Soft Linear Set Theory

Richard McKinley*

Theoretische Informatik und Logik, Institut fur Infornkatind angewandte Mathematik,
Neubriickstrasse 10, CH-3012 Bern, Switzerland

Abstract

A formulation of naive set theory is given in Lafont’s Softieiar Logic, a logic with poly-
nomial time cut-elimination. We demonstrate that the pbbwdotal functions of this set
theory are precisely the PTIME functions. A novelty of thgpeoach is the representa-
tion of the unarybinary natural numbers by two distinct sets (the safe nistarad the soft
naturals).

1 Introduction

The observation that contraction is essential for Russpdradox, and that more-
over the logic given by adding unrestricted comprehenssonhat is now known
asMALL vyields a consistent logic, seems to have been made first shi@riin
[9] (see [10] for an exposition in English of these resulghile this logic is cer-
tainly powerful in some regards (for example, in [4] it is ped that in it one may
represent pure combinatory logic), it is computationabyyweak. The search for
more expressive naive set theories leads to in a surpusiagtion: the character-
isation of complexity classes of functions and in particaiithe polynomial time
functions.

Girard, in his paper Light Linear Logic [7], introduced thetion of intrinsic poly-
time normalization, whereby a logical system (a system qéisat calculus, proof
nets or lambda terms) has normalization polynomially b@ahioly some property
of the proofgterms, independent of the complexity of any cuts involvdtug, for
example, a proof net in Light Linear Logic normalizes aftenumber of steps

Email addressmckinley@iam.unibe.ch (Richard McKinley).
URL:http://www.iam.unibe.ch/ mckinley (Richard McKinley).
1 Work supported by the Swiss National Science Foundationt§fdgebraic and Logical
Aspects of Knowledge Processing.”

Preprint submitted to Journal of Logic and Algebraic Pragrang 12 March 2007

bounded by a polynomial whose degree depends only on thengestits expo-
nentials. Girard makes the observation that it is precigesyproperty (bounds on
cut-elimination are independent of cut-rank) which alldasa consistent exten-
sion into naive set theory, and gives an overview in the appeof [7], including
an (unproved) claim that the provably total functions osthystem are precisely
the polytime functions.

Owing to complications in the proof theory of light lineagio, details of a set the-
ory with light exponentials did not appear until [16], whiektablishes this poly-
time representation property for Lighttithe Set Theoryl(AST). LAST is based
on Light Affine Logic[1], a system which, by virtue of unrestricted cantion, has
a simpler presentation as a sequent calculus.

While light logics have been very successful in capturing plolytime functions,
they sufer from the presence of the paragraph modglityeaning that light logics
are not subsystems of Linear Logic.

Lafont’s Soft Linear Logic [11] is another logic which capts the polynomial

time functions. Unlike Light LinegdAffine Logic, it is a fragment of linear logic
(that is, it does not include the paragraph modality), arditemhally it has a very

simple sequent calculus presentation. It is natural toidensvhether SLL with un-

restricted comprehension also captures the polytime ium&t This is the question
addressed in this paper. We will see that this is the case.

2 Soft Linear Logic

Soft Linear Logic [11] is a system based on the same languadenaar Logic
[5], and whose cut-elimination enjoys a polynomial bounteTogic arises by
observing that the usual exponential rules of linear logic

ITFA IArC ILIATA-C I'-C
IT HA I,'/ArC I,'/ArC I,IJAFC

are interderivable with the rule®ft promotion, digging and multiplexing

rrA T,MWArC T1,APLC
IT HA IL'ArC I'ArC

Second-order Soft Linear LogiSLL) is the fragment of second-order Linear
Logic with the usual exponentials replaced by soft promogod multiplexing.
Since we omit digging, we also cannot cover the usual !-eatitvn rule of linear
logic.

Lafont gives a system of proof nets for this logic, and givgs@of that each net

ArA
IAABrC T'rA ' B
—@®L
IA®B+C I'T"+-A®B
I'-A n 1R
I,1+C H1
A A, BrC IA+-B
INA,A—-B+rC r-A—-B
I'-B I'rA IArC IBrC
— R ®R oL
'-rAeB '-AeB I AeB+rC
oL
IOrFA
r'rC AW+ C
SP ——— mplx
IT +IC IIJArC
Alx:=t1,T+C r-c
— VL —— VR
VXATFC I'V¥xC
— AL — 7R
ILAxArC I'+ Ax.C
Alx:=t],T+C I'C[x:=1]
eL ——€R
te{x|A}L,T+C Frte{x|A}

I'rAA I, Ar A

Cur
LIV AN

Table 1
Soft Linear Set Theory

reduces to a unique normal form in a number of steps boundgdqguuially — this
bound has degree given by the nesting of exponentials inrthee# pet.

Lafont proceeds to define a type of natural numbers
N:=Valla <oa) oa—oa

and to give representations of functions on those natunalbaus. A quirk of the
system is that these functions are not typdiblec N, or even N — N; for exam-
ple, successor is represented by the following proof:

arFa atra

—o L
a, @ —oatra ara
—o L
a,a o a,a —oakta
—- R
a—oaa—oakra—oa (@ — a) F(a —)
—o L
(o —oa),(@d—oa),(ada—oa) oa—oata—oa L
®

Ma—oa)® (@ —a),(aoa)ca—oara—oa

- R
VYL,VR

(d—oa)oa—oatr((aoa)®(a@d—oa)oa—oa

Yalld oa) ca—oarVYa.((a o a)® (@ —oa) oa—a
and the type of the codomain varies with the function beipgesented.

Lafont gives a typd of booleans, and demonstrates that for any polytime prezlica
A(w) on the boolean wordé/, there is aSLL , proof of W" + B corresponding to
that predicate; this completes the proof tBatL , captures polytime.

3 Soft Linear Set Theory

3.1 Syntax

Our syntax mirrors that of [7] and [16], the onlyflirence being the lack of a
paragraph modality:

Definition 1 (Soft Linear Set Theory SLST) The termsand formulae of SLST
are defined simultaneously as follows:

Term variables xy, z ... are terms;

If A'is aformula and x is a term variable theéx | A} is term;
If t and u are terms thend u is a formula;

Oand1 are formulae;

e If A and B are formulae then the following are formulaee®B, A — B, A& B,
1A;
o If Aisaformulaand x is a term variable, thétx. A and3ix.A are are formulae.

We us€t, u, v, ... to denote setdA, B, C, ... to denote formulae, and A, %, ... to

denote multisets of formulae.Iifstands foA,, . . ., A,, then I' stands forAq, .. ., 1A,.
The notationA@ stands forA, . .. A, the notatiorA® for A®...® A, and the nota-
—— ———

dtimes dtimes
tion 19Afor !...! A
N~——

dtimes

A variable x is boundin {x |A}, YX.A and Ax.A. We will consider two terms
which differ up to renaming of bound variables to be identical. We usentita-
tion u[x := t] to denote the term obtained fromby substitutingt for all free

occurences o%. A similar notation is used for substitution into formulae.

The rules ofSLST are given in Table 1. Note that we could refine our presemtatio
by omitting the rules fow, 1 andd — these connectives are derivable frgfm—-
ande in a standard manner, as we will see later; however, sinceawe@king in a
linear environment the connectigds not derivable. Note also that we could just as
easily give a classical version BLST— since our goal here is to prove polynomial
soundness and completeness ftisas to consider the intuitionistic fragment.

Theorem 2 (Cut elimination) If A is provable inSLST, it is provable without us-
ing cut.

PROOF. By Girard’s observations about unrestructed comprehansigsince cut-
elimination inSLL does not proceed cut-rank, the extensiorSbt by compre-
hension retains cut-elimination.

Corollary 3 SLST des not prové.

3.2 General substructural set theory

Before approaching the behaviour of the soft modality irtlsedry, we recall some
standard properties of naive set theory in the absencentfaztion (and weaken-
ing). For more details see [14,16].

We may define an equality on terms SLST by the identity of indiscernables
(Leibniz’s law) — that is, two individuals are equal if thegve identical properties
(where here the notion of property is given by set membejyship

Definition 4 (Leibniz Equality)

t=u=Vx(tex—ouex

The following are easy to verify:

Proposition5 e rt =1t

Ft=u—o (A[x:=1] — Alx:=u])
o Ft=uUu—ou=t

e rt=uUQuU=r—ot=r

[]

[]

Ft=Uu—ot=U®t=uU
Ft=u—o1

We may now define some standard set theoretic operations:

Definition 6
0 ={x|0}; {th ;= {x[x=t};
{t,ul:={X|x=tex=ul; {ti,...,t)) ={X|X=t1®...0t,};
tuu:={x|xetexeul, G, uy = {t}, {t,u}};

<t1, .. tn> = <t1, <t2, <t3, ce <tn_1, tn> .. >>>

Proposition 7 The following are provable i®SLST:

o t¢0;

e te{Ufoot=u
ete{tUfoot=udt=yv;

o (t,W=(r,Syoot=reu=-.

Strikingly, the axiom of extensionality

VX (X€tooXeU) oot=uU
is inconsistent, since from it we may derive unrestrictesti@action (see [£]).
Naive set theory also admits a powerful fixpoint theorem:

Theorem 8 (Fixpoint theorem, Girard[7], Shirahata[14], Cantini[4]) For any for-
mula A, there exists a term f such that

tefooAy:=1f x:=t

is provable for any t.

The fixpoint is given by the following: first define

s:={z|AuAv.(z= UV Aly ;= {w|{W,Vv) e v},x:=U]) },

and then let the terni (the desired fixpoint of) be
f:={w]|{w,s)e s}

The required properties may now be easily inferred.

4 Representing sets and functions in SLST

Our goal is to show that the functions representable as tefl85ST are precisely

the polytime functions. We give here two notions of the repreation of functions
in SLST; both identify a function with its graph, but theyfidr on the statement of
totality.

Definition 9 (a) A set S isepresentetdy a term s oBLST if there is a bijection
(.)* from S to the terms u such thau € s is provable in SLS.
(b) A functiong : Ty x --- X Ty — S isrepresentedby a term f ofSLST with
domainst, ...t and codomain s if
I Each Tiand S are represented hyand s, respectively;
il Forany anyme T and ne S such that(m) = n,+ (M*, n*) € f; and
il VXL YAV €t) ®.. .01 (X € 1)) — (Ye s®(XY) € f))

This definition is unsurprising in the context of linear logihere the translation
of an (intuitionistic) function spac& — B is given by A — B. However, inSLL
the lack of a digging principle means that we cannot in gdrerapose functions:

digging I 9
IA——/—o A o IB

o C

Similar problems to this will arise in the composition of repentable functions. To
allow, in certain special cases, composition of functiaves jntroduce following:

Definition 10 A functiong : T;x---x Ty — S is generically represented by a term
f of SLST with domains{, ...t and codomain s if

(a) Each Tand S are represented byand s, respectively;
(b) Forany anyme T and ne S such thap(m) = n,+ (M*,n*) € f; and
(c) There exists natural numbersg, n. . n, such that

FVYXe . XY (R e t)™ ® ... ® (X € 1)™) —o (Y€ S® (X Y) €)

is generically provable irsL ST.

Clearly, generic representability implies represenigbNVe will write
fotmx ™ s

if fisaterm with the third property above. We refer to the nunmpas themulti-
plicity of t; in f.

5 Tally integers

We will need something like the tally integers to give a reprdation of a polyno-
mial clock when simulating the extended transition functid a polynomial time
Turing machine. While we could use induction over the lergfthinary words to
achieve the sameftect, the example of natural numbers neatly illustrates soime
the properties oSLST.

Following [16], we represent natural numbers via orderatspa
0=0; St=(0,t); n=S"0.

Proposition 11 (a) S(t) # 0.
(b) S(t) =S(s) oot =s.

We may now internally define the natural number$SkST, based upon the type
of natural numbers in linear logic:

Definition 12 (Soft natural numbers)
X€N oo Va(lVy(y e @« - Sye a) - (0 € @ - X€ a))

Proposition 13 The termN representdN in SLST. That is, te N ifft = n for some
neN

Thus, if a ternt is provably inN, and for some other terrg) we have- 0 € sand
y € St Sye s bycutwe have t e s.

By instatiatinga with { x| 1}, we may derive weakening for soft naturals:

Proposition 14 The following is provable ilsLST: x e N + 1.

PROOF. By the following derivation:

11
ye{x|1l}rSye{x]1}
Fye{X|1l} —-oSye{x|1l} F1 1+1

FYY.(ye{x|1} - Sye{x]|1}) 0e{x|1} xe{x|1}r1

HIVy.(ye {x|1} - Sy e {x|1}) Oe{x|1l}—oxe{x|1}+r1

IVy.(ye {X]1} = Sye{x|1l}) - (0e{x]|1l}oxe{x]|1})+1
Ya.(IVy.(yea o Syea) o(0Oea —oxea)trl

The soft natural numbers exhibit a form of induction, whicé will call Soft in-
duction ovemN.

Proposition 15 The following inference is derivable BLST:

I'+ Alx:=0] A AIX:=Y] + A[X = SY]

N —ind.
ILIA,teNFA[X:=1]
PROOF.
A AlX:=Y] F Alx = Sy]
elL,eR
Aye{X|A}FSye{x|A}
- R
Arye{X|A} - Sye{x|A} '+ Alx:=0] Alx:=1] - Alx:=1]
VL ——€R —_ €L
ArVy.(ye{x|A} - Sye{x|A}) T'r0e{x|A} te{x|A}rAlx:=1
SP —- L
IAHIVY.(Yy € {X|A} — Sy e {x|A}) IL0e{x|A} —ote{x|A}FAX:=1]

—- L

LLIAIYY.(ye {X|A} —= Sy e {x|A}) = (0 e {X|A} o te{x|A}) F A[X:=1]

VL.
ILIAteNFAX:=T]

However, it does not seem possible to find a non-trivial Aetuch thatdy €
N.A(x,y) + 3y € N.A(Sx,y) holds; there is no obvious proof even for successor.
Consider, however, the following set defined by a fixpoint:

Definition 16 (Safe natural numbers)
XEN oo x=003y(ye N & x=SY)

This set also represents the natural numbeiSLST, but unlikeN it is provably
closed under successor.

Proposition 17 (a) - 0e N’;
(b) te N+ Ste N;
(c) te N iffte Nift =nforsomere N

Of course, the final part of the preceding is a metatheoretmybumay derive one
direction of the transformation via soft induction. In fast can do better.

Theorem 18 (Soft coercion)For each natural number n,

xeNH"eN.

PROOF. Fixann e N. Then+!"0 € N’ is provable ifSLST, and 't ¢ N’ +!"St € N,
from Proposition 17 and soft promotion. The result the feBdy soft induction.

Similarly, we obtain a form of contraction for safe naturals

Theorem 19 The following inference is derivable BLST:

teN,teN,T+A
teN,TFA

N’ — cont

PROOF. We have-0 e N'®@0 e N andxe N@xe N + Sxe N ® Sxe N'. By
softinductiont e N+te N ®t € N’. An application of cut completes the proof.

Using these two terms representing the naturals togetlgeecan begin to recover
some arithmetic operations, using soft induction aveiVe define the graphs of
addition and multiplication by fixpoint:

Definition 20 Letadd be a term which satisfies

(X,¥,2y € add oo(y=0® z=0)
Y. AZ(y=SY)®z=S(Z)®(XY,Z) € add).

Such a term exists by the fixpoint theorem. Similarlymett be a term which
satisfies

(X,Y,2y e mult oo(y=0Q® X = 2)
Ay . AZ.(y=SY)®(X,Z,2) € add ® (X, Y, Z) € mult).
Certainly these terms satisfy the first and second conditddmepresentability:
Proposition 21 (a) (n,m,k) € add is provable inSLST iffn+ m = k;
(b) (n,m, k) € multis provable inSLST iff n.m = k.

10

We show now, by induction oveM, that these terms represent addition and multi-
plication, respectively, with domainé and codomaim’

Proposition 22 The following are provable i®LST:

(@) Vxe N'.Vy e NI'ze N.((X, Y, 2) € add);
(b) Yx.Vy.Fz((xeN)®@ye N — (ze N’ ® (X, Y, Z) € mult)).

PROOF. (a) We prove
i FV¥xeN.FzeN.((x 0,2 € add), and
i VxeN.F'zeN.((xY,2) €add) - Vx e N'.F'ze N.((X, Sy, 2) € add).

An application of soft induction oveM gives

yeNFrVxeN.3ze N.((xY,2) € add)

from which the desired conclusion trivially follows.

Itis clear thatx, 0, X) € add is provable. Suppose(x,0,z) € add. Thenr 0 =0® X =z
or+ Ay.3Z7.(0 =S(Y)® z= S(Z) ® (X, Y,Z) € add) is derivable. Sinc® is prov-
ably not the sucessor of any term, (i) follows.

For (ii), existence of an image follows from the following:

(X,Y,2) € add + (X,y,2) € add FSy=Sy®Sz=_Sz

(X,Y,2y€add - Sy=Sy®Sz=Sz® (XY, 2 € add

(X,y,2) € add + Iy'.3Z.(Sy = Sy ® Sz= SZ ® (X, Y, 2) € add)

(X,¥,2) € add + (X, Sy, Sz) € add zeN -Sze N

®R, ®L
ze N ®(X,y,2)€add+ Sze N ® (X, Sy, Sz) € add

Here it is critical that we use the sHit, as we require that € N’ + Sz € N’ is
provable.

11

For uniqueness, see the following derivation:

W=SW,W =zFrw=Sz (X,y,W) € add + (x,y,w') € add

w=SW,(X,y,W) € add, (X,y,w) € add oW =z+w=Sz

w=SW,(X,y,wW) € add, YW.((X,y,w) € add - w =2) + w= Sz

w=SW ®(X,y,wW) € add, YW.({X,y,w) € add ow=2) - w= Sz

Aw.(w=SW @ (X, y,w) € add), YW.({(X,y,w) € add ow =2) + w= Sz

(X, Sy, w) € add, Yw.({X,y,w) e add -w=2)+ W= Sz

YW.((X, Y, W) € add — W = 2) + (X, Sy,w) € add —o w = S2)

YW.((X,y,W) € add — W = 2) + YW.({X, SY,w) € add - w = S2)

Combining the last two results, we complete the proof of Aplying soft induc-
tion yields the derivation of totality required.

(b) Similarly to the above, we can prove:

F3'ze N.((x,0,2) € mult) (1)

We can also prove

Fze N.((XY,2) € mult), ¥Yze N".T'w e N'.((x,zw) € add) r I'w e N".((x, Sy, w) € mult)
2)

From the representability of addition, we have N + Yze N’.F'w e N'.((z X, W) €
add). Hence we may derive

xeN,Fze N.((X,Y,2) € mult) - F'w e N".((x, Sy, w) € mult) (3)
Applying soft induction ovey € N with (1) and (3), we obtain

I(xe N),ye N+ F'we N.((x,y,w) € mult)
as required.

Corollary 23 Addition and multiplication of natural numbers are repratable in
SLST with domainN and codomai’.

PROOF. The result follows immediately for multiplication, by ang@jgation of
multiplexing to § € N). For addition, we must first apply coercion tog N’), and
then multiplexing to both arguments.

12

There is a major diiculty with this approach, where we uskas a domain and
N’ as a codomain; we do not have an obvious method for composprgsented
functions? Thus we cannot infer representability of the polynomiatsifrrepre-

sentability of addition and multiplication. To remedy tlituation, we will go via

a translation of Lafont’s representation of the polynosialSLL

5.1 Polynomial functions and sets of preimages

Recall from the introduction that the typing of polynomiahttions inSLL ; is
somewhat eccentric; specifically, one cannot type the teemesenting polyno-
mial functions fromN to N. This is also seemingly the caseShST. For example,
successor may be given as follows:

Lemma 24 The following is provable itsL ST

XeNFVa.(IVy(ye a - Sye a)@Vy.(ye @ - Sye a) — (0 € @ - SX € a))

We will give the set
{X|a.Vy(y e @ - Sye a)®Vy.(ye @ - Syea) - (0ea - Xe a))}
the nameN({X + 1). This notation comes from a similar structureShL ,:
Definition 25 We extend the definition’Ao polynomial expressionas follows:
AX =IA AP Q = AP @ AR APQ = (AP)Q.

Given a polynomial expression P, we writéPh for the formula A where each
subformula B is replaced by B.

It should now be clear tha(X + 1) fits into this general scheme.

This scheme allows Lafont to define a representation of eahdit SLL ;:

N, N + N(X + X),

or more generally
N(P), N(Q) + N(P + Q),

To annotate this proof with set theoretic information, sat ihyields a proof of the
totality of addition inSLST, we would need to be given (or define atomically) an
operation %” on terms of SLST, such that

2 This is not the issue with composition mentioned in Section 4; howevete that we
have not yet proven multiplication to be generically repreable.

13

(@ t+0=t,and
(b) t+Ss=S(t+9

which yields a ternt+ swhich we may substitute intdx.(x € N(P+Q)®(X, Y, 2) €
add) However, such operations do not fit naturally into a set itbigo setting, so
instead we work with a term inspired by the “Types with intégapproach of
Baillot and Moghbil.

Lemma 26 Consider the following term @LST:

N(P + Q[add] := {t]t=(xy) ® Va.(¥y(y € @ — Sy € a)’ @ Vy(y € @ — Sy € a)°
—<(0ea—oTFz(@zea®(XYy, 2 < add)))}

The following is provable iSLST:

x e N(P),y € N(Q) F (X,y¥) € N(P + Q)[add]

PROOF. See appendices.

We will call the termN(P + Q)[add] a set ofadd preimages, the idea being that we
may prove that ifx andy are natural numbers, then they have a unique sum in any
set containin@ and closed under successor. Similarly:

Lemma 27 Consider the following term @LST:

N(PQmuIt] := {t]t = (xY)® Ya.(Yy(y € @ — Sy € @)°Q
- (0ea—oTz(zea®(xYy,2) € mult))}

The following is provable iSLST:

x € N(P),y € N(Q) + (X, y) € N(PQ)[mult]
More generally, given a polynomial expresiBrand a ternt of SLST, define the
following term:

N(P)[t] := { X| Ya.(Vy(y € @ — Sy € a)°
—<(0ea—oTz(@zea®(x2) et))}

Define also th@seudo-degreéP of a polynomial expressioR as follows:
on=0, 6X=1 6P+Q)=6PQ) =6P+6Q.
Theorem 28 For any polynomial expression P, there exists a term $LEBT such

that

14

(@) (x e N)¥P 1 x e N(P)[p] is generically provable itSL ST
(b) F (X, y) € p is provable inSLST if and only if, for some ym € N, x = n,
y=m,and Kn) = m.

PROOF. By induction on the structure &. If P is a constanh then we haveéP =
0 and- Va.(Vy.(ye @ = Syeca)' - (0eca®Iz(zc a®(X2) € {(X2)|z=n}
Suppose now that for polynomial expressions containingtlegnm instances o#
and=x, the theorem holds. Ld&? containm constructors, and be of the for@+ R.
ThenQ andR satisfy the conditions of the induction hypothesis, andelage terms
gandr such thatx € N)¥Q 1 x e N(Q)[g] and (x € N)®R r x € N(R)[r]. As shown
in Prop 50,

x € N(P)[t], ze N(Q)[s]
F(((yea —-Sye (1)P+Q —-(0ea—o H!U.B!V-B!W(W €a® (XU et®(zV) € S®(UV,W) € add)))

whereF'u.F'v.((n,uy € t® (n,V) € s®(U,v,wW) € add))) is provable ff w is k for
somek € N, andP(n) = k. The case for multiplication is similar.

The formulax € N(P)[t] is powerful because it contains information about the
totality of t, but also has computational content. For instance, we cdarpein-
duction oveMN(P)[t]:

Proposition 29 The following inference is derivable BLST:
'+ Alx:=0] A A[X:=Y] + AX:= SYy]

, N(P)[t] — ind.
[LIA, se N(P)[t] F FW(A[X := W] ® (S, W) € 1)

PROOF.
AAlx:=Y] F Alx = Sy] Alx:=w] FAlX:=w]
eL,eR _ €L
Ay € {X|A}F Sye {x|A} we {x|A}rAlx:=w] (sw) etr(sw) et
—- R ®R,®L
Arye{x|A} - Sye{x|A} TrAX:=0] we{X|A}@(sw) et AlX:=w] @(sw) et
VL eR L, IR
ArYy.(ye{X|A} — Sye{x|A}) TrOe(x|A} Fwwe [X|A}@(sW) €t T WAX:= W &(SW) € t)
SP —L
IAHIVY.(y € {X|A} = Sy e {X|A}) T.0e{x]A} o Fwwe [x]A}@(sw) € tr FWAX:= W @ (SW) € t)

—-L

F,!AA!Vy.(ye(xlA)—oSye(x\A))—o(Oe{xlA)—oa!w(we(x\A)@swet)»—S!W(A[x::w]®<sw>et)

VL.
IIA, se N(P)[t] - EI!W(A[X =W ®@(sw) et)

Corollary 30 Each polynomial is generically representableShST.

PROOF. LetP be a polynomial expression. Then we know that, for sonteere
exists a ternp such thatp satisfies the second condition of generic representation

15

and e N)™ 1 se N(P)[p] is provable inSLST. Now applyN(P)[p] induction to
the formulax € N’, to obtain

t e N(P)[p] - I'w(w e N’ ® (t,w) € p).
apply cut to obtain

(te N)™ r F'ww e N’ ® (t,w) € p).

6 Words over a finite alphabet

In this section we consider the representation of binarnyd&orSLST, as a special
case of words overn symbols. As one might expect, a similar separation occurs fo
the words as occurs for the natural numbers. First, define

e:=0, Sit):=,t).
The following two definitions each give a term which représehe words over an
alphabet witm elements:
Definition 31 (Soft Words)
X € Wp oo Vally(ye a — Sgy e a) oVy(yea — ... o Sp1ye€a) - (e €a — XE a))
Definition 32 (Safe Words)

XeEW oo Xx=e¢dAY(ye W, ®X=Sgy)®---®Iy(y € W,® X = Sp_1Y)

From this point onward, |€¥ stand forW,, and similarlyw := W, andW := W7,
We derive an induction principle over the structure of gfsimW,,:

Proposition 33 The following inference is derivable BLST:

' AlX:=¢] Ao, AlX:=y] F A[X:=Spy] ... An-1,AlX:=Yy]+A[X:=Sp1Y]

Wy, —ind.
ILIA,se Wh+ AlX:= g

Corollary 34 For each n< m, and for any p,

X € W, HPx e Wy,

We may capture the length functigx as follows:

16

Proposition 35 Let the termen, be defined by fixpoint as

(Xyyelen oo(x=e®y=0)®
AX.AY . (X=Sg(X)®...dXx =S 1Xx®y =S(Y)®(X,Y) € leny).

Then the following is provable iBLST:

X € Wy, + x € N(XM[len,]

We leave the proof as an easy exercise.

The purpose of all this is to provide a polynomial bound onabput of a Turing
machine; as such, the following is an important but triviahgralisation of the
preceding proposition:

Proposition 36 Given a term p representing a polynomial expression P, 1dtep
defined aq x | F'V.((x, V) € len, ® (v,w) € p)} Writing P(Q) for the polynomial
expression given by replacing each instance of X with Q, we ha

(x € Wo)°F x e N(PX"WP]

Meanwhile, the safe words are well behaved with respec#tstlecessor functions.
Proposition 37 Foreach i< n

xe Wy, + Sixe W,
is provable inSLST

Corollary 38 The successor functions 8#, are generically representable with
multiplicity 1 from W, to Wy,.

Additionally, one may define functions by cases of a terwip

Proposition 39 Given functiong, : T — U andy; : W, x T — U, define a new
functiong:

¢(8a t) = we(t);
¢(i.w, 1) = i(w, t).
Suppose now that T and U are represented by terms t and u, ahd.tis generi-

cally representable from t to u by,bandy; is generically representable frouv’, t
to u by R, such that

(&) The multiplicity oW’ in each kis 1, and
(b) The multiplicity of t in heach his some value r.

17

Theng is generically representable with domaivg, t and codomain u.

PROOF.

X,Y,2) € f oo(X=¢e®(Y,2) € h,)®
AX(X=Se(X)®(X,Y, 20 e hp) ®...®IX(X=Sp1X ®(X,Y,2) € hy4).

By assumption,y € t)" + 3'z((y, 2) € h,), from which

Xx=¢,(yet) rIz(xYy,2) € f).

Also, foreach i < n-1, we have

X e W, ®X=Si(X),(yet) - Iz(xy,2) €).

Hence we have
xeW,, (yet) r Iz(xy,2) € f).

Corollary 40 The predecessor function Off is generically representable with
both domain and codomain \Mand multiplicityl

6.1 Softlambda calculus and polynomial soundness

We will demonstrate in the next section that any function patable in polyno-
mial time is generically representable, but first we addtkedssue of “polytime
soundness” — that is, we must verify that any genericallyaggntable function is
polytime computable. To do so, we turn to the Soft lambdatdak of Baillot and
Mogbil [2]. Soft lambda-calculusSLC) is a calculus typable in Softffine Logic
—that is,SLL with unrestricted weakening.

We give the typing rules for Soft Lambda calculus in Table

A typed term of SLC is a pairM : A arising from a judgemerit + M : A; such a
termM is a special case of a well-formed tePmGiven such a term, we define its
depthandsizeas follows:

3 The typedtypable terms are not the only ones of interessirC; the untyped calculus
also enjoys polynomial reduction.

18

— Ax
x:Arx:A

Ix:ArM:B Tru:A Ax:BrM:C
I'-AxM:A—B [LA,y: A—BrMx:=yu]:C
x1:AL..., Xn:AprM:C Ix1:A...xn:ArM:C
SP mplx
y1 Aq, ..., yn 1An k lety be!xinIM :IC [y :'Ar letybe!lxinM[x; :=y,...xp:=y]: C
x Alx:=t,T+M:C remM:C
—_— VL VR
X:YXAT+NM:C I'rM:VxC
x:Ax:=t,T+rM:C FrM:C[x:=1]
— €L —— R
x:te{XAL,T+rM:C I'rM:te{xA
TrM: A I",x:ArN:C
Cur
LU rux:=t]:C
Table 2
ISAL typing rules, plus typing for comprehension
Definition 41 (a) Thesize|M| of a termM is given by:
x| =1, |[Ax.M = M+ 1, |(MN)[=] + [N]

"M = M| + 1 [letMbex inN| = M| + [N] + 1

(b) Thedepthof a termM is defined as follows: let be a subterm af. The define
d(N, M) to be the number of subterrhsf M such thatN is a subterm of. and
L is of the form!L’. The depth (M) of M is then the maximum value ofNJM)
for N a subterm ofl.

The reductions rules @&LC are the following
B : ((1xM.) N) — M[x := N];
(M) : letINbelxinM — M[x :=N]J;
(coml) : let(letM; be!yinM,) belxinM; — letM; belyin (letM, be!x inMs);
(com2) : (etMbelxinly) M3 — letM; be!xin (MoM3).

We have the following theorem:

Theorem 42 (Polytime strong normalization) For any integer d there is a poly-

19

Ix:teuXArM:B ' M:uXA

(left unfold) (right unfold)
[y : A[X:=uXAz:=t]-Mx:=foldy]: B I+ unfold M: A[X = uXA]
Ix:AX:=uXAz:=t-rM:B FrM:AX:=uXAz:=t]
(left fold) (right fold)
Iy:teuXArMx:=unfoldy]: B I+ foldM:teuXA

Table 3
Fixpoint typing rules

nomial Py (with degree linear in d) such that for any tethof depth d, any sequence
of reductions of t has length bounded hy(|®)).

Since this polytime normalization theorem holds even fer type-free calculus,
SLC may be extended with recursive types (fixpoints); Baillotl &ogbil thus

extend their typed calculus to a calculus with fixpoinSALF) while retaining

polytime normalization. In our setting, we also have acteds<points, but their
typing derivations are not quite so simple asSALF . The typing derivations for
set theoretic fixpoints are given in Table 3.

In this table, the abbreviations
fold M := Ayzw.yzw (Av.v M)

and
unfold N := N(Av.v Aw.w Axy.y),

, derived from the definitions in the fixpoint theorem.

Theorem 43 (Subject reduction) If we havd™ +: MA in | SALF, andM — M/, then
reM:A

We now use this calculus to help demonstrate polynomialdoess. Observe that
we may translate any proof IBLST into a typing judgement iiSLC— instances
of nullary multiplexing are replaced by first a weakening émeh a unary multi-
plexing, and then all the missing connectives (including alalditive®) may are
defined, since we have access to unrestricted weakenin@riicylar, recall that
the existential is given by

Ay.A = VX (VY.(A - tg € X) — 1y € X),
multiplicative conjunction by

A®B:=VYX((A—-the X) o (B—otye X) o tye X).

20

and additive disjunction by
Ao B:=VX(A—-B-otyeXx) —otye X).

with the standard lambda terms to represent constructsasiofl , inr pairing
(written — ® —), and projection€st andsnd.

We now give canonical proofs that, for any wawce W, w € W andw € W’:
Definition 44 Letw:=ig---in € W,. Thenw denotes
Axox1.(letxo belzgin (letx, belz; in (Ay.(zi, - - - (zi)))))),
and let¢ denotefoldinlx.x andw.i denote
fold inr(1z.z(i ® W))
where0 := inlix.x andl := inrix.x

A W representation of w is a term M @&.C such that M : (w € W), and aw’
representation of wis a term M &L.C such that M : (w e W’).

Now define the relatior: on terms ofSLC as the least binary congruence satisfy-
ing:

(n): AxMx ~M,ifx ¢ FV(M)
(let) : let be NinlxM ~ Mifx ¢ FV (M)
(A—let): Ax.(letMbelyinN ~ letMbe!yin Ax.N,ifx ¢ FV(M);
(let—let) : letMbe!xin (letNbelyinL) ~ letNbelyin (letMbe!xinL)

It is easy to see that is compatible with—*. That is, ifM ~ N andM —* ', then
there is a terml” such tha —* N” andN ~ N’.

Lemma 45 (a) wis aW representation of w;
(b) If M is aW representation of w, then M w;
(c) wis aW’ representation of w;

(d) If N is aW’ representation of w, then N w.

Now suppose that we have some statement of the represéytalbih function
¢ : W, —» W,. Then we have

FG:VX(I(X e W) — Ay(y e W, @ (X, y) € T))
as the result of a typing derivation IBAL . Letw € W,. Then+ w : w € W, is
derivable. In addition, we haveG :!I(w € W;) — Jy € W,,.((w,y) € f)), so

FGlw: dy e Wo.((w,y) € f)

21

By subject reduction the normal form 6w also has this type, and must therefore
be of the formix.x(Av.vNL). Moreover N : ue€ W, andr L : (w,u) € f must be
derivable for some termof SLST. Henceu is w for some wordv € W,. Finally,
we obtain, settindd := Ax.x andfst := Axy.x,

12.(((G 2) id) £st) 'W —> ((G 'W) id) fst)
—" ((Ax.x (Av.VNL)) id) fst —" Av.vNL fst —* N~ W,

as required.

Theorem 46 Representable functions are polytime computable.

PROOF. Given a wordw, its canonical representawthas depth one, and so the
depth of1z.(((G z) id) £st) !wis a constand no matter which word we pick. The
size|w| is 10+ |w/; let the the size ofiz.(((G 2 id) fst) ben. We have, by polytime
strong normalization, a bounding functi®(n + 10+ |wj) — a polynomial inwj.

7 Simulation of Turing Machines

We present an encoding of single tape polynomial-time Tunrachines irSLST,
demonstrating that the latter proves total any function patable in polynomial
time.

We will work with Turing machines over a three letter alphiafie 0 andb =“blank”)
with set of state€Q, = {Qo,...,0n1}, Whereqo is the initial state. The current
configuration of the machine may then be given as a trplé,r) € Conf =

Q x W3 x W3, whereq is the current statd,is the non-blank portion of the tape
to the left of the head, andis the non-blank portion of the tape to the right of
the head. By convention,is written in reverse order, andincludes the symbol
currently read.

Definition 47 A functiong : W, — W, is a polynomial-time function if there is
some Turing machine T and some polynomial P such that afteming T with
input the string x for BX|) steps, the output (the non-empty right-hand portion of
the tape) isp(x).

We show now how, given such a functipnone may construct a terithat repre-
sents it INSLST.

The set of states af may be represented BLST by the termQ,, = {0, ...,n — 1},
with evident bijection. We represent the set of possibldigonations ofT by the

22

term
Conf = Q, X W5 x W3,

By Corrollary 34,x € W, + x € W3. Itis clear thatx € W, + (0, ¢, X) € Confis
provable inSLST: an application of cut gives:

X € W + (0, &, X) € Conf (4)

The transition function fom may be expressed as a functi®n Conf — Conf:
given a particular state and a particular read symbol, tietape is given by suc-
cessor and predecessor operations on the left and rigts. tRpeall that successor
and predecessor are both genericaly representablevifpta W} with multiplicity

1. Since transition function is defined by a conditionaMgfiover functions satis-
fying the conditions of Proposition 39 it is generically repentable with domain
Conf, codomainConf and multiplicity 1 Letb be a term ofSLST representing this
function.

We represent the extended transition functiofT aftarted on an initial string by
the a termd by fixpoint in a manner which should by now be familiar:

twyedoo (t=00wW=1{(0,¢,cC))
@ It AX . Aydy . 237 .(w = (X, Y, 2)
QUX,Y,Z),wyebet=St'®{,(X,y,Z)) €d)
Given a polynomialP, we want to know what the configuration of the machine
is after P(x) steps — the functiog(P(x)) . To arrive at this we use induction over
N(P(X®)[p'], as defined in Proposition 29, where, as befgres { x| 3'v.((x, V) €
len, @ (V,w) € p) }:

ceConfrIc(ceConfe(0,cyed) Fec(ceConfa(y,c)ed)r I c(ce Confe(Sy,c) e d)

NPt - ind. (5)
¢ e Conf, x € N(POXP)[P'] F Fk.(k € Conf® F'n.((n, k) € d) ® (x, n) € p’)

From lemma 36:
(x € W)™ + x € N(POX*)[P']. (6)
Combining (4), (5) and (6), we obtain

(x e Wp)P x e Wy + T'k(ke Confe In.((nky ed)y®(x,ny e p’) (7)

Finally, we extract the result of the function: this will deetnon-empty portion of
the right-hand tape. This consists of two stages. Firstrobsiat the following
holds:

F'w.(w e Conf®(x,W) € t) F
Ar.(rewW;®39.31.(e Qe l € Wy (x,(q,1,1)) € 1))

23

Combining this with (7) yields

(x € Wo)MP xe W+ 3'r.(r e Wi®
F9.31.(e Qnel e Wi I'n.((n,{(q,],r)) € d) ® (x,n) € p))
C))

The righthand side of this is of the forHir.(r € W} ® A(x,r))

The outputr is only well-formed if it consists of only 1s and 0s. The foliog
function extracts the well-formed outputs, sending theootg containing a blank
to the empty string: and is representabl&SIST:

7(0,y) = 7(X, €) = 7(SX, Suy)
T:NXW3 - W, 7(SX Spy) Sot(X,Y);
7(SX, S1y) S1t(X,Y);
Let g be the evident term dLST expressing this function as a fixpoint.:

g,

XY,2yegoo (Xx=0Q@z=¢)d(Yy=e®z=¢)@dy(y=Sy®z=c¢
@ AX . Jy.37.(x = SX'®
((y=Soy ®z=SeZ)@ (y = S1y ® 2= S1Z)) ®(X,Y,Z) €T)

Then
y € N(POC)[p], + VX € Wi T'ze Wo((X,y) € g)

by induction overx € N(P(X?))[p]. We leave the details to the reader, noting that
the inductive step

Vy e Wo.3'ze Wo((X, Y, 2) € @) Vy € W5.3'Z€ W5((SX, Y, 2) € Q)

uses as a lemma the fact that predecessor on words overétters Is generically
representable with multiplicity one (see Coroll&%).

We have
(y € Wo)@F) 1 x e N(POX2)[pl @ A'T.(r € W5 @ A(X, 1))

from which
(x € Wp) P 1 Ty (y € Wy ® B(X,Y))

whereB(x,y) = An3'r.((x,n) € p’ @ (n,r,y) € g® A(X,r). Finally, letting f be
defined ad = {z|3Ax3Ay.(z= (X, y) ® B(X, y)) }, we have

(x e W) P L Fy (ye W, @ (x,y) € f
wheref is a term of SLST satisfying(m, n)) € f iff ¢(m) = n.

24

We have shown:

Theorem 48 Polynomial time functions froi#W to W are generically representable
in SLST with domainw and codomaiww’ and so are also representable.

8 Conclusion and Further work

We have a notion of provably total function in a set theorydolasn Lafont’'s Soft
Linear Logic, and shown that these functions are precidadypolynomial time
functions. Moreover, by using the fixpoints inherent in $etary, we have been
able to give the same codomain (W’) to each representedifumd®ne curios-
ity of the representation given is that input and output ¢dltéunctions are given
by different representations of the same set. This gives rise tddous ques-
tion about composition. Of course, since the class of patyiaétime functions is
closed under composition, so are the class of represerftatdgons, but finding a
constructive proof of this fact has proved elusive. Whatiewn is that for any rep-
resentable functiorfi, the proof that it is representable yields a polynomial lgbun
Q on the size of the output df. Using a function similar te from the previous sec-
tion, one can then extract a pre-image representation ajutput of f. However,
it is only in certain special cases that the proof that a fionog is representable
may be reworked into a proof that will take such an input — irtipalar, it must
be generically representable, but in addition we need tdheeta give a pre-image
as an argument. One special case in which this works is trepodof via Turing
representability:

Lemma 8.1 Let¢ be a function computed by some Turing machine T in polynomial
time. There is a term f such that f represepitsnd, for any term t and polynomial
Q, for some polynomial P

(x e W(QID P + Fy.(ye Wy (xy) €)
holds, whergx,y) € f/iff3'z(x,2) et®(zy) € f.
(whereW(Q)[t] is the evident generalization of sets of pre-images to wprd

Another evident question is the relationship between s @ach to polytime and
the function algebra approach; indeed, the fixpoint de@ingiof the tally integers
and the words are named “safe” in deliberate allusion toaB#dini and Cook’s
algebra BC [3]. We believe that the properties of these fixgsanore closely match
those of the safe variables in BC than in the (purely logittght logics approach
[12] where a variable is safe if it is of the form: §Bint (whereBint is the light
logic representation of the binary integers. These vagghllow a restricted form
of induction, whereas our safe variables do not.

25

If the sets defined by fixpoint merit the label “safe”, why theém the numbers
over which wedo have induction not merit the name “normal™? The answer comes
from the imperfect manner in which we may encode safe remr&tecall our first
proof that multiplication is representable. In that prathie variablex € N is a
side formula in the inductive step, and we obtaix & N) in result of the applied
induction. In addition, of course, the number of times aafale is used is important,
since we do not have unrestricted contraction.

A possible solution to the problem is to consider a more dbeotion of represen-
tation, which we calktratified representatian

Definition 49 A aterm f is astratified representatiaof a function
¢: Ty X+ X T — S with domainsgt. ..t and codomain s if

(a) Each Tand S are represented hyaind s, respectively;
(b) Forany anyme T and ne S such tha(m) = n,+ (M, n*) € f; and
(c) There exists natural numberg,n..n, and m ... mg such that

F VX Y Y (™ (X €)™, . .® (1™ (X € 1))™) —o (Y € sR(X,Y) € f))
is generically provable irSL ST.

We conjecture that a stratified version of BC counting miittifes of variables
(and using a simplified vaiant of the cases construction2i [daptures polynomial
time. However, it has already been demonstrated in [2] tb&tlmbda Calculus
with fixpoints goes beyond the representational strengthot light logics and
safe recursion; it is possible, by clever choice of typiggpresent insertion sort
in an intuitive fashion. It would be interesting to look apresenting the operations
involved as a function algebra, which by virtue of its regrsbility in Soft Linear
Logic would be immediately known to be polynomially sound.

Acknowledgements | should like to thank Yves Lafont for some initial help, and
Thomas Strahm for discussions on the work of Bellantoni andkC

References

[1] Andrea Asperti. Light &ine logic. InLogic in Computer Sciencg@ages 300-308,
1998.

[2] Patrick Baillot and Virgile Mogbil. Soft lambda-calauws: a language for polynomial
time computation. 2987:27-41, 2004. 7th International f€@mce Foundations of
Software Science and Computation Structures, part of tiié Haropean Conferences
on Theory and Practice of Software, ETAPS 2004, BarcelopainS

26

[3] Stephen Bellantoni and Stephen A. Cook. A new recurgii@oretic characterization
of the polytime functionsComputational Complexify2:97-110, 1992.

[4] A. Cantini. The undecidability of grishin’s set theorytudia Logica 74:345-368,
2003.

[5] J.-Y. Girard. Linear logic.Theoret. Comp. S¢i50:1:1-102, 1987.

[6] J.-Y. Girard, Y. Lafont, and P. TayloProofs and TypesCambridge University Press,
1989.

[7] Jean-Yves Girard. Light linear logiénformation and Computatiqri43(2):175-204,
1998.

[8] Jean-Yves Girard, Andre Scedrov, and Philip J. Scoturited linear logic: a modular
approach to polynomial-time computabilityheor. Comput. S¢i97(1):1-66, 1992.

[9] V.N. Grishin. A nonstandard logic and its application et theory. Studies in
Formalized Languages and Nonclassical logics. "Nauk@ages 135-171, 1974.
(Russian).

[10] V.N Grishin. Predicate and set-theoretic calculi ltasa logic without contractions.
Math. USSR. Izvetijal8:41-59, 1981.

[11] Y. Lafont. Soft linear logic and polynomial timeTheoretical Computer Science
318:163-180, 2004.

[12] A.S. Murawski and C.-H.L. Ong. On the interpretatiorsafe recursion in light logic.
Theoretical Computer Sciencgl18:197-223, 2004.

[13] Uwe Petersen. Logic without contraction as based ofusmen and unrestricted
abstraction.Studia Logica64(3):365-403, 2000.

[14] M Shirahata. Fixpoint theorem in linear set theory. 999

[15] K. Terui. Light &fine lambda calculus and polytime strong normalization. In
Proceedings of the 16th Annual IEEE Conference on Logic img@ger Science
pages 209-220, 2001.

[16] Kazushige Terui. Lightf@ine set theory: A naive set theory of polynomial tinsgudia
Logica 77(1):9-40, 2004.

A Sets of preimages for addition and multiplication

The proof of Theorem 28 (that there is a set of preimages feryepolynomial
expressiorP) relied on the existence of certain sets of preimages foeigdized
addition and subtraction. We give here the proofs of thesemptions. In the fol-
lowing, Ny(P)[t] is the instantiation of the outermost quantifieNgP)[t] with the

seté.

27

Proposition 50 The following is provable i1sL ST:

x € N(P)[t],ze N(Q)[g]
F(((yea—oSyea)™@ - (0ea—-FudvIwwea® (X Uy et®(zV) € s® (U, V,W) € add)))

PROOF. Given some terna of SLST, let
B={z|FuIwWWe a® (X, U) €t® (U zw) e add).}

Then the following are provable iBLST:
i Fwweae(xwet)r0ep
il Vy(yea—oSyea)t+Vz(zep - Szep)
il Iw(we pezw € s) - FuTFvIWW € a®(X,U) € t®(ZV) €
S® (U, Vv, w) € add)

These follow by elementary applications of the definitionadfl. The proof is
completed by the derivation given in Table A.1.

Proposition 51 The following is provable i1sL ST:

X € N(P)[t], ze N(Q)[9]
F((yea—-Syea)’?— (0ea - FuTvIAWWe a® (X Uy €t®(zV) € S®(U,V, W) € mult)))

PROOF. Given some terne of SLST, let
B:={z|(¥xe aF'ue a.((X zu) € add))”}

and let
y = {z|ANuIF'W.(We a® (X u)et®(u,zw) e mult)}.
Then the following are provable BLST:
I +0ep
i 0carOey
i Fww ey xw €t) r FuFvIAww € a @ (X, U) € t®(ZV) €
s®{u,Vv,w) € mult
iv Fw(wepe(zwWyes)r(yey - Syey)P
V(yea—oSyea)”?r((yeB — Syep)?)

These follow by elementary applications of the definitioadd andmult. The prof
is completed by the derivation given in Table A.2.

28

62

0) 0)
3!W.(WE a®{(XWyet)r0ep H!W.(WE,B®<LW> €9 r H!u.ﬂ!v.ﬂlw(we a®(x,u) € t{zVv) € s®(U,v,w) € add)

H!W.(Wea®<x,w) €t),0ep — H!W.(WE,B®<LW> €9)r H!U.H!vj!w(wea@(x,u) €t(z V) € s®(u,v,w) € add)

Oca,0ca—TwWeaa(xwet),0ef-TwWesezw c9)rFud v.IWwe o (X u) €tz V) € S®(U,V,w) € add)

Dea,0ca—-TwWweaa(xwet),(yea —oSyeca)? (yef—-Syep)? - (0ef—-Twwepezw es)r FuTvIwwe e® (X u) €z V) € S& (U, v, W) € add)

(i)
Yy.(yea - Syeca)trVz(zep — Szep)

Oca,(yea—Syea), (yea—Syea)?xeNa(P)tly e Ng(Q[+ FuTv.Iww € ¢ ® (x U) € 1z V) € @ (U, V, W) € add)

X € No(P)[t],y € Ng(Q)[] F ((ye @ = Sy € a)P+Q —(0ea— H!u.ﬂ!vj!w(w €a®(XU) € (zV) € s®(u,v,w) € add)))

xe N(P)[t],y e N(Q)[s] F ((ye @ = Sy e a)P*Q —-(0ea— 3!u.3!v.3!w(w ca®(xU) €tz V) € s®(u,v,w) € add)))

Table A.1
Preimage for addition

o€

0) 0]
‘OcarOey H!W.(WE7®<X,W)E[)FB!U.B!VH!W(WEaf@(X,U)E[@(LV}ES@(U,V,W}EmuII .
S
Oca,0ey— H!W.(We YR (X W) €t)F B!U.H!V.HIW(WE a®(X,u) €t®(zV) € s®(u,v,w) € mult) H!W.(WE,B®<LW> €s)r(yey—-Sye y)P

Oe a,j!w.(we[i®<zw> €9),(yey—~Sye y)P —-(0ey— B!W.(We YR (X W) €t)) + H!u.ﬂ!v.ﬂlw(we a®(X,U) €t®(zV) € sS®(U,v,w) € mult)

)
Oeca,FwweBe@EzZW es),(yey-Syey)’ - (0ecy - Twweyexw et) r FudvIwwe e® (X U) €t (ZV) € S® (U,V,W) € mult) F0ep

Oca,(0ef-TFWWeSR(EZW eS),(Yef-oSyep)f - (0cy-TwWeyexw et) r FuTvIAWWwe e ® (XU €t®(zV) € S® (U, V,W) € mult)

)
(yea—Syea)P ((yes —Syep))

Oca,(yea —-Sye a)PQ,x € Ng(P)[tl,y € Ny (Q)[8] + H!U.H!V.H!W(We a®(X,U) €t®(zV) € s®(U,v,w) € add)

x € Ng(P)[t], € N\ (Q)[g] F ((ye @ —= Sy € a)PQ —(0ea— B!U.H!V.HIW(WE a®(X,U) €t®(ZV) € s® (U, v,w) € mult)))

x e N(P)[t],ze N(Q)[] F (Y€ @ = Sy € @)PQ = (0 € @ - F'uTF'v.AWW € @ ® (X, U) € Kz V) € S® (U, v, W) € mult)))

Table A.2
Preimage for multiplication

