Whole-body vibration exposure study in U.S. railroad locomotives--an ergonomic risk assessment

Johanning, Eckardt; Fischer, Siegfried; Christ, Eberhard; Göres, Benno; Landsbergis, Paul (2002). Whole-body vibration exposure study in U.S. railroad locomotives--an ergonomic risk assessment. AIHA journal - a journal for the science of occupational and environmental health and safety, 63(4), pp. 439-46. Fairfax, Va.: American Industrial Hygiene Association 10.1080/15428110208984732

Full text not available from this repository. (Request a copy)

Whole-body vibration exposure of locomotive engineers and the vibration attenuation of seats in 22 U.S. locomotives (built between 1959 and 2000) was studied during normal revenue service and following international measurement guidelines. Triaxial vibration measurements (duration mean 155 min, range 84-383 min) on the seat and on the floor were compared. In addition to the basic vibration evaluation (aw rms), the vector sum (av), the maximum transient vibration value (MTVV/aw), the vibration dose value (VDV/(aw T1/4)), and the vibration seat effective transmissibility factor (SEAT) were calculated. The power spectral densities are also reported. The mean basic vibration level (aw rms) was for the fore-aft axis x = 0.18 m/sec2, the lateral axis y = 0.28 m/sec2, and the vertical axis z = 0.32 m/sec2. The mean vector sum was 0.59 m/sec2 (range 0.27 to 1.44). The crest factors were generally at or above 9 in the horizontal and vertical axis. The mean MTVV/aw was 5.3 (x), 5.1 (y), and 4.8 (z), and the VDV/(aw T1/4) values ranged from 1.32 to 2.3 (x-axis), 1.33 to 1.7 (y-axis), and 1.38 to 1.86 (z-axis), generally indicating high levels of shocks. The mean seat transmissibility factor (SEAT) was 1.4 (x) and 1.2 (y) and 1 (z), demonstrating a general ineffectiveness of any of the seat suspension systems. In conclusion, these data indicate that locomotive rides are characterized by relatively high shock content (acceleration peaks) of the vibration signal in all directions. Locomotive vertical and lateral vibrations are similar, which appears to be characteristic for rail vehicles compared with many road/off-road vehicles. Tested locomotive cab seats currently in use (new or old) appear inadequate to reduce potentially harmful vibration and shocks transmitted to the seated operator, and older seats particularly lack basic ergonomic features regarding adjustability and postural support.

Item Type:

Journal Article (Original Article)

Division/Institute:

04 Faculty of Medicine > Department of Gynaecology, Paediatrics and Endocrinology (DFKE) > Clinic of Endocrinology, Diabetology and Clinical Nutrition

UniBE Contributor:

Christ, Emanuel

ISSN:

1542-8117

Publisher:

American Industrial Hygiene Association

Language:

English

Submitter:

Factscience Import

Date Deposited:

04 Oct 2013 15:23

Last Modified:

17 Mar 2015 22:49

Publisher DOI:

10.1080/15428110208984732

PubMed ID:

12486777

Web of Science ID:

000177390200009

URI:

https://boris.unibe.ch/id/eprint/37223 (FactScience: 207235)

Actions (login required)

Edit item Edit item
Provide Feedback