure of the linear
span Span(Z) generated by completely integrable holomorphic (resp. algebraic) vector fields.
Indeed, it suffices to prove that the closure of Span(Z) is a Lie algebra. This is so since the

bracket of two completely integrable vector fields V and W , [V,W ] = limt→0
(ϕt )∗(V )−V

t

can be approximated by (ϕt )∗(V )−V
t for small t where ϕt is the flow of W . The desired con-

clusion follows now from the fact that (ϕ
t )∗(V )

t , V
t are both completely integrable because

global change of variables and multiplication by a constant factor preserve integrability.

Theorem 4 Any Stein manifold X with the density property admits a spray.

Proof For each point x in X there are finitely many completely integrable holomorphic vector
fields which span the tangent space Tx X . Indeed, assume the contrary, i.e. there is a point
x and a nonzero linear functional l : Tx X → C such that l(V (x)) = 0 for all completely
integrable holomorphic vector fields V on X . By the Remark before l(V (x)) = 0 would hold
for all vector fields in the closure of Span(X), i.e., for all holomorphic vector fields on X , a
contradiction to the fact that X is Stein. If a finite number of holomorphic vector fields span
the tangent space at a single point, they span the tangent space at all points outside a proper
analytic subset A. In the algebraic case by standard induction over the dimension of A we find
finally many completely integrable holomorphic vector fields V1, V2, . . . , Vn which span the
tangent space Tx X at each point. Let ϕt

i be the flow of Vi on X and let s : X × C
n → X be

given by

s(x; t1, t2, . . . , tn) = ϕ
t1
1 ◦ ϕt2

2 ◦ · · · ◦ ϕtn
n (x).

Then s(x; 0, 0, . . . , 0) = x and ∂s/∂ti = Vi (x). Since these vectors span Tx X for each x ,
holomorphic submersion s is a spray on X . This construction of a spray is due to Gromov
[18].

In the holomorphic case the argument must be a bit more accurate since A may have an
infinite number of irreducible components A1, A2, A3, . . . By transitivity property (3) from
Sect. 5.1 we can choose integrable vector fields θ1, . . . , θk that span the tangent space at a
given point x1 ∈ A1. Our aim is to construct a holomorphic automorphism� ∈ Authol X such
that �∗(θ1), . . . , �∗(θk) span the tangent space at a general point of each Ai , i = 1, 2, . . .
Then the induction by dimension will work as in the algebraic case which yields the desired
conclusion.

For this aim note that the topological space Authol(X) of holomorphic automorphisms
of X (with compact-open topology) is metrizable by the Urysohn theorem. More precisely,
since X is Stein it can be treated as a closed analytic subset of C

m and, therefore, each
holomorphic map g : X → X is given by coordinate functions g1, . . . , gm . Choose a
sequence of compacts {Ki } such that

⋃
i Ki = X . For g, h ∈ Authol(X) set κi (g, h) =

min(max(||g1 − h1||i , . . . , ||gm − hm ||i ), 1) where for any continuous function λ on Ki

its maximal absolute value is denoted by ||λ||i . Define the distance between h and g by∑
i κi (g, h)/2i . This metric generates the compact-open topology and, what is important,

makes Authol(X) an open subset in a complete metric space. Denote by Bi a subset of
Authol(X) such that for each � ∈ Bi the integrable vector fields �∗(θ1), . . . , �∗(θk) span
the tangent space at a general point of Ai . Clearly, Bi is an open subset of Authol(X). By the
argument before there is a completely integrable vector field νi not tangent to Ai . Then for
its flow ψ t

i and any automorphism � /∈ Bi the composition ψ t
i ◦ � ∈ Bi for small values
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of time t . Therefore, Bi is dense in Authol(X). By the Baire category theorem
⋂

i Bi is not
empty and we choose the desired � ∈ ⋂

i Bi . 	

Remark 5.7 In fact, instead of the density a weaker assumption ensures the existence of a
spray for X . That is, it follows from the proof that it suffices to require the existence of a single
completely integrable vector field on X , the transitivity on X of the group of holomorphic
automorphisms and the fact that for some point the isotropy subgroup of this group acts
irreducible on the tangent space.

One can include holomorphic dependence of parameters in the formulation of Theorems 1
and 2 with obvious adjustment of the arguments. This implies now the following.

Corollary 5.8 Let h : Z → W be a surjective submersion of complex manifolds such that
W is Stein and for every w0 ∈ W there is a neighborhood U for which h−1(U ) is naturally
isomorphic to a hypersurface in C

n+2
x̄,u,v×U given by uv = p(x̄, w)where p is a holomorphic

function on C
n
x̄ × U (independent of u and v). Suppose, furthermore, that p∗(0)∩ (Cn

x̄ ×w)

is a smooth reduced proper (may be empty) submanifold of C
n
x̄ × w for every point w ∈ U.

Then h satisfies the Oka–Grauert–Gromov principle.

5.9 Appendix: topology of pseudo-affine modifications

Let X be a Stein manifold, D be its smooth reduced analytic divisor, and C be a proper
closed complex submanifold of D. Suppose that Z is the result of blowing up X along C
and deleting the proper transform of D. Then Z is smooth Stein and the natural projection
σ : Z → X is called a basic pseudo-affine modification [21]. Geometrically it means deleting
D and replacing it with a divisor E = σ−1(C) which is biholomorphic to the projectivised
normal bundle of C in X from which a section is deleted. In the case that C is contractible
this divisor is simply � C × C

k in Z where k = codimDC .

Proposition 5.10 Let σ : Z → X be a basic pseudo-affine modification of Stein manifolds
with D and C as before. Suppose that the pair (X, D) is diffeomorphic to (R2n,R2n−2)where
the embedding in the latter pair is linear and n ≥ 3. Suppose also that C is contractible and
admits a proper surjective smooth function ϕ1 : C → R≥0 with all critical values less then
some t0 > 0. Then Z is diffeomorphic to R

2n.

Proof (Sketch.) By Corollary 3.1 in [21] Z is contractible. Suppose that one can construct a
compact manifold K ⊂ Z with boundary ∂K such that K is a deformation retract of Z and
∂K is simply connected. Then we are done by the h-cobordism theorem which implies that
K is diffeomorphic to a ball. Thus our aim is to show the existence of such K .

Let ϕ3 be a distance on X � R
2n and ϕ2 = ϕ3|D on D. That is, Bi (R) = ϕ−1

i ([0, R])
is diffeomorphic to a closed ball for each R > 0 and i = 2, 3 while B1(R) is contractible
for R ≥ t0. Since X is Stein and contractible there is a holomorphic function p ∈ O(X)
generating the ideal of the divisor D.

Consider small closed tubular neighborhoods U1 of C in D (resp. U2 of D in X ) with
projection �1 : U1 → C (resp. �2 : U2 → D). Choose smooth positive functions R(t) and
r(t) on {t ∈ R|t ≥ t0} such that

(i) R(t) is a strictly increasing function for which the interior of B2(R(t)) contains
�−1

1 (B1(t));
(ii) r = r(t) is a strictly decreasing positive function going to zero such that B ′

2(t) :=
p−1(�̄r(t)) ∩ �−1

2 (B2(R(t)) is contained in the interior of U2 and B ′
2(t) is naturally

diffeomorphic to �̄r × B2(R(t)) where �̄r = {ζ ∈ C | |z| ≤ r}.
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Since C is Stein contractible its normal bundle in X (resp. D) is trivial and U2 (resp. U1)
can be viewed as neighborhood of its zero section. Choose a trivialization C × C

k
w × Cz of

this bundle (where w is a coordinate system on the second factor) such that ρ2 is the natural
projection C × C

k
w × Cz → C × C

k
w and ρ1 is the natural projection C × C

k
w → C . Set

k = 1 for simplicity. Then U1 is biholomorphic to {|w| ≤ f (c)}, where c ∈ C and f is a
strictly positive function. Also U ′

2 = ρ−1
2 (U1) is biholomorphic to {|z| < g(c, w)} where

the function g is also positive. Decreasing g if necessary one can suppose that z = p|U ′
2
.

Note that the preimage Ũ ′
2 of U ′

2 under the pseudo-affine modification is biholomorphic to
the hypersurface in U ′

1 × Cξ given by pξ = w.
Set B ′

1(t) := �−1
2 (�−1

1 (B1(t))) ∩ p−1(�̄r(t)) ⊂ B ′
2(t) and S1

t = (B ′
2(t) \ B ′

1(t)) ∩
p−1(∂�̄r(t)). Then the part �(t) of the boundary of S1

t that meets B ′
1(t) consists of two

pieces given by the equations

ϕ(c) = t, |p| = r(t), |w| ≤ f (c) (A1)

and
ϕ(c) ≤ t, |p| = r(t), |w| = f (c) (A2)

Note that �(t) can be also viewed as the boundary of the real surface St
2 in Ũ ′

2 consisting
of the two pieces

ϕ(c) = t, |p| ≤ r(t), |ξ | ≤ f (c)

r(t)
(B1)

and

ϕ(c) ≤ t, |p| ≤ r(t), |ξ | = f (c)

r(t)
(B2)

Except for a simple case when C is a point (which we omit) S2
t is simply connected.

Also S2
t and S2

t ′ are disjoint for t �= t ′. Furthermore, except for a compact piece the divisor
E = σ−1(C) is contained in

⋃
t≥t0 S2

t . Set S3
t = ∂B3(R(t)) \ p−1(�̄r(t)). One can easily

check that Si
t is diffeomorphic to Si

t ′ for i = 1, 2, 3 and t, t ′ > t0.
Consider the compact piece-wise differential (2n−1)-dimensional manifold St in Z that is

the union of S1
t , S2

t , and S3
t . Using partition of unity and local flows one can make diffeomor-

phisms between pieces of St and St ′ agreeable on the boundaries so that for W = ⋃
t≥t0 St the

natural projection ϕ : W → [t0,∞) becomes a proper locally trivial fibration with fibers St .
Thus the closure of Z\W is a compact manifold which is a deformation retract of Z and whose
boundary is St0 . Application of the Seifert-Van Kampen theorem implies that St0 is simply
connected. At non-smooth points St0 is locally a union of at most three smooth pieces meeting
transversally. Thus rounding these corners we obtain a desired compact manifold K . 	
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