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Abstract

In this note we provide explicit expressions and expansions for a special function J which
appears in nonparametric estimation of log-densities. This function returns the integral of
a log-linear function on a simplex of arbitrary dimension. In particular it is used in the R-
package LogCondDEAD by Cule et al. (2007).
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1 Introduction

Suppose one wants to estimate a probability density f on a certain compact region C' C R?, based

on an empirical distribution Pofa sample from f. One possibility is to embed C' into a union
m
S =1Js
j=1

of simplices S; C R? with pairwise disjoint interior. By a simplex in R we mean the convex
hull of d + 1 points. Then we consider the family G = G(S1, ..., S;,) of all continuous functions
1 : S — R which are linear on each simplex S;. Now
¢ := argmax (/wd]f’— / exp(zb(:u))dx) (1)
Heg S S
defines a maximum likelihood estimator f = exp(z/;) of a probability density on .S, based on P.
For existence and uniqueness of this estimator see, for instance, Cule et al. (2008).
To compute 1& explicitly, note that ¢» € G is uniquely determined by its values at the corners
(extremal points) of all simplices S}, and [ 1 dP is a linear function of these values. The second
integral in (1) may be represented as follows: Let S; be the convex hull of xg;, @1, . . ., g € RY,

and set y;; := 1(x;;). Then

/SeXP(?/)(ﬂﬁ))dl“ = ;/S exp(¢(x))de =Y Dj- J(Yoj,y1js - - V)

=1
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where

Dj = det [azlj — &g, L2j — LOjy--->Ldj — CC()j],

while J(+) is an auxiliary function defined and analyzed subsequently.

2 The special function J (-)
2.1 Definition of J(+)
For d € N let

T = {u € (0,1)%: Zd:ui < 1}.
=1

Then for yg, y1, ..., yq € R we define
d
J(Yo: Y1, - ya) = / eXp((l —ug)yo + Z%%) du
Ta i=1

with uy = E‘Ll Uj.
Standard considerations in connection with beta- and gamma-distributions as described in Sec-

tion 6 reveal the following alternative representation:
1 d
Jo, 1,2 va) = EeXp(Z B@-yi)
i=0

with B; = By, = Ej; / Zgzo FEs and stochastically independent, standard exponential random
variables Fy, E1, ..., E4. This representation shows clearly that J(-) is symmetric in its argu-
ments.

An often useful identity is

J(Wo, Y15+ Ya) = exp(y)J (Yo — Ys, Y1 — Yss - - Yd — y) foranyy. e R (2)

2.2 A first recursion formula
For d = 1 one can compute J(yo, y1) explicitly:

exp(y1) — exp(yo)

! if yo # y1,
J (Yo, y1) = / exp((1 —u)yo + uyr) du = Y1 =Y
0 .
exp(yo) ifyo = 1.
For d > 2 one may use the following recursion formula:
J s ,...,d—J s sy Ud .
(1,92 yyz _ yo(yo Y2 Ya) if o % y1,
J(y07yla‘°'7yd) = b (3)
(Y1, 92, -+ Ya) if yo = y1.
o



Since J(yo,y1,- - -, Yq) is continuous in yo, y1, - - . , Y4, it suffices to verify (3) in case of yy # y1.
We may identify 7 with the set {(v,u) : w € Tg_1,v € (0,1 — uy)}. Then it follows from

Fubini’s theorem that

J(y07y1>"'7yd)

1—u+ d
= / / exp((l —uqy —v)yo +vy1 + Zui,lyi) dvdu
Ta-1 70 =2

_ / (GXP((l —uy —v)yo + vy + 2?22 Ui—lyi)) 1-us du
Ta1 Y1 — Yo v=0
_ / exp((1 — uy)yr + i uim1ys) — exp((1 — up)yo + g ui1yi) du
Ta1 Y1 — Yo
J(y1,y2, - ya) — J(Yo, Y2, - - -, Ya)

Y1 — Yo
2.3 Another recursion formula

It is well-known that for any integer 0 < j < d,

J ; d
Zi:o By i=0 Zs:O E; ZS:j+1 E; i=j+1

are stochastically independent with B ~ Beta(j + 1,d — j); see also Section 6. Hence we end up

with the following recursive identity:

J(y(]ayla ce. 7yd)

_ W E(J(Byo, -+, By;)J((1 = B)yjta, ..., (1 — B)fyd))

1 .
= / u](l—u)d_J_lj(uyo,...,uyj)J((l—u)yj+1,...,(1—u)yd)du
0

with

Here we used the well-known identity
(1 — u) u"du = m for lntegers f, m > 0. (4)

Plugging in j = d — 1 into the previous recursive equation leads to

1
T(Wor - ya) = / W (g, - uga1) exp((1 — u)ya) du. )
0



3 An expansion for .J(-)

With g := (d +1)* Z?:o y; and z; := y; — y one may write
J(Yo,y1,---,Ya) = exp(y)J(z0,21,-.-,24)

by virtue of (2). Note that z; := Z?:o 7z =0.As z ;= (zi)?zo — 0,

d!' J(z0, 21, -+, 24d)

d d d
1 1
=1+ E(B)z + 3 > IE(BiBj)ziz; + S > E(BiB;By)zizizm + O] z]|).
i=0 i,j=0 i,5,k=0

It follows from Lemma 6.1 that

d d
IE(H BZ"“) = Hki!/[aH— ki), forintegers ko, k1,...,kq > 0.
i=0 i=0

In particular,

IE(By) = dqltl’
E(Bj) = [df?)]g’ E(BjBy) = [d+23]3’ E(BoB1B2) = [d+13]3

Consequently, Z?:o E(B;)z; = E(By)z+ =0,

d d
[d+22 Y B(BiBj)zizi = Y (Li=j - 2+ Lizg)) 2%
4,j=0 4,j=0



and

d
[d+3]3 Z ]E(BiBjBk)Ziijk
%,7,k=0

(Limjmh) - 6+ Lgpgijhy=2] - 2+ Ligeigimy=3)) 2% 2k

o

.

.
. & &

&”M& ||M& ?rMQ.. wM&.
o o g Il

(Lpimjmt] 5+ Lpgpgighy=2 + 1) 222

d
=5 Z?+3 Z 1[875,5}22215-1-21
s,t=0
= +3Zz z+—3Zz +z+
=2 2.
i=0

Consequently,

d d
1
J(y()vyla"’vyd) = eXP@)(d d—|—2 ' § Z + d+3 | E Z +O ‘ZH ) (6)
=0 =0

4 A recursive implementation of J(-) and its partial derivatives

By means of (3) and the Taylor expansion (6) one can implement the function J(-) in a recursive
fashion. In what follows we use the abbreviation

) Was o) ifa<b
Y =0 ) ifa>b

To compute J(yo.4) we assume without loss of generality that yg < y; < --- < y4. It follows
from (3) and symmetry of J(-) that
J(y1:a) — I (Yo:a—1)
Yd — Yo
if yo # yq. This formula is okay numerically if 4 — yo is not too small. Otherwise one should use
(6). This leads to the the pseudo code in Table 1.

To avoid messy formulae, one can express partial derivatives of J(-) in terms of higher order

J(yO:d) =

versions of .J(-) by means of the recursion (3). For instance,

9J(yo:a) _ lim J(yo + €, Y1:a) — J (Yo, Y1:a)
82/0 e—0 €

= lim J(yo,y0 + €, ¥1.4)
e—0

= J(Y0,%0,Y1:d)-



Algorithm J < J(y,d, €)
if y; — yo < € then
§ 4 Yioui/(d+1)
2 iy — 9)°/2
25 iy — 9)°/3
J <+ exp(y) (1/d! + z2/(d + 2)! + z3/(d + 3)!)
else
J  (Jyrad —1,€) — I(Yo.a—1,d — 1,€))/(ya — vo)
end if.

Table 1: Pseudo-code for J(y) with ordered input vector y.

Similarly,
0%J (youa) _ lim(J(yo + € yra) = J(Wo, y1:a) I (Yo, Y1) — J(yo — €, y1;d))/€
8y8 e—0 € €
_ o g L W0sY0 6 yia) = I (Yo 90 — € Yra)

e—0 2€
= 2 lim J(yo,%0 — € Y0 + €, Y1:d)
e—0

=2 J(y07y07y07 ylid)’

while

9% J (yo:a) ~ im
6y08y1 e—0

(J(yo +€,y1 + € y2.a) — J (Yo, y1 + €, Yo2:q)
€

~ Jo+ ey, yoa) — (Yo, Y1, y2:d))/6
€
~ im J(yo, yo + €, y1 + €, y2:a) — J (Yo, Yo + €, Y1, Y2:4)

e—0 €

= lim J(?JO, Yo + €,Y1,Y1 + €, y2:d)
e—0

= J(y[), Yo, Y1, Y1, yQ:d)'

5 The special casesd = 1 and d = 2

For small dimension d it may be worthwhile to work with non-recursive implementations of the

function J(-). Here we collect and extend some results of Diimbgen et al. (2007).

5.1 General considerations about a bivariate function

In view of (3) we consider an arbitrary function f : R — R which is infinitely often differentiable.
Then
ifs#r

f(r) ifs=r



defines a smooth and symmetric function » : R? — R such that

f"(r)
2

Its first partial derivatives of order one and two are given by

fls) = f(r) = f'(r)(s =)

h(r,s) = f'(r) +

(s=7)+O0((s—1)?) ass—r.

Oh(r,s) _ (s — )2 if s #r,
or [y )
5 + 5 (s—1)+0((s—1)?) ass—r,
(2(f(s) = f(r) = f'(r)(s = 7)) = (s = 1)*f"(r) "
O*h(r,s) (s —r)3 sz,
or? B f”/(T‘) f””(?“)
(3 + G (s=71)+0((s —1)?) ass—r,
((s =) (') + f'(s) —2(f(s) = () 4
0?h(r, s) _ (s —1)3 ws#=r,
oros " (y "y
! ()—f—f ()(3—7‘)+O((3—r)2) as s — 7.

\ 6 12
The other partial derivatives of order one and two follow via symmetry considerations.

5.2 More details for the cased = 1

Recall that
1 exp(s) B exp(r) if 7 75 s,
J(rys) = / exp((1 — u)r + us) du = s—r
0 exp(r) ifr=s.

This is just the function introduced by Diimbgen, Hiisler and Rufibach (2007). Let us recall some

properties and formulae for the corresponding partial derivatives
aa—i—b

Jop(r,s) == ———

ap(rs) Oradsb

Note first that

1
J(rys) = /0 (1 — u)®ub exp((1 — w)r + us) du.

Jap(r,8) = Jpal(s,r) = exp(r)Jop(0,s — 7).

Thus it suffices to derive formulae for (r,s) = (0,y) and b < a. It follows from (4) that

1 0 uk i
Tual0.) = [ (1= o
k=0

— 1 /! k k
_ _ _ a d
kzzok! 0(1 w)*u” du -y
- z::(k—l—a—i—l)'y
! et
= (e p(?/%%%)



In particular,

ex -1
J1,0(0,3/)—p(y)ygy
1 2 3
2(ex —1- 2/2
J20(0,y) = (exp(y) N y—y/2)
2 3

JS,O(an) = A
+ L+ Lowh (y—o),

24(exp(y) — 1 —y — y?/2 — y*/6 — y*/24)
5
y
1 y? y?
— - YL Y Y Lo ~0).
5+m+2m+d%o+ W) (=0

J4,0(0,y) =

Another general observation is that
1
Jap(r,s) = / (1—u)*(1— (1 —u)’exp((1 —u)r+ us) du
0
b/ '
= Z (Z> (—l)ZJa+i70(T, S).

=0

In particular,

Jai(r,8) = Jao(r,s) = Jar1,0(r, 8),
Ja2(r,s) = Jao(r,s) — 2Ja11,0(7,8) + Jag2,0(r, 5).

On the other hand,

-y [ yar
5(0,y) / — u) " du
a k'o

ﬁ;i allk +0)y
N (k+a+b+1 )y

with [r]o := 1 and [r],, := Hﬁal(r — 1) for integers m > 0. In particular,

exp(y)(y —2) +2+y

J171(07y) = y3
=1+£%£L+£i+OWU(y%m.
6 12 40 ' 180



5.3 Thecased = 2

Our recursion formula (3) yields
J(S> t) — J(Tv t)

J(r,s,t) = s—r
Jlo(T,t) ifr =s.

if r # s,

Because of J’s symmetry we may rewrite this in terms of the order statistics y() < y(1) < y(2) of
(yi)i=o as
J(Ywys¥e) — I Yoy, va))

J(r’ s, t) = Y2 — Y0
exp(y (o))
2
For fixed third argument ¢, this function J(r, s,t) corresponds to h(r, s) in Section 5.1 with

f(z) := J(x,t). Thus

if y0) < Y(2),

if yo) = Y(2)-

J(s,t) = J(r,t) — Jio(r,t)(s — )

J(r,s,t) (s —1)2 ifr # s,
0 ) U —
r 2,0gra t) + J3,0(T> tG)(S T) + O((S o 7“)2) as s — 7.
Moreover,
2(J(s,t) —J(r,t) — Jio(r,t)(s — r)) —(s— T)2J270 ”
9*J(r,s,t) (s —r)3 ifr # s,
or? B t —
Js0(r 1) + Jao(rD)(s = 7) +0((s — 7")2) as s — 7,
3 12
( (Jl,O(Tv t) + Jl,O(Sv t)) (3 - T) - 2(J(57 t) - J(’I”, t)) if
9% J(r,s,t) (s —r)3 ifr # s,
Ords ) Jso(rt) | Jao(r)(s—7) 2
(6 D +O0((s —1)?) as s — 7.
6 Gamma and multivariate beta (Dirichlet) distributions
Let Go, G1, . .., Gp, be stochastically independent random variables with G; ~ Gamma(a;) for

certain parameters a; > 0. That means, for any Borel set A C (0, 00),

P(G; € A) = /AI‘(ai)_ly‘”_1 exp(—vy) dy.

Now we define ay :==> " ja;, G4 :==> " G; and
B = (Gi/G)My B = (Gi/GM

Note that B is contained in the unit simplex in R”*! while B is contained in the open set
Tm = {u € (0,1)™ : uy < 1} with uy = .7 u;. We also define ug := 1 — uy. for any
u € T

10



Lemma 6.1. The random vector B and the random variable G, are stochastically independent.
Moreover,

G4+ ~ Gamma(ay)

while B is distributed according to the Lebesgue density

m

w) = F(CL+) uqi—l
fu) = ey 11

on T,,. For arbitrary numbers ko, k1, ...,k > 0and ky := 27;0 k;,

ook Tlas)  1pT(ait k)
E(ng) _F(a+—:k+)g (@)

As a by-product of this lemma we obtain the following formula:

Corollary 6.2. For arbitrary numbers ag, a1, . . ., apy > 0,
m m
/ [Tu " du = T(ay) ' T T(a).
Tm j—0 i=0

Proof of Lemma 6.1. Note that G = (G;)", my be written as Z(G ., B) with the bijective

mapping = : (0,00) x T, — (0,00)™ 1,

E(s,u) = (su)iy.
Note also that
ug —S —S8 -+ —§ 1 0 O 0
up S o --- 0 uy s 0 0
det DE(s,u) = det fus 0 s . | =det|u 0 s . | =™
: : : : 0 R 0
Uy 0 -+ 0 S Uy O -+ 0

Thus the distribution of (G, B) has a Lebesgue density & on (0, 00) x 7Ty, which is given by

—

s
Il
=)

h(s,u) = JT(T(a;) ' E(s,w)f " exp(—E(s, u);)) - |det DZ(s, u)|

I

(F(ai)_l(sui)‘“_l eXp(fsui)) . g™

=0
m
= s Lexp(—s) H(F(ai)_lu?i_l)
=0

= D(ay)"'s™ exp(—s) - f(u).

Since this is the density of Gamma(a ) at s times f(u), we see that G+ and B are stochastically
independent, where G has distribution Gamma(a. ), and that f is indeed a probability density
on 7, describing the distribution of B.

11



The fact that f integrates to one over 7, entails Corollary 6.2. But then we can conclude that

. k(i) _ ait+ki—1 a;i—1
IE(E)BZ > /Hu du// Hu du

m =0 Tm’LO

ﬁf (a; + ki)
CL+—|—/{I+ Faz

1=
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