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Embeddings through discrete sets of balls

Stefan Borell and Frank Kutzschebauch

Abstract. We investigate whether a Stein manifold M which allows proper holomorphic

embedding into Cn can be embedded in such a way that the image contains a given discrete set of

points and in addition follow arbitrarily close to prescribed tangent directions in a neighbourhood

of the discrete set. The infinitesimal version was proven by Forstnerič to be always possible. We

give a general positive answer if the dimension of M is smaller than n/2 and construct counterex-

amples for all other dimensional relations. The obstruction we use in these examples is a certain

hyperbolicity condition.

1. Introduction

It is a famous theorem of Remmert [15] that any Stein manifold admits a proper
holomorphic embedding into affine N -space CN of sufficiently high dimension N .
The main theme of the present paper is the following question which was asked by
Forstnerič in [9]:

If M is a Stein manifold which admits a proper holomorphic embedding
into Cn for some n>1, what other properties of the embedding can one
prescribe?

In the above mentioned paper of Forstnerič, the main result states that there exist
embeddings of M through any discrete subset of Cn with prescribed finite jets at
the points of the discrete set. Strong tools for prescribing additional properties of
embeddings are based on the Andersén–Lempert theory [2] developed in the 1990s.

We would like to mention that these sort of properties of an embedding are cru-
cial for the constructions of non-straightenable embeddings of C into C2 (see [10]),
in sharp contrast with the algebraic situation where the famous Abhyankar–Moh–
Suzuki theorem states that any algebraic embedding of a line in a plane is always
equivalent to a linear one [1], [17]. This was crucial for Derksen and the second
author who constructed counterexamples to the holomorphic linearisation problem
(they showed existence of non-linearisable holomorphic C∗-actions on Cm, m≥4,
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and, moreover, existence of such non-linearisable holomorphic actions for any com-
pact Lie group K on Cn with n sufficiently large; see [5] and [6]). In the same
way (using affine modifications) many interesting examples of manifolds with the
density property can be constructed (see [14]).

The present paper is devoted to the following natural question in this context:

Given a discrete set of points in C
n with prescribed tangent planes of dimen-

sion dimM , is it possible to require an embedding of M to follow arbitrarily
close to the tangent planes in some neighbourhood of the given points?

It turns out that there is not such a very general answer as in the case of Forstnerič’s
theorem. The situation is more subtle: in certain dimensions the intrinsic properties
of the manifold M itself play an important role for the answer.

We do not have a complete answer to our question, but on one hand we have
a positive general answer for 0<k< 1

2n (see Theorem 3.5).

Theorem I. Let 0<k< 1
2n. If X is a complex space of dimension k which

admits a proper holomorphic embedding into Cn, then for any discrete set D of
k-dimensional balls in Cn and any ε∈R∞

+ , there exists a proper holomorphic em-
bedding F : X↪!Cn such that F (X) contains an ε-perturbation of D.

On the other hand, for 1
2n≤k<n we are able to construct counterexamples to

the corresponding result by using a hyperbolicity obstruction: For 1
2n≤k<n there

exists a discrete set of k-dimensional balls in Cn such that no embedding F : Ck ↪!Cn

maps Ck through small perturbations of the balls (see Proposition 4.5). In fact, we
are able to prove the following (see Theorem 4.7):

Theorem II. For 1
2n≤k<n there exist a discrete set D of k-dimensional balls

in Cn and ε∈R∞
+ such that if a Stein manifold X admits a proper holomorphic em-

bedding into Cn which contains an ε-perturbation of D, then X is (n−k)-Eisenman
hyperbolic.

We would like to state separately the following special case of Theorem II (see
Corollary 4.8).

Corollary I. There exist a discrete set D of discs in C
2 and ε∈R

∞
+ such

that no ε-perturbation of D can be contained in the image of a proper holomorphic
embedding of C or C

∗.

Acknowledgements. Both authors supported in part by the Swiss National
Science Foundation, grant 200021–107477/1.
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2. k-balls in Cn

Throughout this paper Bn will always denote the open unit ball in Cn centred
at the origin. For 0<k<n, we say that D⊂Cn is a k-ball centred at p∈Cn if
D=B∩V , where B is an open ball in Cn centred at p and V ⊂Cn is a k-dimensional
affine plane through p. We say that a sequence of k-balls Dj in Cn is discrete if
their closures are pairwise disjoint and each set of the type {pj∈Dj ;j∈N} forms
a discrete subset of Cn. Often we will use the phrase “discrete set D of k-balls
in Cn” when referring to a discrete sequence Dj of k-balls in Cn.

Let ε>0 and letD⊂Cn be a k-ball centred at p, i.e., D=B∩V as above. We say
that a set D′⊂Cn is an ε-perturbation of the k-ball D if D′={z+F (z);z∈D}, where
F : D!Cn is a holomorphic map such that ‖F‖<ε and the image of F is contained
in the orthogonal complement of the linear subspace V −p={z∈Cn;z+p∈V }.

Given a discrete set D={Dj}∞j=1 of k-balls in Cn and a sequence εj of positive
real numbers, denoted ε∈R∞

+ , where ε=(ε1, ε2, ...), we say that D′ is an ε-perturb-
ation of D if D′ is a union of εj-perturbations D′

j of Dj .
Let M⊂Cn be an analytic subspace of dimension k, and assume that M con-

tains an ε-perturbation D′ of some k-ball D⊂Cn. We will need the fact that
deformations of M , which are small near D′, will still contain a perturbation of D.
By definition, D′ is the graph of a holomorphic function f over D. If ϕ : Cn!Cn is
a holomorphic map such that ϕ�f is close enough to f in C1-norm, then it follows
that the image of ϕ�f contains a graph over a slightly smaller ball ˜D⊂D. Hence,
deforming M by some holomorphic map ϕ for which the C1-norm ‖ϕ−id‖C1 is
small enough near D′, we are assured that ϕ(M) still contains a perturbation of D.
Since ϕ deforms D′ by at most ν=supz∈D′ |ϕ(z)|, it follows that ϕ(M) contains an
(ε+ν)-perturbation of D.

3. Theorem I

The statement of Theorem I is essentially contained in the following result.

Proposition 3.1. Let 0<k< 1
2n. For any discrete set D of k-balls in Cn,

ε∈R∞
+ , and analytic subspace M⊂Cn of dimension k, there exist an open set Ω,

M⊂Ω⊂Cn, and a biholomorphic map Φ: Ω!Cn, such that Φ(M) contains an
ε-perturbation of D.

To prove the proposition we make small modifications of the methods used by
Forstnerič to prove the main theorem in [9]. The methods being inductive, we first
perturb the discrete set of k-balls in order to find an exhaustion of the target space
Cn by compact polynomially convex sets in such a way that a new k-ball is added in
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each step of the exhaustion (see Lemma 3.2). Using this exhaustion, we can follow
the methods in [9], modifying the inductive step to guarantee the statement of the
proposition (see Lemma 3.3).

3.1. The two lemmata

The following two lemmata are essential in the construction of Φ in Prop-
osition 3.1.

Lemma 3.2. Let 0<k< 1
2n. Given a discrete set D of k-balls and ε∈R∞

+ , there
exist an ε-perturbation D′ of D and compact polynomially convex sets Xj⊂Cn such
that

(i) the sets Xj exhaust Cn;
(ii) D

′
l⊂Xj for l≤j;

(iii) D
′
l∩Xj=∅ for l>j.

Furthermore, there are pairwise disjoint analytic subsets P ′
j (biholomorphic

to Ck) in Cn with D′
j⊂P ′

j and P ′
j∩Xl=∅, l<j.

Proof. Let Pj be the k-dimensional affine plane in Cn containing the k-ball Dj .
First we will define perturbations P ′

j of the affine planes Pj . If possible, let kj be
the largest positive integer such that

Dj∩2kjBn = ∅ and Pj∩kjBn �= ∅.

For j so that no such kj exists, we set P ′
j =Pj . Otherwise, let πj be the orthogonal

projection onto Pj and observe that Dj and πj(kjBn) are two open disjoint balls
in Pj sharing no boundary points. As a result, their union is Runge in Pj and we
can find a holomorphic function fj on Pj such that

|fj(z)|< εj

2
, z ∈Dj ,

and

|fj(z)|> 2kj, z ∈πj(kjBn).

Choose a vector v∈Cn orthogonal to Pj with |v|=1 and define a shear σ∈Aut(Cn)
by

z �−! z+f �πj(z)v.

Set P ′
j =σ(Pj) and observe that, since f is small enough on Dj , the set σ(Dj) is an

εj/2-perturbation of Dj.
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Assume that the sets P ′
1, ..., P

′
m are pairwise disjoint and let N=

⋃m
j=1 P

′
j . Con-

sider deformations of P ′
m+1 given by translations in Cn. Since almost every deforma-

tion of P ′
m+1 makes it transversal to N , and since 2k<n, this implies that almost

every such deformation of P ′
m+1 do not intersect N . Hence, if we choose such

a deformation τm+1 small enough, we can guarantee the additional property that
τm+1(D′

m+1) is an εm-perturbation of Dm+1. For this reason we may assume that
the sets P ′

j are pairwise disjoint, and each P ′
j contains an εj-perturbation D′

j of Dj.
Now we have pairwise disjoint sets P ′

j containing εj-perturbations of Dj . Fur-
thermore, any compact set in C

n intersects at most finitely many sets P ′
j . It follows

that the disjoint union

P =
∞
⋃

j=1

P ′
j

is closed and constitutes an analytic subset of Cn. Define a sequence Cj of non-
negative real numbers inductively so that

C1 = 0 and min
z∈D

′
j+1

|z|2+Cj+1> max
z∈D

′
j

|z|2+Cj, j≥ 1.

Then, since P is an analytic set in Cn, there is a holomorphic function F on Cn

such that F |P ′
j
=Cj . Let ρ : Cn!R be given by

ρ(z)= |z|2+|F (z)|.

Observe that ρ is a continuous strictly plurisubharmonic exhaustion function. The
proof is finished by defining sublevel sets of ρ. Choose positive real numbers Rj in
such a way that

Rj < max
z∈D

′
j+1

ρ(z)<Rj+1

and define Xj={z∈Cn ;ρ(z)≤Rj}. �

Let D be a discrete set of k-balls in Cn and ε∈R∞
+ . Apply Lemma 3.2 to

find an ε-perturbation D′ of D together with an exhaustion Xj . Moreover, assume
that M⊂Cn is an analytic subset of dimension k and K⊂M a compact set such
that M∩Xm⊂K. Set Km=Xm∪K. Observe that, by the same methods used to
prove Lemmata 5.4 and 5.6 in [9], it follows that Km and Km∪D ′

m+1 are compact
and polynomially convex. We describe the modification of the inductive step in the
following lemma.
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Lemma 3.3. We use the above notation and assume that 0<k< 1
2n, ν1>0.

If M∩D′
m+1=∅ and M contains a ν1-perturbation ˜Dj of Dj, 1≤j≤m, with ˜Dj⊂

IntKm, then for all ν2>0 there exists ϕ∈Aut(Cn) such that
(i) ϕ(M) contains a (ν1+ν2)-perturbation of Dj, 1≤j≤m;
(ii) ϕ(M) contains an (εm+1+ν2)-perturbation of Dm+1;
(iii) ϕ(M)∩D′

m+2=∅;
(iv) |ϕ(z)−z|<ν2 for all z∈Xm.

Proof. Let pj be the centre of ˜Dj , 1≤j≤m, i.e., the point in ˜Dj corresponding
to the centre ofDj , and let p be the centre ofD′

m+1. Choose a point q∈(RegM)\Km

such that dimq M=dimM=k. For any ν3>0, Proposition 1.1 in [9] assures that
there exists ϕ1∈Aut(Cn) with the following properties:

(1) ϕ1(q)=p;
(2) Tpϕ1(M)=TpD

′
m+1;

(3) ϕ1(z)=z+O(|z−pj|2) as z!pj, 1≤j≤m;
(4) |ϕ1(z)−z|<ν3 for all z∈Km.
We let ν3>0 be small enough for (4) to ensure that ϕ1(M) contains (ν1+ν2/4)-

perturbations of D1, ..., Dm.
It is enough to find a Runge neighbourhood R=R1∪R2 of Km∪D ′

m+1 and
a vector field Z on R such that

(a) Km⊂R1, D
′
m+1⊂R2, and R1∩R2=∅;

(b) Z|R1 =0;
(c) the time-one flow of Z on a neighbourhood U of p, with U relatively compact

in R2, deforms U inside R2 such that a part of ϕ1(M)∩U is stretched onto a small
enough perturbation of Dm+1.

Indeed, if this is achieved we can approximate Z uniformly on Km∪U by an
entire vector field in Cn. Therefore, the flow of the vector field Z can be uni-
formly approximated on Km∪U by a holomorphic automorphism ϕ2 of Cn accord-
ing to Lemma 1.4 in [11]. Making the approximations good enough, (b) assures
that ϕ2�ϕ1|Km is close enough to the identity. Moreover, (b) and (c) assures that
ϕ2�ϕ1(M) contains (ν1+ν2/2)-perturbations of D1, ..., Dm and an (εm+1+ν2/2)-
perturbation of Dm+1. If ϕ2�ϕ1(M) does not intersect D′

m+2, we let ϕ=ϕ2�ϕ1.
If ϕ2�ϕ1(M) intersects D′

m+2 we use small deformations of ϕ2 �ϕ1 to avoid
intersection. In general we know that small deformations, e.g. translations, of ϕ2�ϕ1

makes its image transversal to D′
m+2. Since 2k<n, this means that the image does

not intersect D′
m+2. Hence, it is enough to choose a small enough deformation

ϕ3∈Aut(Cn) and define ϕ=ϕ3�ϕ2�ϕ1.
Let us now construct the Runge neighbourhood R together with the desired

vector field Z as above. Consider the analytic subspace P ′
m+1 from Lemma 3.2
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which contains D′
m+1 and for which there exists ψ∈Aut(Cn) such that ψ(P ′

m+1)=
Ck×{0}. Moreover, we may assume that ψ(D′

m+1)=Bk×{0}. Since Km∪D′
m+1

is polynomially convex it admits a Stein neighbourhood basis, and we can choose
a Runge neighbourhood R=R1∪R2 of Km∪D′

m+1 satisfying (a) above. In fact, we
may assume that ψ(R2)=sBk×tBn−k for some s>1 close enough to one and t>0
close enough to zero.

Use the coordinates (w′, w′′)∈Ck×Cn−k and define the vector field Y on ψ(R2)
by Y (w′, w′′)=(µw′,−νw′′), µ, ν>0. Moreover, the time-t flow Ft of Y in ψ(R2) is
given by

Ft(w′, w′′)= (eµtw′, e−νtw′′).

We consider the time-one flow F1 of Y . For each large enough choice of µ and ν we
can find r>0 such that

rBn ⊂ψ(R2) and Bk×{0}⊂F1(rBn)⊂ψ(R2).

Additionally, we can increase µ and ν and decrease r so that the time-one flow of
ψ�ϕ1(M)∩rBn contains a perturbation of Bk×{0}. This is possible since (2) above
implies that ψ�ϕ1(M) is tangent to Bk×{0} at the origin. Hence, it is possible to
choose µ, ν, and r in order to make the resulting perturbation arbitrarily small.

For our purpose, and in order to satisfy (b) above, we define the vector field Z
on R=R1∪R2 by letting Z|R1 =0 and Z|R2 =ψ−1

�Y . We use the freedom of choice
of the parameters µ, ν, and r to guarantee that the resulting time-one flow of Z
in R2∪ψ−1(rBn) stretches ϕ1(M)∩ψ−1(rBn) so that it contains a small enough
perturbation of Dm+1. Hence (c) above is satisfied with U=ψ−1(rBn), and the
proof is finished. �

Remark 3.4. By a more careful analysis it is possible to assure that ϕ(M)
passes through the midpoints of the balls Dj and the tangent space of M at these
points coincides with that of the balls. The best way of keeping this property in the
inductive step is using the Andersén–Lempert theorem for the geometric structure
of holomorphic vector fields on Cn vanishing to order at least 2 at a finite set of
points.

3.2. Proof of Theorem I

Using the two lemmata above we can now prove Proposition 3.1, and in turn
guarantee the statement of Theorem I.
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Proof of Proposition 3.1. Lemma 3.2 furnishes an ε/4-perturbation D′ of D.
Let pj be the centre of D′

j, i.e., the point in D′
j corresponding to the centre of Dj .

We may assume that 0∈X1∩M and choose a∈X1\D′ arbitrarily small to guaran-
tee that the map Φ0∈Aut(Cn), defined by Φ0(z)=z+a, satisfies Φ0(M)∩D′

1=∅.
Choose r>0 small enough so that X0=rBn⊂IntX1.

Let ε̃∈R
∞
+ be chosen such that 0<ε̃<ε,

ε̃j+1 ≤ ε̃j

2
, and 0< ε̃j < dist(Xj−1,C

n\Xj), j > 0.

Suppose that m is a positive integer, and set

νj =
εj

2
+

∑

j<l<m

ε̃l

2
, 0<j <m.

Assume that we have constructed a map Φm−1∈Aut(Cn) in such a way that, for
Mm−1=Φm−1(M), the following holds true:

(a) Mm−1 contains an νj-perturbation of Dj , 0<j<m;
(b) Mm−1∩D′

m=∅.
Let ρm>max{m, ρm−1} be such that for z∈M we have

Φm−1(z)∈C
n\Xm, |z| ≥ ρm,

and set

Km = Φm−1(M∩ρmBn)∪Xm−1.

As in the prerequisites of Lemma 3.3 the sets Km and Km∪D ′
m are compact and

polynomially convex.
Observe that there are no obstructions to have separate parameters νj

1 defining
the scale of deformations of Dj in Lemma 3.3 (replacing each occurrence of ν1
with νj

1). Hence, by Lemma 3.3 there exists Ψm∈Aut(Cn) such that
(1) Ψm(Mm−1) contains a (νj +ε̃m/2)-perturbation of Dj , 0<j<m;
(2) Ψm(Mm−1) contains an εm/2-perturbation of Dm;
(3) Ψm(Mm−1)∩D′

m+1=∅;
(4) |Ψm(z)−z|<ε̃m for all z∈Km.
It follows that Φm=Ψm�Φm−1 satisfies (a) and (b) above with m replaced

bym+1. By Theorem 4.1 in [9], the sequence Φm of automorphisms of Cn converges
on an open set Ω⊂Cn to a biholomorphic map Φ: Ω!Cn. Furthermore, since
ρmBn∩M is an exhaustion of M by compact sets, (4) above guarantees that Φm

converges on M , i.e., M⊂Ω.
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To see that Φ has the needed properties, it remains to show that Φ(M) contains
an ε-perturbation of D. Let m be a positive integer. We know that Φm(Mm−1)
contains an εm/2-perturbation Tm of Dm. Furthermore,

Φ = lim
j!∞

Ψj �Ψj−1 � ... �Ψm+1 �Φm,

and each map Ψj deforms Tm by at most ε̃j/2, j>m. Recall that ε̃j+1<ε̃j/2 for
all positive integers j. Hence, the total deformation of Tm is at most

∞
∑

j=1

ε̃j+m

2
≤

∞
∑

j=1

2−j−1ε̃m =
ε̃m

2
.

Thus, Φ(M) contains a perturbation of Dm which is an ε̃m/2-perturbation of Tm.
Since Tm itself is an εm/2-perturbation of Dm, and ε̃m<εm, we get that Φ(M)
contains an εm-perturbation of Dm. This finishes the proof. �

Let X be a complex space of dimension k, where 0<k< 1
2n, which admits

a proper holomorphic embedding Ψ: X↪!Cn. Composing Ψ with the map Φ from
Proposition 3.1, we get the following result.

Theorem 3.5. Let 0<k< 1
2n. If X is a complex space of dimension k which

admits a proper holomorphic embedding into Cn, then for any discrete set D of k-
balls in Cn and any ε∈R∞

+ , there exists a proper holomorphic embedding F : X↪!Cn

such that F (X) contains an ε-perturbation of D.

The case X=Ck deserves to be stated separately.

Corollary 3.6. Let 0<k< 1
2n. Then for any discrete set D of k-balls in Cn

and any ε∈R∞
+ , there exists a proper holomorphic embedding G : Ck ↪!Cn such that

G(Ck) contains an ε-perturbation of D.

4. Theorem II

In order to construct counterexamples for the corresponding statement of Corol-
lary 3.6 in the case 1

2n≤k<n, we use Eisenman hyperbolicity. We can always choose
a discrete set of k-balls in Cn in such a way that the complement of any small
enough perturbation is (n−k)-Eisenman hyperbolic (see Proposition 4.3). Making
more careful choices of balls, we get a certain kind of global lower bound for the
Eisenman norm in the complement, i.e., a global lower bound of ΩM

k as defined
in (4.1). We use this bound to prove Theorem II.
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4.1. The Eisenman norm

Let M be a complex manifold of dimension n. We will use the following nota-
tion: TM is the holomorphic tangent bundle ofM ; TpM is the holomorphic tangent
space at the point p∈M ; ΛkTpM (resp. ΛkTM) is the kth exterior power of TpM

(resp. TM); Dk
pM (resp. DkM) is the set of decomposable elements of ΛkTpM

(resp. ΛkTM).
Given any Hermitian metric 〈 · , · 〉 on TM , it can be extended to a Hermitian

metric on ΛkTM by defining it pointwise as 〈u, v〉=det(〈ui, vj〉)k
i,j=1 for decom-

posable elements u=u1∧...∧uk and v=v1∧...∧vk of ΛkTpM and then extend this
definition linearly to arbitrary elements of ΛkTM . Below we will always use 〈 · , · 〉
to denote the complex Euclidean metric and ‖u‖2=〈u, u〉.

The Kobayashi–Royden norm of a vector in the tangent bundle of a complex
manifold has a natural extension to higher dimensions. This extension was first
introduced by Eisenman in [7]. The following definition can be found in [12].

Definition 4.1. For p∈M and u∈Dk
pM , 1≤k≤n, the k-Eisenman norm of u is

given by

EM
k (p, u)= inf{‖v‖2 ; v ∈Dk

0Bk and there is an F ∈O(Bk,M)

with F (0)= p and F∗(v)= u}.

Equivalently, for R>0 we can define the k-Eisenman norm by

EM
k (p, u)= inf{R−2k ; there is an F ∈O(RBk,M) with F (0)= p and F∗(e)= u},

where e∈Dk
0Bk is the unit element e=∂/∂z1∧...∧∂/∂zk.

Although we have not formally defined a norm above, we still call it a norm
based on how it is used intuitively.

Definition 4.2. A complex manifold M is k-Eisenman hyperbolic at a point
p∈M if EM

k (p, u)>0 for all non-zero u∈Dk
pM , and M is k-Eisenman hyperbolic if

it is k-Eisenman hyperbolic at each point of M .

Whenever the complex manifold M is an open subset of a complex Euclid-
ean space Cn for some n, we may compare the k-Eisenman norm to the extended
Euclidean norm induced from Cn. We consider a pointwise lower bound given by

ΩM
k (p)= inf

u∈ΛkTpM
u�=0

EM
k (p, u)
‖u‖2

= inf
u∈Dk

pM

‖u‖=1

EM
k (p, u).(4.1)



Embeddings through discrete sets of balls 261

In the case M=Bn, 0<k<n, and p∈Bn we get

ΩBn

k (p)= (1−|p|2)−k.(4.2)

For details see Example 1.2 in [3].

4.2. k-balls and Eisenman hyperbolicity

The following proposition generalises a result of Kaliman (see [13], where k=0
and the balls are just points).

Proposition 4.3. Let 0<k<n. Then there exist a discrete set D of k-balls
in Cn and ε∈R∞

+ such that Cn\D′ is (n−k)-Eisenman hyperbolic for any ε-perturb-
ation D′ of D. Furthermore, the k-balls in D can be chosen in such a way that there
exists K>0 for which ΩC

n\D′

n−k ≥K.

The proposition is merely a simple observation, and the method for choos-
ing balls can be found in [9]. The whole construction goes back to the work of
Rosay and Rudin in [16] and was earlier used by Fornæss and Buzzard in [4] (with
n=2 and k=1). The authors of the present paper also used k-balls with hyperbolic
complement in [3]. The crucial point in proving Theorem II is the fact that we can
choose k-balls D with a positive global lower bound for ΩC

n\D′

n−k .

Proof. Let α⊂{1, ..., n} be a set with m=dimX elements. We will consider
α as a strictly increasing multiindex and also write α=(α1, ..., αm). Moreover,
α′={1, ..., n}\α is considered as the complementary (strictly increasing) multi-
index. Given α, we let Cα be the subspace of Cn spanned by the coordinates
zα1 , ..., zαm and Cα′ is defined similarly. We use πα to denote the natural projec-
tion πα : Cn!Cα′ .

Let rj be any strictly increasing sequence of positive real numbers which di-
verges and set r0=0. Consider a fixed positive integer j. For each α we choose an
open non-empty spherical shell Sα with respect to the origin such that

Sα ⊂ rj+1Bn\rjBn

and

Sα∩Sβ = ∅, α �= β.

In each shell Sα we choose a countable dense subset {qα,l}∞l=1 such that πα|{qα,l} is
injective. Let Bα,l be the largest open ball in Cα, centred at the origin, such that

qα,l+2Bα,l ⊂Sα.
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Given a positive integer l0=l0(j) (which is specified in the lemma below), we define

∆j,α =
l0(j)
⋃

l=1

(qα,l+Bα,l) and ∆j =
⋃

α

∆j,α.

Let d=n−k and choose a strictly decreasing real sequence {νm}∞m=1 such that
0<νm<1 and

1< 2
∞
∏

m=1

(1−νm)d.(4.3)

Given a map F we write JF to denote the determinant of the Jacobian of F . The
following is a small modification of Lemma 5.6 in [9].

Lemma 4.4. There is an integer l0(j) sufficiently large and a real number δj>
0 sufficiently small such that the set ∆j satisfies the following property: If F : Bd!
rj+2Bn is any holomorphic map for which

(i) |F (0)|≤rj;
(ii) maxα |J(πα�F )(0)|≥1/j;
(iii) F (Bd) avoids a δj-perturbation ∆′

j⊂Cn of ∆j ;
then F ((1−νj)Bd)⊂rj+1Bn.

From this point on we consider l0=l0(j) and δj>0 to be chosen in accordance
to Lemma 4.4. By choosing k-balls like this for each j we get a discrete set D of
k-balls in Cn. Let us enumerate this set, i.e., D={Dl}∞l=1, and set εl=δj if Dl is
one of the k-balls in the finite set ∆j of k-balls.

Let D′ be any ε-perturbation of D and set P=Cn\D′. Suppose that p∈P and
0 �=u∈Dd

pP are arbitrarily chosen. To prove that P is d-Eisenman hyperbolic we
need to show that

0<EP
d (u, p)= inf{‖v‖2 ; v ∈Dd

0Bd, and there is an F ∈O(Bd, P )

with F (0)= p and F∗v= u}.
Choose F as stated above, and note that for some 0 �=c∈C we have

v= c
∂

∂w1
∧...∧ ∂

∂wd
.

Expressing F∗v in terms of the global coordinates z1, ..., zn inherited from Cn, we
get

F∗

(

c
∂

∂w1
∧...∧ ∂

∂wd

)

= c
∑

α

J(πα �F )(0)
∂

∂zα′ ,(4.4)
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where

∂

∂zα′ =
∂

∂zα′
1

∧...∧ ∂

∂zα′
d

.

Set j0=min{j∈N;|p|<rj}. We choose 0<ν<1 and an integer N>j0 such that

1< 2(1−ν)d(4.5)

and F ((1−ν)Bd)⊂rN+1Bn. Let l=0 and consider

˜Fl : Bd −! rN−l+1Bn, ˜Fl(z)=F ((1−ν)z).

In order to apply Lemma 4.4 to the map ˜Fl, we need to assure that
(1) | ˜Fl(0)|≤rN−l−1;
(2) maxα |J(πα �

˜Fl)(0)|≥1/(N−l−1);
(3) the image of ˜Fl avoids a δN−l−1-perturbation of ∆N−l−1.
Note that (1) is true since N−1≥j0. Furthermore, since εj =δN−l−1 when-

ever Dj⊂∆N−l−1, (3) holds true by the assumptions on F . However, we cannot
assure (2).

Assume that (2) is true. Then by Lemma 4.4 (with F replaced by ˜Fl and j

replaced by N−l−1) we get ˜Fl((1−νN−l−1)Bd)⊂rN−lBn. Let

˜Fl+1 : Bd −! rN−lBn, ˜Fl+1(w)= ˜Fl((1−νN−l−1)w).

Defining ˜Fl+1 in terms of ˜Fl can be done repeatedly for increasing l as long as
l<N−j0 and (2) holds true, but (1) is no longer true for l≥N−j0. We continue to
assume that (2) holds for increasing l, as long as 0≤l<N−j0. As l=N−j0−1 we
get the map ˜FN−j0 : Bd!rj0+1Bn given by

˜FN−j0(w)= ˜FN−j0−1((1−νj0)w)= ...=F ((1−ν)(1−νN−1)...(1−νj0)w).

Consider the automorphism ϕ(z)=z/rj0+1 of Cn. Set p̃=ϕ(p)=p/rj0+1, ũ=ϕ∗u
and define the map G : Bd!Bn by

G(z)=ϕ �
˜FN−j0(w)=

˜FN−j0(w)
rj0+1

=
F ((1−ν)(1−νN−1)...(1−νj0)w)

rj0+1
.

According to Definition 4.1, the d-Eisenman norm EBn

d (p̃, ũ) of ũ at p̃ in Bn is given
by

EBn

d (p̃, ũ)= inf{‖v‖2 ; v∈Dd
0Bn and there is an H ∈O(Bd, Bn)

with H(0)= p̃ and H∗v= ũ}.



264 Stefan Borell and Frank Kutzschebauch

Since G∈O(Bd, Bn), G(0)=p̃, and G∗ṽ=ũ for

ṽ= c(1−ν)−d(1−νN−1)−d...(1−νj0)
−d ∂

∂w1
∧...∧ ∂

∂wd
∈Dd

0Bd,

it follows from (4.1) and (4.2) that

‖ṽ‖2 ≥EBn

d (p̃, ũ)≥ΩBn

d (p̃)‖ũ‖2 = (1−|p̃|2)−d‖ũ‖2.(4.6)

Using that 0≤rj0−1/rj0+1≤|p̃|<1 and ‖ũ‖2=r−2d
j0+1‖u‖2 together with (4.3), (4.5),

and (4.6), we get the estimate

‖v‖2 = (1−ν)2d(1−νN−1)2d...(1−νj0)
2d‖ṽ‖2(4.7)

≥ 1
16 (1−|p̃|2)−d‖ũ‖2 ≥ 1

16 (r2j0+1−r2j0−1)
−d‖u‖2,

which gives a lower bound for ‖v‖2 in the case that (2) holds true for 0≤l<N−j0.
We now turn to the case when, during the process of making repeated use of

Lemma 4.4, we get to an l<N−j0−1 for which (2) does not hold true. For such
an l we thus have

max
α

|J(πα �
˜Fl)(0)|< 1

N−l−1
,

and it follows from (4.3) and (4.5) that

max
α

|J(πα �F )(0)| ≤ 4 max
α

|J(πα �
˜Fl)(0)|<max

α
|J(πα �F )(0)|< 4

N−l−1
≤ 4.

In view of (4.4) we get

‖u‖2 = ‖F∗v‖2 ≤ |c|2
∑

α

|J(πα �F )(0)|2 ≤ |c|2 max
α

|J(πα �F )(0)|2
(n

k

)

≤ 4|c|2
(n

k

)

,

and since ‖v‖2=|c|2 it follows that

‖v‖2 ≥ ‖u‖2

4
(

n
k

) .(4.8)

It follows from (4.7) and (4.8) that for any holomorphic map F : Bd!Cn\D′

such that F (0)=p and F∗v=u we get the bound

‖v‖2 ≥Kp‖u‖2,

where

Kp = min
{

(r2j0+1−r2j0−1)
−d

16
,

1
4
(

n
k

)

}
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depends only on the point p∈P . Hence,

EP
d (p, u)≥Kp‖u‖2> 0.

If the sequence rj is chosen in such a way that r2j+2−r2j ≤C for some C>0,
e.g., rj =

√
j, we see that Kp can be chosen independent of p by setting

K = min
{

C−d

16
,

1
4
(

n
k

)

}

.

In such a situation we get the same lower bound K at each point p, i.e.,

ΩP
d (p)= inf

0�=u∈Dd
pP

EP
d (p, u)
‖u‖2

≥K> 0. �

4.3. Proof of Theorem II

We will now make use of the “global lower bound” for the Eisenman norm
which is assured for certain choices of k-balls according to Proposition 4.3. As-
suming the existence of a proper holomorphic embedding whose image contains an
ε-perturbation of the balls D, it follows from Lemma 4.4 that the complement of
the embedding enjoys the same hyperbolic property as the complement of the balls.
This allows us to prove the following result.

Proposition 4.5. For 1
2n≤k<n there exists a discrete set of k-dimensional

balls in Cn for which one cannot find a proper holomorphic embedding of Ck into Cn

containing small perturbations of the k-balls.

It is crucial to use the fact that there is a neighbourhood of the embedded space
which is biholomorphic to a neighbourhood of Ck×{0} in Cn (identifying the image
of the embedding with Ck×{0}). Since 2k≥n, i.e., n−k≤k, this enables us to put
large (n−k)-dimensional balls in the complement of the embedding by including
the balls into Ck×{0} and then translate them out of Ck×{0} (within the normal
bundle). This means that as a point in the complement approaches the embedding,
we may put larger and larger (n−k)-dimensional balls through it. Considering the
Eisenman norm (in the complement of the embedding), this has the effect that the
pointwise lower bound of the Eisenman norm in Section 4.1 must tend to zero as
one approaches the embedding, i.e., there cannot exist a global positive lower bound
in the sense studied earlier. Hence we get a contradiction, if the k-balls are chosen
in accordance with Proposition 4.3. We will now give the details of the proof.
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Proof. Let d=n−k. By Proposition 4.3 there exist a discrete set D of k-balls,
ε∈R∞

+ , and K>0 such that for any ε-perturbation D′ of D, the complex manifold
Cn\D′ is d-Eisenman hyperbolic and ΩC

n\D′

d ≥K. For a contradiction, assume
that there exists an embedding F : Ck ↪!Cn such that the image of F contains an
ε-perturbation D′ of D.

We need the following result.

Theorem 4.6. ([8, Hilfssatz 11]) Let X and Y be Stein manifolds, Φ: X!Y
be a holomorphic embedding, and identify X with the zero section of the normal
bundle of Φ. Then there exist a neighbourhood U of X in the normal bundle and
a biholomorphic map ˜Φ: U!Y such that ˜Φ|X =Φ.

We can now apply the theorem to find a neighbourhood U of the zero section
in the normal bundle of our map F : Ck ↪!Cn such that there is a map ˜F : U!Cn

which is biholomorphic onto its image V ⊃F (Ck) in Cn and which satisfies ˜F |Ck =F .
Since by Grauert’s Oka principle any vector bundle over a complex Euclidean space
is trivial, the normal bundle of F is trivial. Choose a direction v in the normal
bundle of F which is orthogonal to the zero section.

For positive integers j, consider jBd to be included in the zero section of the
normal bundle of F using the standard inclusion of Cd into Ck (which can be done
since d=n−k≤k). Choose a positive real number cj such that the translation
cjv+jBd (considered in the normal bundle) is a subset of U . If needed, we modify
the sequence cj to guarantee that cj!0 as j!∞.

Set Rj= ˜F (cjv+jBd)⊂C
n\F (Ck) and define the map

Fj : jBd −!C
n\F (Ck), Fj(w)= ˜F (cjv+w).

Let u=∂/∂w1∧...∧∂/∂wd∈Dd
0(jBd) and define pj=Fj(0) and uj =(Fj)∗u. Then we

have ‖uj‖!‖F∗u‖>0. Choose j0 such that ‖uj‖>‖F∗u‖/2 whenever j>j0. Since

ΩC
n\F (Ck)

d ≥K, we get

E
C

n\F (Ck)
d (pj , uj)≥K‖uj‖2>

K

4
‖F∗u‖2 =:C, j > j0.

On the other hand, by the definition of the Eisenman norm, we get

E
C

n\F (Ck)
d (pj , uj)≤ j−2d,

which gives a contradiction when j>j0 is large enough to ensure j−2d≤C. �

Assume that X is a Stein manifold, dimX=k, 1
2n≤k<n, and assume that

X is not (n−k)-Eisenman hyperbolic, i.e., there is a point p∈X and a non-zero
u∈Dn−k

p X such that EX
n−k(p, u)=0.
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Let us choose a discrete set of k-balls as in the proof of the proposition above,
and assume that there is a proper holomorphic embedding Φ: X↪!Cn such that
its image contains a small perturbation of the balls. Set q=Φ(p) and v=Φ∗u.
Then it follows from Definition 4.1 that there for each positive integer j exists
Fj : jBn−k!Φ(X) such that

Gj(0)= q and (Gj)∗

(

∂

∂w1
∧...∧ ∂

∂wn−k

)

= v.

Furthermore, there is a neighbourhood U of Φ(X) in C
n which is biholomorphic

to a neighbourhood V of the zero section of the normal bundle N of Φ(X) in C
n

(identifying Φ(X) with the zero section). Hence, given Fj as above, we may consider
the pullback bundle F ∗

j N , for which the diagram

F ∗
j N

π̃

��

˜Fj
�� N

π

��

jBn−k
Fj

�� Φ(X)

commutes. Observe that the pullback bundle F ∗
j N is trivial. Hence, for any j, we

may choose a direction ej in the bundle F ∗
j N and εj>0 such that the translation

of the zero section in F ∗
j N by εjej is a section s in the complement of the zero

section in F ∗
j N . Choosing εj small enough guarantees that ˜Fj �s is a section in

the complement of the zero section in N over the set Fj(jBn−k) and that the
section is contained in V . In this way we get an induced map Gj : jBn−k!U \Φ(X)
corresponding to a small translation of the image of Fj into the complement of Φ(X).

Next, we define qj =Gj(0) and vj=(Gj)∗
(

∂/∂w1∧...∧∂/∂wn−k

)

. Observe that
we may assume that ej and εj are chosen in such a way that qj!q and vj!v as
j!∞. Now we get the same kind of contradiction as in the proof of Proposition 4.5.
Hence, we have proved the following result.

Theorem 4.7. For 1
2n≤k<n there exist a discrete set D of k-dimensional

balls in Cn and ε∈R∞
+ such that if a Stein manifold X admits a proper holomor-

phic embedding into Cn which contains an ε-perturbation of D, then X is (n−k)-
Eisenman hyperbolic.

We find the following special case worthwhile to be stated separately.

Corollary 4.8. There exist a discrete set D of discs in C2 and ε∈R∞
+ such

that no ε-perturbation of D can be contained in the image of a proper holomorphic
embedding of C or C∗.
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We see that, for 1
2n<k<n, there are at least two obstructions for embedding

a Stein manifold X of dimension k through perturbations of k-balls in Cn. If
n<[3k/2]+1, there might not exist proper holomorphic embeddings of X into Cn.
On the other hand, if it does, Theorem 4.7 states that non-hyperbolicity of X is an
obstruction. Hence, we formulate the following question.

Open problem. Let 1
2n<k<n and let X be an (n−k)-Eisenman hyperbolic

Stein manifold of dimension k which admits a proper holomorphic embedding
into Cn. Given any discrete set D of k-balls in Cn and any ε∈R∞

+ , does there
exist such an embedding for which the image contains an ε-perturbation of D?

More concretely. Given any discrete set D of discs in C2 and any ε∈R∞
+ , does

there exist a proper holomorphic embedding of the unit disc into C2 such that the
image contains an ε-perturbation of D?
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