
Soft Linear Set Theory

Richard McKinley1

Theoretische Informatik und Logik, Institut für Informatik und angewandte Mathematik,
Neubrückstrasse 10, CH-3012 Bern, Switzerland

Abstract

A formulation of naive set theory is given in Lafont’s Soft Linear Logic, a logic with poly-
nomial time cut-elimination. We demonstrate that the provably total functions of this set
theory are precisely the PTIME functions. A novelty of this approach is the representa-
tion of the unary/binary natural numbers by two distinct sets (the safe naturals and the soft
naturals).

1 Introduction

The observation that contraction is essential for Russell’s paradox, and that more-
over the logic given by adding unrestricted comprehension to what is now known
asMALL yields a consistent logic, seems to have been made first by Grishin, in
[9] (see [10] for an exposition in English of these results).While this logic is cer-
tainly powerful in some regards (for example, in [4] it is proved that in it one may
represent pure combinatory logic), it is computationally very weak. The search for
more expressive naı̈ve set theories leads to in a surprisingdirection: the character-
isation of complexity classes of functions and in particular of the polynomial time
functions.

Girard, in his paper Light Linear Logic [7], introduced the notion of intrinsic poly-
time normalization, whereby a logical system (a system of sequent calculus, proof
nets or lambda terms) has normalization polynomially bounded by some property
of the proofs/terms, independent of the complexity of any cuts involved. Thus, for
example, a proof net in Light Linear Logic normalizes after anumber of steps

Email address:mckinley@iam.unibe.ch (Richard McKinley).
URL: http://www.iam.unibe.ch/ mckinley (Richard McKinley).

1 Work supported by the Swiss National Science Foundation grant “Algebraic and Logical
Aspects of Knowledge Processing.”

Preprint submitted to Journal of Logic and Algebraic Programming 12 March 2007

bounded by a polynomial whose degree depends only on the nesting of its expo-
nentials. Girard makes the observation that it is preciselythis property (bounds on
cut-elimination are independent of cut-rank) which allowsfor a consistent exten-
sion into naı̈ve set theory, and gives an overview in the appendix of [7], including
an (unproved) claim that the provably total functions of this system are precisely
the polytime functions.

Owing to complications in the proof theory of light linear logic, details of a set the-
ory with light exponentials did not appear until [16], whichestablishes this poly-
time representation property for Light Affine Set Theory (LAST). LAST is based
on Light Affine Logic[1], a system which, by virtue of unrestricted contraction, has
a simpler presentation as a sequent calculus.

While light logics have been very successful in capturing the polytime functions,
they suffer from the presence of the paragraph modality§, meaning that light logics
are not subsystems of Linear Logic.

Lafont’s Soft Linear Logic [11] is another logic which captures the polynomial
time functions. Unlike Light Linear/Affine Logic, it is a fragment of linear logic
(that is, it does not include the paragraph modality), and additionally it has a very
simple sequent calculus presentation. It is natural to consider whether SLL with un-
restricted comprehension also captures the polytime functions. This is the question
addressed in this paper. We will see that this is the case.

2 Soft Linear Logic

Soft Linear Logic [11] is a system based on the same language as Linear Logic
[5], and whose cut-elimination enjoys a polynomial bound. The logic arises by
observing that the usual exponential rules of linear logic

!Γ ⊢ A

!Γ ⊢!A

Γ,A ⊢ C

Γ, !A ⊢ C

Γ, !A, !A ⊢ C

Γ, !A ⊢ C

Γ ⊢ C

Γ, !A ⊢ C

are interderivable with the rulessoft promotion, digging and multiplexing:

Γ ⊢ A

!Γ ⊢!A

Γ, !!A ⊢ C

Γ, !A ⊢ C

Γ,A(n) ⊢ C

Γ, !A ⊢ C

Second-order Soft Linear Logic (SLL 2) is the fragment of second-order Linear
Logic with the usual exponentials replaced by soft promotion and multiplexing.
Since we omit digging, we also cannot cover the usual !-contraction rule of linear
logic.

Lafont gives a system of proof nets for this logic, and gives aproof that each net

2

A
A ⊢ A

Γ,A, B ⊢ C
⊗L

Γ,A⊗ B ⊢ C

Γ ⊢ A Γ ⊢′ B

Γ, Γ′ ⊢ A⊗ B

Γ ⊢ ∆
1L

Γ, 1 ⊢ C
1R

⊢ 1

Γ ⊢ A ∆, B ⊢ C
⊸ L

Γ,∆,A⊸ B ⊢ C

Γ,A ⊢ B
⊸ R

Γ ⊢ A⊸ B

Γ ⊢ B
⊕R

Γ ⊢ A⊕ B

Γ ⊢ A
⊕R

Γ ⊢ A⊕ B

Γ,A ⊢ C Γ, B ⊢ C
⊕L

Γ,A⊕ B ⊢ C

0L
Γ, 0 ⊢ ∆

Γ ⊢ C
SP

!Γ ⊢!C

Γ,A(n) ⊢ C
mplx

Γ, !A ⊢ C

A[x := t], Γ ⊢ C
∀L

∀x.A, Γ ⊢ C

Γ ⊢ C
∀R

Γ ⊢ ∀x.C

Γ,A ⊢ C
∃L

Γ,∃x.A ⊢ C

Γ ⊢ C[x := t]
∃R

Γ ⊢ ∃x.C

A[x := t], Γ ⊢ C
∈ L

t ∈ { x |A }, Γ ⊢ C

Γ ⊢ C[x := t]
∈ R

Γ ⊢ t ∈ { x |A }

Γ ⊢ A,∆ Γ′,A ⊢ ∆′
C

Γ, Γ′ ⊢ ∆,∆′

Table 1
Soft Linear Set Theory

3

reduces to a unique normal form in a number of steps bounded polynomially – this
bound has degree given by the nesting of exponentials in the proof net.

Lafont proceeds to define a type of natural numbers

N := ∀α.!(α ⊸ α)⊸ α⊸ α

and to give representations of functions on those natural numbers. A quirk of the
system is that these functions are not typableN ⊸ N, or even !N ⊸ N; for exam-
ple, successor is represented by the following proof:

α ⊢ α α ⊢ α
⊸ L

α, α⊸ α ⊢ α α ⊢ α
⊸ L

α, α⊸ α, α⊸ α ⊢ α
⊸ R

α⊸ α, α⊸ α ⊢ α⊸ α !(α⊸ α) ⊢!(α⊸ α)
⊸ L

!(α⊸ α), (α⊸ α), !(α⊸ α)⊸ α⊸ α ⊢ α⊸ α
⊗L

(!(α⊸ α) ⊗ (α⊸ α)), !(α ⊸ α)⊸ α⊸ α ⊢ α⊸ α
⊸ R

!(α⊸ α)⊸ α⊸ α ⊢ (!(α⊸ α) ⊗ (α⊸ α))⊸ α⊸ α
∀L,∀R

∀α.!(α ⊸ α)⊸ α⊸ α ⊢ ∀α.(!(α ⊸ α) ⊗ (α⊸ α))⊸ α⊸ α

and the type of the codomain varies with the function being represented.

Lafont gives a typeB of booleans, and demonstrates that for any polytime predicate
A(w) on the boolean wordsW, there is aSLL 2 proof of Wn ⊢ B corresponding to
that predicate; this completes the proof thatSLL 2 captures polytime.

3 Soft Linear Set Theory

3.1 Syntax

Our syntax mirrors that of [7] and [16], the only difference being the lack of a
paragraph modality:

Definition 1 (Soft Linear Set Theory SLST) The terms and formulae of SLST
are defined simultaneously as follows:

• Term variables x, y, z, . . . are terms;
• If A is a formula and x is a term variable then{ x |A } is term;
• If t and u are terms then t∈ u is a formula;
• 0 and1 are formulae;

4

• If A and B are formulae then the following are formulae: A⊗ B, A⊸ B, A⊕ B,
!A;

• If A is a formula and x is a term variable, then∀x.A and∃x.A are are formulae.

We uset, u, v, . . . to denote sets,A, B,C, . . . to denote formulae, andΓ,∆,Σ, . . . to
denote multisets of formulae. IfΓ stands forA1, . . . ,An, then !Γ stands for !A1, . . . , !An.
The notationA(d) stands forA, . . .A

︸ ︷︷ ︸

d times

, the notationAd for A⊗ . . . ⊗ A
︸ ︷︷ ︸

d times

, and the nota-

tion !dA for ! . . .!
︸︷︷︸

d times

A.

A variable x is bound in { x |A }, ∀x.A and ∃x.A. We will consider two terms
which differ up to renaming of bound variables to be identical. We use the nota-
tion u[x := t] to denote the term obtained fromu by substitutingt for all free
occurences ofx. A similar notation is used for substitution into formulae.

The rules ofSLST are given in Table 1. Note that we could refine our presentation
by omitting the rules for⊗, 1 and∃— these connectives are derivable from∀,⊸
and∈ in a standard manner, as we will see later; however, since we are working in a
linear environment the connective⊕ is not derivable. Note also that we could just as
easily give a classical version ofSLST— since our goal here is to prove polynomial
soundness and completeness it suffices to consider the intuitionistic fragment.

Theorem 2 (Cut elimination) If A is provable inSLST, it is provable without us-
ing cut.

PROOF. By Girard’s observations about unrestructed comprehension — since cut-
elimination inSLL does not proceed cut-rank, the extension ofSLL by compre-
hension retains cut-elimination.

Corollary 3 SLST des not prove0.

3.2 General substructural set theory

Before approaching the behaviour of the soft modality in settheory, we recall some
standard properties of naı̈ve set theory in the absence of contraction (and weaken-
ing). For more details see [14,16].

We may define an equality on terms ofSLST by the identity of indiscernables
(Leibniz’s law) – that is, two individuals are equal if they have identical properties
(where here the notion of property is given by set membership).

5

Definition 4 (Leibniz Equality)

t = u := ∀x.(t ∈ x⊸ u ∈ x)

The following are easy to verify:

Proposition 5 • ⊢ t = t
• ⊢ t = u⊸ (A[x := t] ⊸ A[x := u])
• ⊢ t = u⊸ u = t
• ⊢ t = u⊗ u = r ⊸ t = r
• ⊢ t = u⊸ t = u⊗ t = u
• ⊢ t = u⊸ 1

We may now define some standard set theoretic operations:

Definition 6

∅ = { x | 0 }; {t} := { x | x = t };

{t, u} := { x | x = t ⊕ x = u }; {t1, . . . , tn} = { x | x = t1 ⊕ . . . ⊕ tn };

t ∪ u := { x | x ∈ t ⊕ x ∈ u }; 〈t, u〉 := {{t}, {t, u}};

〈t1, . . . tn〉 := 〈t1, 〈t2, 〈t3, . . . , 〈tn−1, tn〉 . . .〉〉〉.

Proposition 7 The following are provable inSLST:

• t < ∅;
• t ∈ {u}� t = u;
• t ∈ {t, u}� t = u⊕ t = v;
• 〈t, u〉 = 〈r, s〉� t = r ⊗ u = s.

Strikingly, the axiom of extensionality

∀x.(x ∈ t� x ∈ u)� t = u

is inconsistent, since from it we may derive unrestricted contraction (see [4,?]).

Naı̈ve set theory also admits a powerful fixpoint theorem:

Theorem 8 (Fixpoint theorem, Girard[7], Shirahata[14], Cantini[4]) For any for-
mula A, there exists a term f such that

t ∈ f � A[y := f , x := t]

is provable for any t.

6

The fixpoint is given by the following: first define

s := { z | ∃u.∃v.(z= 〈u, v〉 ⊗ A[y := {w | 〈w, v〉 ∈ v }, x := u]) },

and then let the termf (the desired fixpoint ofA) be

f := {w | 〈w, s〉 ∈ s}.

The required properties may now be easily inferred.

4 Representing sets and functions in SLST

Our goal is to show that the functions representable as termsof SLST are precisely
the polytime functions. We give here two notions of the representation of functions
in SLST; both identify a function with its graph, but they differ on the statement of
totality.

Definition 9 (a) A set S isrepresentedby a term s ofSLST if there is a bijection
(.)∗ from S to the terms u such that⊢ u ∈ s is provable in SLS.

(b) A functionφ : T1 × · · · × Tk → S is representedby a term f ofSLST with
domains t1, . . . tk and codomain s if

i Each Ti and S are represented by ti and s, respectively;
ii For any any~m ∈ T̄ and n∈ S such thatφ(~m) = n, ⊢ 〈~m∗, n∗〉 ∈ f ; and

iii ⊢ ∀x1. . . .∀xk.∃
!y.((!(x1 ∈ t1) ⊗ . . .⊗!(xn ∈ tn))⊸ (y ∈ s⊗ 〈~x, y〉 ∈ f))

This definition is unsurprising in the context of linear logic, where the translation
of an (intuitionistic) function spaceA→ B is given by !A⊸ B. However, inSLL
the lack of a digging principle means that we cannot in general compose functions:

!A
digging

/ ◦ !!A
! f

◦ !B
g
◦ C

Similar problems to this will arise in the composition of representable functions. To
allow, in certain special cases, composition of functions,we introduce following:

Definition 10 A functionφ : T1×· · ·×Tk → S is generically represented by a term
f of SLST with domains t1, . . . tk and codomain s if

(a) Each Ti and S are represented by ti and s, respectively;
(b) For any any~m ∈ T̄ and n∈ S such thatφ(~m) = n, ⊢ 〈~m∗, n∗〉 ∈ f ; and
(c) There exists natural numbers n1, . . .nk such that

⊢ ∀x1. . . .∀xk.∃
!y.(((x1 ∈ t1)

n1 ⊗ . . . ⊗ (xk ∈ tk)
nk)⊸ (y ∈ s⊗ 〈~x, y〉 ∈ f))

is generically provable inSLST.

7

Clearly, generic representability implies representability. We will write

f : t(n1)
1 × . . . t(nk)

k → s

if f is a term with the third property above. We refer to the numberni as themulti-
plicity of ti in f .

5 Tally integers

We will need something like the tally integers to give a representation of a polyno-
mial clock when simulating the extended transition function of a polynomial time
Turing machine. While we could use induction over the lengthof binary words to
achieve the same effect, the example of natural numbers neatly illustrates someof
the properties ofSLST.

Following [16], we represent natural numbers via ordered pairs

0 = ∅; St = 〈∅, t〉; n = Sn0.

Proposition 11 (a) S(t) , 0.
(b) S(t) = S(s)� t = s.

We may now internally define the natural numbers inSLST, based upon the type
of natural numbers in linear logic:

Definition 12 (Soft natural numbers)

x ∈ N� ∀α(!∀y(y ∈ α⊸ S y∈ α)⊸ (0 ∈ α⊸ x ∈ α))

Proposition 13 The termN representsN in SLST. That is, t∈ N iff t = n for some
n ∈ N

Thus, if a termt is provably inN, and for some other terms, we have⊢ 0 ∈ s and
y ∈ s ⊢ Sy ∈ s, by cut we have⊢ t ∈ s.

By instatiatingα with { x | 1 }, we may derive weakening for soft naturals:

Proposition 14 The following is provable inSLST: x ∈ N ⊢ 1.

8

PROOF. By the following derivation:

1 ⊢ 1

y ∈ { x | 1 } ⊢ Sy ∈ { x | 1 }

⊢ y ∈ { x | 1 }⊸ Sy ∈ { x | 1 }

⊢ ∀y.(y ∈ { x | 1 }⊸ Sy ∈ { x | 1 })

⊢!∀y.(y ∈ { x | 1 }⊸ Sy ∈ { x | 1 })

⊢ 1

0 ∈ { x | 1 }

1 ⊢ 1

x ∈ { x | 1 } ⊢ 1

0 ∈ { x | 1 }⊸ x ∈ { x | 1 } ⊢ 1

!∀y.(y ∈ { x | 1 }⊸ Sy ∈ { x | 1 })⊸ (0 ∈ { x | 1 }⊸ x ∈ { x | 1 }) ⊢ 1

∀α.(!∀y.(y ∈ α⊸ Sy ∈ α)⊸ (0 ∈ α⊸ x ∈ α)) ⊢ 1

The soft natural numbers exhibit a form of induction, which we will call Soft in-
duction overN.

Proposition 15 The following inference is derivable inSLST:

Γ ⊢ A[x := 0] ∆,A[x := y] ⊢ A[x := Sy]
N − ind.

Γ, !∆, t ∈ N ⊢ A[x := t]

PROOF.

∆,A[x := y] ⊢ A[x := Sy]
∈ L,∈ R

∆, y ∈ { x |A } ⊢ Sy ∈ { x |A }
⊸ R

∆ ⊢ y ∈ { x |A }⊸ Sy ∈ { x |A }
∀L

∆ ⊢ ∀y.(y ∈ { x |A }⊸ Sy ∈ { x | A })
SP

!∆ ⊢!∀y.(y ∈ { x |A }⊸ Sy ∈ { x | A })

Γ ⊢ A[x := 0]
∈ R

Γ ⊢ 0 ∈ { x | A }

A[x := t] ⊢ A[x := t]
∈ L

t ∈ { x |A } ⊢ A[x := t]
⊸ L

Γ,0 ∈ { x | A }⊸ t ∈ { x |A } ⊢ A[x := t]
⊸ L

Γ, !∆, !∀y.(y ∈ { x | A }⊸ Sy ∈ { x |A })⊸ (0 ∈ { x |A }⊸ t ∈ { x |A }) ⊢ A[x := t]
∀L.

Γ, !∆, t ∈ N ⊢ A[x := t]

However, it does not seem possible to find a non-trivial setA such that∃y ∈
N.A(x, y) ⊢ ∃y ∈ N.A(Sx, y) holds; there is no obvious proof even for successor.
Consider, however, the following set defined by a fixpoint:

Definition 16 (Safe natural numbers)

x ∈ N′� x = 0 ⊕ ∃y(y ∈ N′ ⊕ x = S y)

This set also represents the natural numbers inSLST, but unlikeN it is provably
closed under successor.

9

Proposition 17 (a) ⊢ 0 ∈ N′;
(b) t ∈ N′ ⊢ St ∈ N′;
(c) t ∈ N′ iff t ∈ N iff t = n for some n∈ N

Of course, the final part of the preceding is a metatheorem, but we may derive one
direction of the transformation via soft induction. In fact, we can do better.

Theorem 18 (Soft coercion)For each natural number n,

x ∈ N ⊢!nx ∈ N′.

PROOF. Fix ann ∈ N. Then⊢!n0 ∈ N′ is provable inSLST, and !nt ∈ N′ ⊢!nSt ∈ N,
from Proposition 17 and soft promotion. The result the follows by soft induction.

Similarly, we obtain a form of contraction for safe naturals.

Theorem 19 The following inference is derivable inSLST:

t ∈ N′, t ∈ N′, Γ ⊢ ∆
N′ − cont

t ∈ N, Γ ⊢ ∆

PROOF. We have⊢ 0 ∈ N′ ⊗ 0 ∈ N′ andx ∈ N′ ⊗ x ∈ N′ ⊢ Sx ∈ N′ ⊗ Sx ∈ N′. By
soft induction,t ∈ N ⊢ t ∈ N′ ⊗ t ∈ N′. An application of cut completes the proof.

Using these two terms representing the naturals together, we can begin to recover
some arithmetic operations, using soft induction overN. We define the graphs of
addition and multiplication by fixpoint:

Definition 20 Let add be a term which satisfies

〈x, y, z〉 ∈ add�(y = 0 ⊗ z= 0)
∃y′.∃z′.(y = S(y′) ⊗ z= S(z′) ⊗ 〈x, y′, z′〉 ∈ add).

Such a term exists by the fixpoint theorem. Similarly, letmult be a term which
satisfies

〈x, y, z〉 ∈ mult�(y = 0 ⊗ x = z)
∃y′.∃z′.(y = S(y′) ⊗ 〈x, z′, z〉 ∈ add ⊗ 〈x, y′, z′〉 ∈ mult).

Certainly these terms satisfy the first and second conditions of representability:

Proposition 21 (a) 〈n,m, k〉 ∈ add is provable inSLST iff n+m= k;
(b) 〈n,m, k〉 ∈ mult is provable inSLST iff n.m= k.

10

We show now, by induction overN, that these terms represent addition and multi-
plication, respectively, with domainsN and codomainN′

Proposition 22 The following are provable inSLST:

(a) ∀x ∈ N′.∀y ∈ N.∃!z ∈ N′.(〈x, y, z〉 ∈ add);
(b) ∀x.∀y.∃!z.(!(x ∈ N) ⊗ y ∈ N⊸ (z ∈ N′ ⊗ 〈x, y, z〉 ∈ mult)).

PROOF. (a) We prove
i ⊢ ∀x ∈ N′.∃!z ∈ N′.(〈x, 0, z〉 ∈ add), and
ii ∀x ∈ N′.∃!z ∈ N′.(〈x, y, z〉 ∈ add) ⊢ ∀x ∈ N′.∃!z ∈ N′.(〈x,Sy, z〉 ∈ add).

An application of soft induction overN gives

y ∈ N ⊢ ∀x ∈ N′.∃!z ∈ N′.(〈x, y, z〉 ∈ add)

from which the desired conclusion trivially follows.

It is clear that〈x, 0, x〉 ∈ add is provable. Suppose⊢ 〈x, 0, z〉 ∈ add. Then⊢ 0 = 0 ⊗ x = z
or ⊢ ∃y′.∃z′.(0 = S(y′) ⊗ z= S(z′) ⊗ 〈x, y′, z′〉 ∈ add) is derivable. Since0 is prov-
ably not the sucessor of any term, (i) follows.

For (ii), existence of an image follows from the following:

〈x, y, z〉 ∈ add ⊢ 〈x, y, z〉 ∈ add ⊢ Sy = Sy⊗ Sz= Sz

〈x, y, z〉 ∈ add ⊢ Sy = Sy⊗ Sz= Sz⊗ 〈x, y, z〉 ∈ add

〈x, y, z〉 ∈ add ⊢ ∃y′.∃z′.(Sy = Sy′ ⊗ Sz= Sz′ ⊗ 〈x, y, z〉 ∈ add)

〈x, y, z〉 ∈ add ⊢ 〈x,Sy,Sz〉 ∈ add z ∈ N′ ⊢ Sz ∈ N′
⊗R,⊗L

z∈ N′ ⊗ 〈x, y, z〉 ∈ add ⊢ Sz∈ N′ ⊗ 〈x,Sy,Sz〉 ∈ add

Here it is critical that we use the setN′, as we require thatz ∈ N′ ⊢ Sz ∈ N′ is
provable.

11

For uniqueness, see the following derivation:

w = Sw′,w′ = z ⊢ w = Sz 〈x, y,w′〉 ∈ add ⊢ 〈x, y,w′〉 ∈ add

w = Sw′, 〈x, y,w′〉 ∈ add, 〈x, y,w′〉 ∈ add⊸ w′ = z ⊢ w = Sz

w = Sw′, 〈x, y,w′〉 ∈ add,∀w.(〈x, y,w〉 ∈ add⊸ w = z) ⊢ w = Sz

w = Sw′ ⊗ 〈x, y,w′〉 ∈ add,∀w.(〈x, y,w〉 ∈ add⊸ w = z) ⊢ w = Sz

∃w′.(w = Sw′ ⊗ 〈x, y,w′〉 ∈ add),∀w.(〈x, y,w〉 ∈ add⊸ w = z) ⊢ w = Sz

〈x,Sy,w〉 ∈ add,∀w.(〈x, y,w〉 ∈ add⊸ w = z) ⊢ w = Sz

∀w.(〈x, y,w〉 ∈ add⊸ w = z) ⊢ 〈x,Sy,w〉 ∈ add⊸ w = Sz)

∀w.(〈x, y,w〉 ∈ add⊸ w = z) ⊢ ∀w.(〈x,Sy,w〉 ∈ add⊸ w = Sz)

Combining the last two results, we complete the proof of (ii). Aplying soft induc-
tion yields the derivation of totality required.

(b) Similarly to the above, we can prove:

⊢ ∃!z ∈ N′.(〈x, 0, z〉 ∈ mult) (1)

We can also prove

∃!z∈ N′.(〈x, y, z〉 ∈ mult),∀z ∈ N′.∃!w ∈ N′.(〈x, z,w〉 ∈ add) ⊢ ∃!w ∈ N′.(〈x,Sy,w〉 ∈ mult)
(2)

From the representability of addition, we havex ∈ N ⊢ ∀z ∈ N′.∃!w ∈ N′.(〈z, x,w〉 ∈
add). Hence we may derive

x ∈ N,∃!z ∈ N.(〈x, y, z〉 ∈ mult) ⊢ ∃!w ∈ N′.(〈x,Sy,w〉 ∈ mult) (3)

Applying soft induction overy ∈ N with (1) and (3), we obtain

!(x ∈ N), y ∈ N ⊢ ∃!w ∈ N′.(〈x, y,w〉 ∈ mult)

as required.

Corollary 23 Addition and multiplication of natural numbers are representable in
SLST with domainN and codomainN′.

PROOF. The result follows immediately for multiplication, by an application of
multiplexing to (y ∈ N). For addition, we must first apply coercion to (y ∈ N′), and
then multiplexing to both arguments.

12

There is a major difficulty with this approach, where we useN as a domain and
N′ as a codomain; we do not have an obvious method for composing represented
functions.2 Thus we cannot infer representability of the polynomials from repre-
sentability of addition and multiplication. To remedy thissituation, we will go via
a translation of Lafont’s representation of the polynomials inSLL 2

5.1 Polynomial functions and sets of preimages

Recall from the introduction that the typing of polynomial functions inSLL 2 is
somewhat eccentric; specifically, one cannot type the termsrepresenting polyno-
mial functions fromN to N. This is also seemingly the case inSLST. For example,
successor may be given as follows:

Lemma 24 The following is provable inSLST:

x ∈ N ⊢ ∀α.(!∀y(y ∈ α⊸ S y∈ α) ⊗ ∀y.(y ∈ α⊸ S y∈ α)⊸ (0 ∈ α⊸ Sx ∈ α))

We will give the set

{ x |α.(!∀y(y ∈ α⊸ S y∈ α) ⊗ ∀y.(y ∈ α⊸ S y∈ α)⊸ (0 ∈ α⊸ x ∈ α)) }

the nameN〈X + 1〉. This notation comes from a similar structure inSLL 2:

Definition 25 We extend the definition An to polynomial expressionsas follows:

AX =!A AP+Q = AP ⊗ AQ APQ = (AP)Q.

Given a polynomial expression P, we write A〈P〉 for the formula A where each
subformula!B is replaced by BP.

It should now be clear thatN〈X + 1〉 fits into this general scheme.

This scheme allows Lafont to define a representation of addition in SLL 2:

N,N ⊢ N〈X + X〉,

or more generally
N〈P〉,N〈Q〉 ⊢ N〈P+ Q〉,

To annotate this proof with set theoretic information, so that it yields a proof of the
totality of addition inSLST, we would need to be given (or define atomically) an
operation “+” on terms ofSLST, such that

2 This is not the issue with composition mentioned in Section 4; however,note that we
have not yet proven multiplication to be generically representable.

13

(a) t + 0 = t, and
(b) t + Ss= S(t + s)

which yields a termt+swhich we may substitute into∃x.(x ∈ N〈P+Q〉⊗〈x, y, z〉 ∈
add) However, such operations do not fit naturally into a set theoretic setting, so
instead we work with a term inspired by the “Types with integer” approach of
Baillot and Mogbil.

Lemma 26 Consider the following term ofSLST:

N〈P+ Q〉[add] := { t | t = 〈x, y〉 ⊗ ∀α.(∀y(y ∈ α⊸ Sy ∈ α)P ⊗ ∀y(y ∈ α⊸ Sy ∈ α)Q

⊸ (0 ∈ α⊸ ∃!z.(z ∈ α ⊗ 〈x, y, z〉 ∈ add))) }

The following is provable inSLST:

x ∈ N〈P〉, y ∈ N〈Q〉 ⊢ 〈x, y〉 ∈ N〈P+ Q〉[add]

PROOF. See appendices.

We will call the termN〈P+Q〉[add] a set ofadd preimages, the idea being that we
may prove that ifx andy are natural numbers, then they have a unique sum in any
set containing0 and closed under successor. Similarly:

Lemma 27 Consider the following term ofSLST:

N〈PQ〉[mult] := { t | t = 〈x, y〉 ⊗ ∀α.(∀y(y ∈ α⊸ Sy ∈ α)PQ

⊸ (0 ∈ α⊸ ∃!z.(z ∈ α ⊗ 〈x, y, z〉 ∈ mult))) }

The following is provable inSLST:

x ∈ N〈P〉, y ∈ N〈Q〉 ⊢ 〈x, y〉 ∈ N〈PQ〉[mult]

More generally, given a polynomial expresionP and a termt of SLST, define the
following term:

N〈P〉[t] := { x | ∀α.(∀y(y ∈ α⊸ Sy ∈ α)P

⊸ (0 ∈ α⊸ ∃!z.(z ∈ α ⊗ 〈x, z〉 ∈ t)) }

Define also thepseudo-degreeδP of a polynomial expressionP as follows:

δn = 0, δX = 1, δ(P+ Q) = δ(PQ) = δP+ δQ.

Theorem 28 For any polynomial expression P, there exists a term p ofSLST such
that

14

(a) (x ∈ N)(δP) ⊢ x ∈ N〈P〉[p] is generically provable inSLST
(b) ⊢ 〈x, y〉 ∈ p is provable inSLST if and only if, for some n,m ∈ N, x = n,

y = m, and P(n) = m.

PROOF. By induction on the structure ofP. If P is a constantn then we haveδP =
0 and⊢ ∀α.(∀y.(y ∈ α ⊸ Sy ∈ α)n

⊸ (0 ∈ α ⊗ ∃!z.(z ∈ α ⊗ 〈x, z〉 ∈ { 〈x, z〉 | z= n }
Suppose now that for polynomial expressions containing less thanm instances of+
and∗, the theorem holds. LetP containm constructors, and be of the formQ+ R.
ThenQ andRsatisfy the conditions of the induction hypothesis, and there are terms
qandr such that (x ∈ N)(δQ) ⊢ x ∈ N〈Q〉[q] and (x ∈ N)(δR) ⊢ x ∈ N〈R〉[r]. As shown
in Prop 50,

x ∈ N〈P〉[t], z ∈ N〈Q〉[s]

⊢ (((y ∈ α⊸ Sy ∈ α)P+Q
⊸ (0 ∈ α⊸ ∃!u.∃!v.∃!w(w ∈ α ⊗ 〈x, u〉 ∈ t ⊗ 〈z, v〉 ∈ s⊗ 〈u, v,w〉 ∈ add)))

where∃!u.∃!v.(〈n, u〉 ∈ t ⊗ 〈n, v〉 ∈ s⊗ 〈u, v,w〉 ∈ add))) is provable iff w is k for
somek ∈ N, andP(n) = k. The case for multiplication is similar.

The formulax ∈ N〈P〉[t] is powerful because it contains information about the
totality of t, but also has computational content. For instance, we can perform in-
duction overN〈P〉[t]:

Proposition 29 The following inference is derivable inSLST:

Γ ⊢ A[x := 0] ∆,A[x := y] ⊢ A[x := Sy]
N〈P〉[t] − ind.

Γ, !∆, s∈ N〈P〉[t] ⊢ ∃!w(A[x := w] ⊗ 〈s,w〉 ∈ t)

PROOF.

∆,A[x := y] ⊢ A[x := Sy]

∈ L,∈ R

∆, y ∈ { x |A} ⊢ Sy ∈ { x |A}

⊸ R

∆ ⊢ y ∈ { x |A} ⊸ Sy ∈ { x |A}

∀L

∆ ⊢ ∀y.(y ∈ { x |A} ⊸ Sy ∈ { x |A})

SP

!∆ ⊢!∀y.(y ∈ { x |A} ⊸ Sy ∈ { x |A})

Γ ⊢ A[x := 0]

∈ R

Γ ⊢ 0 ∈ { x |A}

A[x := w] ⊢ A[x := w]

∈ L

w ∈ { x |A} ⊢ A[x := w] 〈s,w〉 ∈ t ⊢ 〈s,w〉 ∈ t

⊗R,⊗L

w ∈ { x |A} ⊗ 〈s,w〉 ∈ t ⊢ A[x := w] ⊗ 〈s,w〉 ∈ t

∃L,∃R

∃! w(w ∈ { x |A} ⊗ 〈s,w〉 ∈ t ⊢ ∃! w(A[x := w] ⊗ 〈s,w〉 ∈ t)

⊸ L

Γ,0 ∈ { x |A} ⊸ ∃! w(w ∈ { x |A} ⊗ 〈s,w〉 ∈ t ⊢ ∃! w(A[x := w] ⊗ 〈s,w〉 ∈ t)

⊸ L

Γ, !∆, !∀y.(y ∈ { x |A} ⊸ Sy ∈ { x |A}) ⊸ (0 ∈ { x |A} ⊸ ∃! w(w ∈ { x |A} ⊗ s,w ∈ t) ⊢ ∃! w(A[x := w] ⊗ 〈s,w〉 ∈ t)

∀L.

Γ, !∆, s ∈ N〈P〉[t] ⊢ ∃! w(A[x := w] ⊗ 〈s,w〉 ∈ t)

Corollary 30 Each polynomial is generically representable inSLST.

PROOF. Let P be a polynomial expression. Then we know that, for somen, there
exists a termp such thatp satisfies the second condition of generic representation

15

and (s ∈ N)(n) ⊢ s ∈ N〈P〉[p] is provable inSLST. Now applyN〈P〉[p] induction to
the formulax ∈ N′, to obtain

t ∈ N〈P〉[p] ⊢ ∃!w(w ∈ N′ ⊗ 〈t,w〉 ∈ p).

apply cut to obtain

(t ∈ N)(n) ⊢ ∃!w(w ∈ N′ ⊗ 〈t,w〉 ∈ p).

6 Words over a finite alphabet

In this section we consider the representation of binary words inSLST, as a special
case of words overn symbols. As one might expect, a similar separation occurs for
the words as occurs for the natural numbers. First, define

ε := ∅, Si(t) := 〈i, t〉.

The following two definitions each give a term which represents the words over an
alphabet withn elements:

Definition 31 (Soft Words)

x ∈ Wn� ∀α(∀y(y ∈ α⊸ S0y ∈ α)⊸∀y(y ∈ α⊸ . . .⊸ Sn−1y ∈ α)⊸ (ε ∈ α⊸ x ∈ α))

Definition 32 (Safe Words)

x ∈ W′n� x = ε ⊕ ∃y(y ∈ W′n ⊗ x = S0y) ⊕ · · · ⊕ ∃y(y ∈ W′n ⊗ x = Sn−1y)

From this point onward, letW stand forW2, and similarlyW := W2 andW := W′′2

We derive an induction principle over the structure of strings inWn:

Proposition 33 The following inference is derivable inSLST:

Γ ⊢ A[x := ε] ∆0,A[x := y] ⊢ A[x := S0y] . . . ∆n−1,A[x := y] ⊢ A[x := Sn−1y]
Wn − ind.

Γ, !∆, s ∈ Wn ⊢ A[x := s]

Corollary 34 For each n≤ m, and for any p,

x ∈ Wn ⊢!
px ∈ W′m.

We may capture the length function|x| as follows:

16

Proposition 35 Let the termlenn be defined by fixpoint as

〈x, y〉 ∈ len�(x = ε ⊗ y = 0)⊕
∃x′.∃y′.(x = S0(x

′) ⊕ . . . ⊕ x = Sn−1x⊗ y = S(y′) ⊗ 〈x, y′〉 ∈ lenn).

Then the following is provable inSLST:

x ∈ Wn ⊢ x ∈ N〈Xn〉[lenn]

We leave the proof as an easy exercise.

The purpose of all this is to provide a polynomial bound on theoutput of a Turing
machine; as such, the following is an important but trivial generalisation of the
preceding proposition:

Proposition 36 Given a term p representing a polynomial expression P, let p′ be
defined as{ x | ∃!v.(〈x, v〉 ∈ lenn ⊗ 〈v,w〉 ∈ p) } Writing P〈Q〉 for the polynomial
expression given by replacing each instance of X with Q, we have

(x ∈ Wn)
δP ⊢ x ∈ N〈P〈Xn〉〉[p′]

Meanwhile, the safe words are well behaved with respect to the successor functions.

Proposition 37 For each i< n

x ∈ Wn ⊢ Si x ∈ Wn

is provable inSLST

Corollary 38 The successor functions onWn are generically representable with
multiplicity 1 fromW′n to W′n.

Additionally, one may define functions by cases of a term inW′n:

Proposition 39 Given functionsψε : T → U andψi : Wn × T → U, define a new
functionφ:

φ(ε, t) = ψε(t);

φ(i.w, t) = ψi(w, t).

Suppose now that T and U are represented by terms t and u, and that ψε is generi-
cally representable from t to u by hε, andψi is generically representable fromW′, t
to u by hi, such that

(a) The multiplicity ofW′ in each hi is 1, and
(b) The multiplicity of t in hε each hi is some value r.

17

Thenφ is generically representable with domainsW′, t and codomain u.

PROOF.

〈x, y, z〉 ∈ f �(x = ε ⊗ 〈y, z〉 ∈ hε)⊕
∃x′(x = S0(x

′) ⊗ 〈x′, y, z〉 ∈ h0) ⊕ . . . ⊕ ∃x′(x = Sn−1x′ ⊗ 〈x′, y, z〉 ∈ hn−1).

By assumption, (y ∈ t)r ⊢ ∃!z.(〈y, z〉 ∈ hε), from which

x = ε, (y ∈ t)r ⊢ ∃!z.(〈x, y, z〉 ∈ f).

Also, for each 0≤ i ≤ n− 1, we have

x′ ∈ W′n ⊗ x = Si(x
′), (y ∈ t)r ⊢ ∃!z.(〈x, y, z〉 ∈ f).

Hence we have

x ∈ W′n, (y ∈ t)r ⊢ ∃!z.(〈x, y, z〉 ∈ f).

Corollary 40 The predecessor function onW is generically representable with
both domain and codomain W′n, and multiplicity1

6.1 Soft lambda calculus and polynomial soundness

We will demonstrate in the next section that any function computable in polyno-
mial time is generically representable, but first we addressthe issue of “polytime
soundness” – that is, we must verify that any generically representable function is
polytime computable. To do so, we turn to the Soft lambda-calculus of Baillot and
Mogbil [2]. Soft lambda-calculus (SLC) is a calculus typable in SoftAffineLogic
– that is,SLL with unrestricted weakening.

We give the typing rules for Soft Lambda calculus in Table

A typed term ofSLC is a pairM : A arising from a judgementΓ ⊢ M : A; such a
termM is a special case of a well-formed term3 . Given such a term, we define its
depthandsizeas follows:

3 The typed/typable terms are not the only ones of interest inSLC; the untyped calculus
also enjoys polynomial reduction.

18

A
x : A ⊢ x : A

Γ, x : A ⊢ M : B
⊸ R

Γ ⊢ λx.M : A⊸ B

Γ ⊢ u : A ∆, x : B ⊢ M : C
⊸ L

Γ,∆, y : A⊸ B ⊢ M[x := yu] : C

x1 : A1, . . . , xn : An ⊢ M : C
SP

y1 :!A1, . . . ,yn :!An ⊢ lety be!x in !M :!C

Γ, x1 : A . . .xn : A ⊢ M : C
mplx

Γ, y :!A ⊢ lety be!x in M[x1 := y, . . . xn := y] : C

x : A[x := t], Γ ⊢ M : C
∀L

x : ∀x.A, Γ ⊢ M : C

Γ ⊢ M : C
∀R

Γ ⊢ M : ∀x.C

x : A[x := t], Γ ⊢ M : C
∈ L

x : t ∈ {x|A}, Γ ⊢ M : C

Γ ⊢ M : C[x := t]
∈ R

Γ ⊢ M : t ∈ {x|A}

Γ ⊢ M : A Γ′, x : A ⊢ N : C
C

Γ,Γ′ ⊢ u[x := t] : C

Table 2
ISAL typing rules, plus typing for comprehension

Definition 41 (a) Thesize|M| of a termM is given by:

|x| = 1, |λx.M| = |M| + 1, |(MN)| = |M| + |N|

|!M| = |M| + 1 |letM bex in N| = |M| + |N| + 1

(b) Thedepthof a termM is defined as follows: letN be a subterm ofM. The define
d(N, M) to be the number of subtermsL of M such thatN is a subterm ofL and
L is of the form!L′. The depth d(M) of M is then the maximum value of d(N, M)
for N a subterm ofM.

The reductions rules ofSLC are the following

(β) : ((λxM.) N) −→ M[x := N];
(!) : let !N be!x in M −→ M[x := N];

(com1) : let (letM1 be!y in M2) be!x in M3 −→ letM1 be!y in (letM2 be!x in M3);
(com2) : (letM be!x in M2) M3 −→ letM1 be!x in (M2M3).

We have the following theorem:

Theorem 42 (Polytime strong normalization) For any integer d there is a poly-

19

Γ,x : t ∈ µX.A ⊢ M : B
(left unfold)

Γ,y : A[X := µX.A,z := t] ⊢ M[x := fold y] : B

Γ ⊢ M : µX.A
(right unfold)

Γ ⊢ unfold M : A[X := µX.A]

Γ,x : A[X := µX.A,z := t] ⊢ M : B
(left fold)

Γ,y : t ∈ µX.A ⊢ M[x := unfold y] : B

Γ ⊢ M : A[X := µX.A,z := t]
(right fold)

Γ ⊢ fold M : t ∈ µX.A

Table 3
Fixpoint typing rules

nomial Pd (with degree linear in d) such that for any termM of depth d, any sequence
of reductions of t has length bounded by Pd(|M|).

Since this polytime normalization theorem holds even for the type-free calculus,
SLC may be extended with recursive types (fixpoints); Baillot and Mogbil thus
extend their typed calculus to a calculus with fixpoints (ISALF) while retaining
polytime normalization. In our setting, we also have accessto fixpoints, but their
typing derivations are not quite so simple as inISALF . The typing derivations for
set theoretic fixpoints are given in Table 3.

In this table, the abbreviations

fold M := λyzw.yzw (λv.v M)

and
unfold N := N(λv.v λw.w λxy.y),

, derived from the definitions in the fixpoint theorem.

Theorem 43 (Subject reduction) If we haveΓ ⊢: MA in ISALF, andM→ M′′, then
Γ ⊢ M′ : A

We now use this calculus to help demonstrate polynomial soundness. Observe that
we may translate any proof inSLST into a typing judgement inSLC– instances
of nullary multiplexing are replaced by first a weakening andthen a unary multi-
plexing, and then all the missing connectives (including the additive⊕) may are
defined, since we have access to unrestricted weakening. In particular, recall that
the existential is given by

∃y.A := ∀x.(∀y.(A⊸ t0 ∈ x)⊸ t0 ∈ x),

multiplicative conjunction by

A⊗ B := ∀x.((A⊸ t0 ∈ x)⊸ (B⊸ t0 ∈ x)⊸ t0 ∈ x).

20

and additive disjunction by

A⊕ B := ∀x.(A⊸ B⊸ t0 ∈ x)⊸ t0 ∈ x).

with the standard lambda terms to represent constructs suchasinl , inr pairing
(written− ⊗ −), and projectionsfst andsnd.

We now give canonical proofs that, for any wordw ∈W, w ∈ W andw ∈ W′:

Definition 44 Let w := i0 · · · in ∈W2. Thenw̄ denotes

λx0x1.(letx0 be!z0 in (letx1 be!z1 in (λy.(zi0 · · · (zin))))),

and letε̂ denotefoldinlλx.x andŵ.i denote

fold inr(λz.z(î ⊗ ŵ))

where0̂ := inlλx.x and1̂ := inrλx.x

A W representation of w is a term M ofSLC such that⊢ M : (w ∈ W), and aW′

representation of w is a term M ofSLC such that⊢ M : (w ∈ W′).

Now define the relation≈ on terms ofSLC as the least binary congruence satisfy-
ing:

(η) : λx.Mx ≈ M, ifx < FV(M)
(let) : let be N in!xM ≈ Mif x < FV(M)

(λ − let) : λx.(letM be!y in N ≈ letM be!y in λx.N, ifx < FV(M);
(let–let) : letM be!x in (letN be!y in L) ≈ letN be!y in (letM be!x in L)

It is easy to see that≈ is compatible with−→∗. That is, ifM ≈ N andM −→∗ M′, then
there is a termN′ such thatN −→∗ N′ andN ≈ N′.

Lemma 45 (a) w̄ is aW representation of w;
(b) If M is a W representation of w, then M≈ w̄;
(c) ŵ is aW′ representation of w;
(d) If N is aW′ representation of w, then N≈ w̄.

Now suppose that we have some statement of the representability of a function
φ : W2→ W2. Then we have

⊢ G : ∀x(!(x ∈ W2)⊸ ∃y(y ∈ W′2 ⊗ 〈x, y〉 ∈ f))

as the result of a typing derivation inISAL . Let w ∈ W2. Then⊢ w̄ : w ∈ W2 is
derivable. In addition, we have⊢ G :!(w ∈ W2)⊸ ∃y ∈ W′2.(〈w, y〉 ∈ f)), so

⊢ G!w̄ : ∃y ∈ W2.(〈w, y〉 ∈ f)

21

By subject reduction the normal form ofG!w̄ also has this type, and must therefore
be of the formλx.x(λv.vNL). Moreover,⊢ N : u ∈ W′2 and⊢ L : 〈w, u〉 ∈ f must be
derivable for some termu of SLST. Henceu is ŵ′ for some wordw′ ∈W2. Finally,
we obtain, settindid := λx.x andfst := λxy.x,

λz.(((G z) id) fst) !w̄ −→ ((G !w̄) id) fst)
−→∗ ((λx.x (λv.vNL)) id) fst −→∗ λv.vNL fst −→∗ N ≈ ŵ′,

as required.

Theorem 46 Representable functions are polytime computable.

PROOF. Given a wordw, its canonical representant ¯w has depth one, and so the
depth ofλz.(((G z) id) fst) !w̄ is a constantd no matter which word we pick. The
size|w̄| is 10+ |w|; let the the size ofλz.(((G z) id) fst) ben. We have, by polytime
strong normalization, a bounding functionPd(n+ 10+ |w|) – a polynomial in|w|.

7 Simulation of Turing Machines

We present an encoding of single tape polynomial-time Turing machines inSLST,
demonstrating that the latter proves total any function computable in polynomial
time.

We will work with Turing machines over a three letter alphabet (1, 0 andb =“blank”)
with set of statesQn = {q0, . . . , qn−1}, whereq0 is the initial state. The current
configuration of the machine may then be given as a triple〈q, l, r〉 ∈ Conf =
Q ×W3 ×W3, whereq is the current state,l is the non-blank portion of the tape
to the left of the head, andr is the non-blank portion of the tape to the right of
the head. By convention,l is written in reverse order, andr includes the symbol
currently read.

Definition 47 A functionφ : W2 → W2 is a polynomial-time function if there is
some Turing machine T and some polynomial P such that after running T with
input the string x for P(|x|) steps, the output (the non-empty right-hand portion of
the tape) isφ(x).

We show now how, given such a functionφ, one may construct a termf that repre-
sents it inSLST.

The set of states ofT may be represented inSLST by the termQn = {0, . . . , n − 1},
with evident bijection. We represent the set of possible configurations ofT by the

22

term
Conf = Qn ×W′3 ×W′3.

By Corrollary 34,x ∈ W2 ⊢ x ∈ W′3. It is clear thatx ∈ W2 ⊢ 〈0, ε, x〉 ∈ Conf is
provable inSLST: an application of cut gives:

x ∈W2 ⊢ 〈0, ε, x〉 ∈ Conf (4)

The transition function forT may be expressed as a functionδ : Conf → Conf:
given a particular state and a particular read symbol, the new tape is given by suc-
cessor and predecessor operations on the left and right tapes. Recall that successor
and predecessor are both genericaly representable fromW′3 to W′

3 with multiplicity
1. Since transition function is defined by a conditional onW′3 over functions satis-
fying the conditions of Proposition 39 it is generically representable with domain
Conf, codomainConf and multiplicity 1 Letb be a term ofSLST representing this
function.

We represent the extended transition function ofT started on an initial stringc by
the a termd by fixpoint in a manner which should by now be familiar:

〈t,w〉 ∈ d� (t = 0 ⊗ w = 〈0, ε, c〉)
⊕ ∃t′∃x∃x′.∃y∃y′.∃z∃z′.(w = 〈x, y, z〉
⊗ 〈〈x′, y′, z′〉,w〉 ∈ b⊗ t = St′ ⊗ 〈t′, 〈x′, y′, z′〉〉 ∈ d)

Given a polynomialP, we want to know what the configuration of the machine
is afterP(x) steps – the functionψ(P(x)) . To arrive at this we use induction over
N〈P〈X2〉〉[p′], as defined in Proposition 29, where, as before,p := { x | ∃!v.(〈x, v〉 ∈
lenn ⊗ 〈v,w〉 ∈ p) }:

c ∈ Conf ⊢ ∃!c.(c ∈ Conf ⊗ 〈0, c〉 ∈ d) ∃!c.(c ∈ Conf ⊗ 〈y, c〉 ∈ d) ⊢ ∃!c.(c ∈ Conf ⊗ 〈Sy, c〉 ∈ d)
N〈P〉[t] − ind.

c ∈ Conf, x ∈ N〈P〈X2〉〉[p′] ⊢ ∃!k.(k ∈ Conf ⊗ ∃!n.(〈n, k〉 ∈ d) ⊗ 〈x, n〉 ∈ p′)
(5)

From lemma 36:
(x ∈ W2)

δP ⊢ x ∈ N〈P〈X2〉〉[p′]. (6)

Combining (4), (5) and (6), we obtain

(x ∈ W2)
1+δP.x ∈ W′3 ⊢ ∃

!k.(k ∈ Conf ⊗ ∃!n.(〈n, k〉 ∈ d) ⊗ 〈x, n〉 ∈ p′) (7)

Finally, we extract the result of the function: this will be the non-empty portion of
the right-hand tape. This consists of two stages. First observe that the following
holds:

∃!w.(w ∈ Conf⊗ 〈x,w〉 ∈ t) ⊢

∃!r.(r ∈ W′3 ⊗ ∃
!q.∃! l.(q ∈ Qn ⊗ l ∈ W′3 ⊗ 〈x, 〈q, l, r〉〉 ∈ t))

23

Combining this with (7) yields

(x ∈ W2)
1+δP, x ∈ W′3 ⊢ ∃

!r.(r ∈ W′3⊗

∃!q.∃! l.(q ∈ Qn ⊗ l ∈ W′3 ⊗ ∃
!n.(〈n, 〈q, l, r〉〉 ∈ d) ⊗ 〈x, n〉 ∈ p′))

(8)

The righthand side of this is of the form∃!r.(r ∈W′
3 ⊗ A(x, r))

The outputr is only well-formed if it consists of only 1s and 0s. The following
function extracts the well-formed outputs, sending the outputs containing a blank
to the empty string: and is representable inSLST:

τ(0, y) = τ(x, ε) = τ(Sx,S2y) = ε;
τ : N ×W3→W2, τ(Sx,S0y) = S0τ(x, y);

τ(Sx,S1y) = S1τ(x, y);

Let g be the evident term ofSLST expressing this function as a fixpoint.:

〈x, y, z〉 ∈ g� (x = 0 ⊗ z= ε) ⊕ (y = ε ⊗ z= ε) ⊕ ∃y′(y = S2y
′ ⊗ z= ε

⊕ ∃x′.∃y′.∃z′.(x = Sx′⊗

((y = S0y
′ ⊗ z= S0z

′) ⊕ (y = S1y
′ ⊗ z= S1z

′)) ⊗ 〈x′, y′, z′〉 ∈ r)

Then
y ∈ N〈P〈X2〉〉[p], ⊢ ∀x ∈ W′3.∃

!z ∈W′
2(〈x, y〉 ∈ g)

by induction overx ∈ N〈P〈X2〉〉[p]. We leave the details to the reader, noting that
the inductive step

∀y ∈ W′3.∃
!z ∈W′

2(〈x, y, z〉 ∈ g) ⊢ ∀y ∈ W′3.∃
!z ∈ W′

2(〈Sx, y, z〉 ∈ g)

uses as a lemma the fact that predecessor on words over three letters is generically
representable with multiplicity one (see Corollary??).

We have

(y ∈ W2)
1+(2.δP) ⊢ x ∈ N〈P〈X2〉〉[p] ⊗ ∃!r.(r ∈ W′3 ⊗ A(x, r))

from which
(x ∈ W2)

1+(2.δP) ⊢ ∃!y.(y ∈ W′2 ⊗ B(x, y))

whereB(x, y) = ∃n.∃!r.(〈x, n〉 ∈ p′ ⊗ 〈n, r, y〉 ∈ g ⊗ A(x, r). Finally, letting f be
defined asf = { z | ∃x∃y.(z= 〈x, y〉 ⊗ B(x, y)) }, we have

(x ∈ W2)
1+(2.δP) ⊢ ∃!y.(y ∈ W′2 ⊗ 〈x, y〉 ∈ f

where f is a term ofSLST satisfying〈m, n〉) ∈ f iff φ(m) = n.

24

We have shown:

Theorem 48 Polynomial time functions fromW toW are generically representable
in SLST with domainW and codomainW′ and so are also representable.

8 Conclusion and Further work

We have a notion of provably total function in a set theory based on Lafont’s Soft
Linear Logic, and shown that these functions are precisely the polynomial time
functions. Moreover, by using the fixpoints inherent in set theory, we have been
able to give the same codomain (W’) to each represented function. One curios-
ity of the representation given is that input and output of total functions are given
by different representations of the same set. This gives rise to an obvious ques-
tion about composition. Of course, since the class of polynomial-time functions is
closed under composition, so are the class of representablefunctions, but finding a
constructive proof of this fact has proved elusive. What is known is that for any rep-
resentable functionf , the proof that it is representable yields a polynomial bound
Q on the size of the output off . Using a function similar toτ from the previous sec-
tion, one can then extract a pre-image representation of theoutput of f . However,
it is only in certain special cases that the proof that a function g is representable
may be reworked into a proof that will take such an input – in particular, it must
be generically representable, but in addition we need to be able to give a pre-image
as an argument. One special case in which this works is that ofa proof via Turing
representability:

Lemma 8.1 Letφ be a function computed by some Turing machine T in polynomial
time. There is a term f such that f representsφ and, for any term t and polynomial
Q, for some polynomial P

(x ∈ W〈Q〉[t])1+(2.δP) ⊢ ∃!y.(y ∈ W′2 ⊗ 〈x, y〉 ∈ f ′)

holds, where〈x, y〉 ∈ f ′ iff ∃!z.〈x, z〉 ∈ t ⊗ 〈z, y〉 ∈ f .

(whereW〈Q〉[t] is the evident generalization of sets of pre-images to words).

Another evident question is the relationship between this approach to polytime and
the function algebra approach; indeed, the fixpoint definitions of the tally integers
and the words are named “safe” in deliberate allusion to Bellantoni and Cook’s
algebra BC [3]. We believe that the properties of these fixpoints more closely match
those of the safe variables in BC than in the (purely logical)light logics approach
[12] where a variable is safe if it is of the formx : §Bint (whereBint is the light
logic representation of the binary integers. These variables allow a restricted form
of induction, whereas our safe variables do not.

25

If the sets defined by fixpoint merit the label “safe”, why thendo the numbers
over which wedohave induction not merit the name “normal”? The answer comes
from the imperfect manner in which we may encode safe recursion. Recall our first
proof that multiplication is representable. In that proof,the variablex ∈ N is a
side formula in the inductive step, and we obtain !(x ∈ N) in result of the applied
induction. In addition, of course, the number of times a variable is used is important,
since we do not have unrestricted contraction.

A possible solution to the problem is to consider a more liberal notion of represen-
tation, which we callstratified representation.

Definition 49 A a term f is astratified representationof a function
φ : T1 × · · · × Tk → S with domains t1, . . . tk and codomain s if

(a) Each Ti and S are represented by ti and s, respectively;
(b) For any any~m ∈ T̄ and n∈ S such thatφ(~m) = n, ⊢ 〈~m∗, n∗〉 ∈ f ; and
(c) There exists natural numbers n1, . . .nk and m1 . . .mk such that

⊢ ∀x1. . . .∀xk.∃
!y.(((!m1(x1 ∈ t1))

n1⊗. . .⊗(!mn(xk ∈ tk))
nk)⊸ (y ∈ s⊗〈~x, y〉 ∈ f))

is generically provable inSLST.

We conjecture that a stratified version of BC counting multiplicities of variables
(and using a simplified vaiant of the cases construction in [12]) captures polynomial
time. However, it has already been demonstrated in [2] that Soft Lambda Calculus
with fixpoints goes beyond the representational strength ofboth light logics and
safe recursion; it is possible, by clever choice of typing, to represent insertion sort
in an intuitive fashion. It would be interesting to look at representing the operations
involved as a function algebra, which by virtue of its representability in Soft Linear
Logic would be immediately known to be polynomially sound.

Acknowledgements I should like to thank Yves Lafont for some initial help, and
Thomas Strahm for discussions on the work of Bellantoni and Cook.

References

[1] Andrea Asperti. Light affine logic. InLogic in Computer Science, pages 300–308,
1998.

[2] Patrick Baillot and Virgile Mogbil. Soft lambda-calculus: a language for polynomial
time computation. 2987:27–41, 2004. 7th International Conference Foundations of
Software Science and Computation Structures, part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2004, Barcelona, Spain.

26

[3] Stephen Bellantoni and Stephen A. Cook. A new recursion-theoretic characterization
of the polytime functions.Computational Complexity, 2:97–110, 1992.

[4] A. Cantini. The undecidability of grishin’s set theory.Studia Logica, 74:345–368,
2003.

[5] J.-Y. Girard. Linear logic.Theoret. Comp. Sci., 50:1:1–102, 1987.

[6] J.-Y. Girard, Y. Lafont, and P. Taylor.Proofs and Types. Cambridge University Press,
1989.

[7] Jean-Yves Girard. Light linear logic.Information and Computation, 143(2):175–204,
1998.

[8] Jean-Yves Girard, Andre Scedrov, and Philip J. Scott. Bounded linear logic: a modular
approach to polynomial-time computability.Theor. Comput. Sci., 97(1):1–66, 1992.

[9] V.N. Grishin. A nonstandard logic and its application toset theory. Studies in
Formalized Languages and Nonclassical logics. ”Nauka”, pages 135–171, 1974.
(Russian).

[10] V.N Grishin. Predicate and set-theoretic calculi based on logic without contractions.
Math. USSR. Izvetija, 18:41–59, 1981.

[11] Y. Lafont. Soft linear logic and polynomial time.Theoretical Computer Science,
318:163–180, 2004.

[12] A.S. Murawski and C.-H.L. Ong. On the interpretation ofsafe recursion in light logic.
Theoretical Computer Science, 318:197–223, 2004.

[13] Uwe Petersen. Logic without contraction as based on inclusion and unrestricted
abstraction.Studia Logica, 64(3):365–403, 2000.

[14] M Shirahata. Fixpoint theorem in linear set theory. 1999.

[15] K. Terui. Light affine lambda calculus and polytime strong normalization. In
Proceedings of the 16th Annual IEEE Conference on Logic in Computer Science,
pages 209–220, 2001.

[16] Kazushige Terui. Light affine set theory: A naive set theory of polynomial time.Studia
Logica, 77(1):9–40, 2004.

A Sets of preimages for addition and multiplication

The proof of Theorem 28 (that there is a set of preimages for every polynomial
expressionP) relied on the existence of certain sets of preimages for generalized
addition and subtraction. We give here the proofs of these assumptions. In the fol-
lowing, Nθ〈P〉[t] is the instantiation of the outermost quantifier inN〈P〉[t] with the
setθ.

27

Proposition 50 The following is provable inSLST:

x ∈ N〈P〉[t], z ∈ N〈Q〉[s]

⊢ (((y ∈ α⊸ Sy ∈ α)P+Q
⊸ (0 ∈ α⊸ ∃!u.∃!v.∃!w(w ∈ α ⊗ 〈x, u〉 ∈ t ⊗ 〈z, v〉 ∈ s⊗ 〈u, v,w〉 ∈ add)))

PROOF. Given some termα of SLST, let

β := { z | ∃!u.∃!w(w ∈ α ⊗ 〈x, u〉 ∈ t ⊗ 〈u, z,w〉 ∈ add). }

Then the following are provable inSLST:
i ∃!w.(w ∈ α ⊗ 〈x,w〉 ∈ t) ⊢ 0 ∈ β
ii ∀y.(y ∈ α⊸ Sy ∈ α) ⊢ ∀z.(z ∈ β⊸ Sz ∈ β)

iii ∃!w.(w ∈ β ⊗ 〈z,w〉 ∈ s) ⊢ ∃!u.∃!v.∃!w(w ∈ α ⊗ 〈x, u〉 ∈ t ⊗ 〈z, v〉 ∈
s⊗ 〈u, v,w〉 ∈ add)

These follow by elementary applications of the definition ofadd. The proof is
completed by the derivation given in Table A.1.

Proposition 51 The following is provable inSLST:

x ∈ N〈P〉[t], z ∈ N〈Q〉[s]

⊢ (((y ∈ α⊸ Sy ∈ α)PQ
⊸ (0 ∈ α⊸ ∃!u.∃!v.∃!w(w ∈ α ⊗ 〈x, u〉 ∈ t ⊗ 〈z, v〉 ∈ s⊗ 〈u, v,w〉 ∈ mult)))

PROOF. Given some termα of SLST, let

β := { z | (∀x ∈ α∃!u ∈ α.(〈x, z, u〉 ∈ add))P }

and let
γ := { z | ∃!u.∃!w.(w ∈ α ⊗ 〈x, u〉 ∈ t ⊗ 〈u, z,w〉 ∈ mult) }.

Then the following are provable inSLST:
i ⊢ 0 ∈ β
ii 0 ∈ α ⊢ 0 ∈ γ

iii ∃!w.(w ∈ γ ⊗ 〈x,w〉 ∈ t) ⊢ ∃!u.∃!v.∃!w(w ∈ α ⊗ 〈x, u〉 ∈ t ⊗ 〈z, v〉 ∈
s⊗ 〈u, v,w〉 ∈ mult

iv ∃!w.(w ∈ β ⊗ 〈z,w〉 ∈ s) ⊢ (y ∈ γ ⊸ Sy ∈ γ)P

v (y ∈ α⊸ Sy ∈ α)PQ ⊢ ((y ∈ β⊸ Sy ∈ β)Q)

These follow by elementary applications of the definition ofadd andmult. The prof
is completed by the derivation given in Table A.2.

28

·
·
·
·

(i)

∃! w.(w ∈ α ⊗ 〈x,w〉 ∈ t) ⊢ 0 ∈ β

·
·
·
·
(ii)

∃! w.(w ∈ β ⊗ 〈z,w〉 ∈ s) ⊢ ∃! u.∃! v.∃!w(w ∈ α ⊗ 〈x,u〉 ∈ t〈z, v〉 ∈ s⊗ 〈u, v,w〉 ∈ add)

∃! w.(w ∈ α ⊗ 〈x,w〉 ∈ t),0 ∈ β⊸ ∃! w.(w ∈ β ⊗ 〈z,w〉 ∈ s)) ⊢ ∃! u.∃! v.∃!w(w ∈ α ⊗ 〈x,u〉 ∈ t〈z, v〉 ∈ s⊗ 〈u, v,w〉 ∈ add)

0 ∈ α,0 ∈ α ⊸ ∃! w.(w ∈ α ⊗ 〈x,w〉 ∈ t),0 ∈ β⊸ ∃! w.(w ∈ β ⊗ 〈z,w〉 ∈ s)) ⊢ ∃! u.∃! v.∃!w(w ∈ α ⊗ 〈x,u〉 ∈ t〈z, v〉 ∈ s⊗ 〈u, v,w〉 ∈ add)

0 ∈ α,0 ∈ α ⊸ ∃! w.(w ∈ α ⊗ 〈x,w〉 ∈ t), (y ∈ α ⊸ Sy ∈ α)Q, (y ∈ β⊸ Sy ∈ β)Q
⊸ (0 ∈ β⊸ ∃! w.(w ∈ β ⊗ 〈z,w〉 ∈ s)) ⊢ ∃! u.∃! v.∃!w(w ∈ α ⊗ 〈x,u〉 ∈ t〈z, v〉 ∈ s⊗ 〈u, v,w〉 ∈ add)

·
·
·
·
(iii)

∀y.(y ∈ α⊸ Sy ∈ α) ⊢ ∀z.(z ∈ β ⊸ Sz∈ β)

0 ∈ α, (y ∈ α⊸ Sy ∈ α)P, (y ∈ α⊸ Sy ∈ α)Q, x ∈ Nα〈P〉[t], y ∈ Nβ〈Q〉[s] ⊢ ∃
! u.∃! v.∃!w(w ∈ α ⊗ 〈x,u〉 ∈ t〈z, v〉 ∈ s⊗ 〈u, v,w〉 ∈ add)

x ∈ Nα〈P〉[t], y ∈ Nβ〈Q〉[s] ⊢ ((y ∈ α⊸ Sy ∈ α)P+Q
⊸ (0 ∈ α⊸ ∃! u.∃! v.∃!w(w ∈ α ⊗ 〈x,u〉 ∈ t〈z, v〉 ∈ s⊗ 〈u, v,w〉 ∈ add)))

x ∈ N〈P〉[t], y ∈ N〈Q〉[s] ⊢ (((y ∈ α⊸ Sy ∈ α)P+Q
⊸ (0 ∈ α ⊸ ∃! u.∃! v.∃!w(w ∈ α ⊗ 〈x,u〉 ∈ t〈z, v〉 ∈ s⊗ 〈u, v,w〉 ∈ add)))

Table A.1
Preimage for addition

2
9

‘

·
·
·
·

(i)

0 ∈ α ⊢ 0 ∈ γ

·
·
·
·

(i)

∃! w.(w ∈ γ ⊗ 〈x,w〉 ∈ t) ⊢ ∃! u.∃! v.∃!w(w ∈ α ⊗ 〈x,u〉 ∈ t ⊗ 〈z, v〉 ∈ s⊗ 〈u, v,w〉 ∈ mult

0 ∈ α,0 ∈ γ⊸ ∃! w.(w ∈ γ ⊗ 〈x,w〉 ∈ t) ⊢ ∃! u.∃! v.∃!w(w ∈ α ⊗ 〈x,u〉 ∈ t ⊗ 〈z, v〉 ∈ s⊗ 〈u, v,w〉 ∈ mult)

·
·
·
·

(i)

∃! w.(w ∈ β ⊗ 〈z,w〉 ∈ s) ⊢ (y ∈ γ⊸ Sy ∈ γ)P

0 ∈ α,∃! w.(w ∈ β ⊗ 〈z,w〉 ∈ s), (y ∈ γ⊸ Sy ∈ γ)P
⊸ (0 ∈ γ⊸ ∃! w.(w ∈ γ ⊗ 〈x,w〉 ∈ t)) ⊢ ∃! u.∃! v.∃!w(w ∈ α ⊗ 〈x,u〉 ∈ t ⊗ 〈z, v〉 ∈ s⊗ 〈u, v,w〉 ∈ mult)

0 ∈ α,∃! w.(w ∈ β ⊗ 〈z,w〉 ∈ s), (y ∈ γ⊸ Sy ∈ γ)P
⊸ (0 ∈ γ⊸ ∃! w.(w ∈ γ ⊗ 〈x,w〉 ∈ t)) ⊢ ∃! u.∃! v.∃!w(w ∈ α ⊗ 〈x,u〉 ∈ t ⊗ 〈z, v〉 ∈ s⊗ 〈u, v,w〉 ∈ mult)

·
·
·
·
(i)

⊢ 0 ∈ β

0 ∈ α, (0 ∈ β⊸ ∃! w.(w ∈ β ⊗ 〈z,w〉 ∈ s)), (y ∈ β ⊸ Sy ∈ β)P
⊸ (0 ∈ γ⊸ ∃! w.(w ∈ γ ⊗ 〈x,w〉 ∈ t)) ⊢ ∃! u.∃! v.∃!w(w ∈ α ⊗ 〈x,u〉 ∈ t ⊗ 〈z, v〉 ∈ s⊗ 〈u, v,w〉 ∈ mult)

·
·
·
·

(i)

(y ∈ α⊸ Sy ∈ α)PQ ⊢ ((y ∈ β⊸ Sy ∈ β)Q)

0 ∈ α, (y ∈ α ⊸ Sy ∈ α)PQ, x ∈ Nβ〈P〉[t], y ∈ Nγ〈Q〉[s] ⊢ ∃! u.∃! v.∃!w(w ∈ α ⊗ 〈x,u〉 ∈ t ⊗ 〈z, v〉 ∈ s⊗ 〈u, v,w〉 ∈ add)

x ∈ Nβ〈P〉[t], z ∈ Nγ 〈Q〉[s] ⊢ ((y ∈ α⊸ Sy ∈ α)PQ
⊸ (0 ∈ α⊸ ∃! u.∃! v.∃!w(w ∈ α ⊗ 〈x,u〉 ∈ t ⊗ 〈z, v〉 ∈ s⊗ 〈u, v,w〉 ∈ mult)))

x ∈ N〈P〉[t], z ∈ N〈Q〉[s] ⊢ (((y ∈ α⊸ Sy ∈ α)PQ
⊸ (0 ∈ α ⊸ ∃! u.∃! v.∃!w(w ∈ α ⊗ 〈x,u〉 ∈ t〈z, v〉 ∈ s⊗ 〈u, v,w〉 ∈ mult)))

Table A.2
Preimage for multiplication

3
0

