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Abstract. We generalize to abstract many-sorted algebras the classical proof-theoretic

result due to Parsons, Mints and Takeuti that an assertion ∀x ∃yP (x, y) (where P is Σ0
1),

provable in Peano arithmetic with Σ0

1
induction, has a primitive recursive selection function.

This involves a corresponding generalization to such algebras of the notion of primitive
recursiveness . The main difficulty encountered in carrying out this generalization turns

out to be the fact that equality over these algebras may not be computable, and hence

atomic formulae in their signatures may not be decidable. The solution given here is to

develop an appropriate concept of realizability of existential assertions over such algebras,

generalized to realizability of sequents of existential assertions . In this way, the results

can be seen to hold for classical proof systems.

This investigation may give some insight into the relationship between specifiability and

computability for data types such as the reals, where the atomic formulae, i.e., equations

between terms of type real, are not computable.
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1 Introduction

1.1 Background: Parsons-Mints-Takeuti theorem; Attempted generalizations

We investigate a class of problems concerning the relationship between specifiability and
computability for a wide class of abstract data types, modelled as many-sorted algebras A,
of the following form. Given a predicate P of a certain syntactic class in the specification
language Lang(A) for A, and a proof of the assertion

∀x ∃yP (x, y) (1.1)

in a suitable formal system F for A, can we construct, from this proof, a computable
selection function for P , i.e., a computable function f on A such that

∀xP (x, f(x)) (1.2)

holds in A? A positive answer to this question, under sutiable conditions, will be called a
selection theorem. (Here the notion of “computable on A” must also be explicated.)

Specifically, we want to generalize to such algebras a classical proof-theoretic result, due
(independently) to Parsons [Par71, Par72], Mints [Min73], and Takeuti [Tak75, remark
after Cor. 12.16], which gives a positive solution to the above problem in the case that F
is Peano arithmetic (PA) with induction restricted to Σ0

1
formulae, P is a Σ0

1
predicate

of PA, in which case a primitive recursive selection function f can then be found. As a
corollary, a general recursive function which is provably total in PA with Σ0

1
-induction is

(extensionally equivalent to) a primitive recursive function.

In [TZ93] this result was generalized to predicates over many-sorted signatures Σ con-
taining the boolean and natural sorts, with their standard operations, and abstract many-
sorted Σ-algebras A. The method used was adapted from Mints’s method, involving
cut-reduction and an analysis of cut-reduced derivations, with restricted (Σ∗

1 ) induction.
The result used a generalization of primitive recursive schemes to many-sorted signatures
and algebras. The generalization went quite smoothly, on the assumption that equality in
A was computable, so that the atomic formulae of the first-order language over Σ were
computably decidable in A.

The case that equality in A is not computable provides a difficulty for this generalization.
In such a case, a more delicate analysis of formal derivations of assertions of the form (1.1)
is required.

To clarify these issues by an example, consider the topological total algebra of reals

R = (R, N, B; 0, 1, +, −, ×, . . . ), (1.3)

(“topological” in the sense that all the carriers have topologies in terms of which the
basic operations are continuous; “total” in the sense that the basic operations are total
[TZ05]). The algebra R contains the carrier R of reals with its usual topology and its ring
operations, as well as the carriers N and B of naturals and booleans, with their discrete
topologies and standard operations. Note that there is no division operation on R, since
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no such (total) operation can be continuous. Similarly, although there is an equality test
(i.e., a boolean valued equality operation) onN, there is none on R, since a (total) equality
operation on R cannot be continuous.1

However the specification language Lang(A), in which the predicates P (1.1) are ex-
pressed, has, as atomic formulae, equations between terms of the same sort, for all sorts
of A, including, e.g., the sort of reals in the above example. It follows that the atomic
formulae in Lang(A) are not computable.

This problem was solved in [Zuc06], by using, not just a primitive recursive selector for
an existential statement, but a primitive recursive realiser for each formula, which also
carries information on which component of a disjunction holds (as in the antecedent of
the conclusion of the ∨L inference). However this technique only worked by restricting
attention to intuitionistic deductive systems. Hence, the resulting selection theorem could
not really be called a generalization of the Parsons-Mints-Takeuti theorem.

1.2 The present work

This problem of the restriction to intuitionistic systems has now been solved by extending
the notion of realizability to sequents as well as formulae, as was done in [Str03]. The
resulting selection theorem, in which neither the decidability of atomic formulae, nor the
use of intuitionistic deductive systems, need to be assumed, is a genuine generalization of
the Parsons-Mints-Takeuti theorem, and forms the main result of this paper.

This investigation may give some insight into the relationship between specifiability and
computability for data types such as the reals, where the atomic formulae, i.e., equations
between terms of type real, are not computable.

In particular, it provides an example, in the context of verifiable specifications on such
data types, of the general programme proposed by Kreisel [Kre71] of discovering “what
more we know when we have proved a theorem than if we only know that it is true”.

1.3 Previous work in realizability and related selection theorems

Realisability, as a technique in proof theory, goes back to [Kle45]. Since then many variants
have been developed. Thorough treatments of various versions of realizability applied to
Heyting arithmetic and related systems, with extensive bibliography, are given in [Tro93,
Tro98].

With regard to fragments of arithmetic and related systems: apart from the pioneering
work of Parsons, Mints and Takeuti mentioned above [Par71, Par71, Min73, Tak75], a num-
ber of researchers have explored selection and realizability methods for various fragments,
not all assuming decidability of equality. Sieg [Sie91] described a generic Skolemisation
method for subsystems of arithmetic. Buss [Bus98a] described various “witnessing meth-
ods” in fragments of arithmetic, which have been very successfully applied, especially in
weak bounded arithmetics [Bus86]. Both assume decidability of equality (as in Section 5 of
the present paper). Leivant [Lei94] used realizability methods for characterising poly-time

1One can define continuous partial division and equality operations on the reals [TZ04]; however in
this paper we only consider total algebras. This is discussed further in Section 8.
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functions, using Herbrand-Gödel equations with a weak second order intuitionistic logic,
in which decidability of equality is not assumed (as in Section 6 of the present paper).
Schlüter [Sch95] extended Leivant’s result to realizability of classical sequents.

The latter technique for realising classical sequents has been used more recently in
Feferman-style self-applicative systems, which form the operational core of Feferman’s
explicit mathematics [Fef75, Fef79]. The paper [Str03] studies a whole family of bounded
applicative theories and their relation to complexity classes, whereas Cantini [Can02] gave
a perspicuous characterisation of the poly-time functions by using a form of safe induction
in an applicative context. The papers [Str04, Can05] contain extensions of the results in
[Str03]. As with the realizability studied in Section 7 of the present paper, equality cannot
be assumed to be decidable in self-applicative theories.

It should be noted that the present paper, as well as [TZ93, Zuc06], deal with a fragment
(namely Σ∗

1 induction), not specifically of arithmetic, but more generally, of proof systems
for abstract many-sorted algebras.

1.4 Outline of this paper

Section 2 provides a short background to N-standard many-sorted signatures and alge-
bras, i.e., many-sorted signatures and algebras with the sorts of booleans and naturals,
with the standard operations on these. Section 3 explains the generalization of primitive
recursiveness to such signatures and algebras, and Section 4 describes the corresponding
specification languages.

To provide background and context for the main results of this paper, Sections 5 and
6 summarise the two previous (restricted) generalizations of the Parsons-Mints-Takeuti
theorem mentioned above: Section 5 for algebras with decidable equality, and Section 6
for intuitionistic deductive systems.

Section 7 gives the main result of this paper: the generalized selection theorem, without
either of the two restrictions needed in Sections 5 and 6; i.e., not assuming decidability
of equality, and working in a classical deductive system. Section 8 gives some concluding
remarks.
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2 Many-sorted signatures and algebras

We give a short introduction to many-sorted algebras. Details may be found in any
of [TZ99, TZ00, TZ04, TZ05]. Given a signature Σ with finitely many sorts s, . . . and
function symbols

F : u → s, (2.1)

where u is the product type u = s1 × · · · × sm, a Σ-algebra A consists of a carrier As for
each Σ-sort s, and a total function

FA : Au → As

for each Σ-function symbol as in (2.1), where Au = As1
× · · · × Asm

. We let s, . . . range
over Σ-sorts, and u, v, w, . . . over Σ-product types.

We are interested in signatures and algebras with certain properties

2.1 N-standard signatures and algebras

The signatures Σ and Σ-algebras A are said to be N-standard if they contain

(a) the sort bool of booleans and the corresponding carrier Abool = B = {t, f}, together
with the standard boolean and boolean-valued operations, including the conditional
at all sorts, and equality at certain sorts (“equality sorts”); and also

(b) the sort nat of natural numbers and the corresponding carrier Anat = N =
{0, 1, 2, . . .}, together with the standard arithmetical operations of zero, successor,
equality and order on N.

We make two assumptions on our signatures Σ and Σ-algebras A.

Assumption 1 (N-standardness). The signatures and Σ-algebras are N-standard.

Assumption 2 (Instantiation). For every sort s of Σ, there is a closed term of sort
s, called the default term δs of that sort.

The Instantiation Assumption will be used in the proof of the Main Lemma in Sec. 7.

Let NStdAlg(Σ) denote the class of N-standard algebras over Σ.

2.2 Array signatures and algebras

Array signatures Σ∗ and array algebras A∗, are formed from N-standard signatures Σ
and algebras A by adding, for each sort s, an array sort s∗, with corresponding carrier A∗

s

consisting of all arrays or finite sequences over As, together with certain standard array
operations. Details are given in [TZ00] and (an equivalent but simpler version) in [TZ99,
TZ02].

We will generally work with array signatures and algebras, for reasons that will become
clear below.
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3 Computation schemes

We will present two systems of computation schemes over Σ: PR and µPR.

3.1 PR(Σ) and PR∗(Σ) computation schemes

Given an N-standard signature Σ, we define PR schemes over Σ which generalize the
schemes for primitive recursive functions over N in [Kle52]. They define (total) functions
f either outright (as in the base cases (i)—(ii) below) or from other functions (g, . . . ,
h, . . . ) (as in the inductive cases (iii)—(v)) as follows:

(i) Primitive Σ-functions:

f(x) = F(x)

of type u → s, for all the primitive Σ-function symbols F : u → s, where x : u, i.e.,
x is a tuple of variables of product type u.

(ii) Projection:

f(x) = xi

of type u → si, where x = (x1, . . . , xm) is of type u = s1 × · · · × sm.

(iii) Composition:

f(x) = h(g1(x), . . . , gm(x))

of type u → s, where gi : u → si (i = 1, . . . , m) and h : s1 × · · · × sm → s.

(iv) Definition by cases:

f(b, x, y) =

{
x if b= t
y if b= f

of type bool × s2 → s.

(v) Simultaneous primitive recursion on N: This defines, on each A ∈ NStdAlg(Σ),
for fixed m > 0 (the degree of simultaneity), n ≥ 0 (the number of parameters), and
product types u and v = s1 × · · · × sm, an m-tuple of functions f = (f1, . . . , fm) with
fi : nat × u → si, such that for all x ∈ Au and i = 1, . . . , m,

fi(0, x) = gi(x)

fi(z + 1, x) = hi(z, x, f1(z, x), . . . , fm(z, x))

where gi : u → si and hi : nat × u × v → s1 (i = 1, . . . , m).

Note that the last scheme uses the N-standardness of the algebras, i.e. the carrier N.

A PR(Σ) scheme α : u → s defines, or rather computes, a function fAα : Au → As, or,

more generally, a family of functions { fAα | A ∈ NStdAlg(Σ) }, uniformly over NStdAlg(Σ).

A broader class of functions provides a more appropriate generalization of the notion
of primitive recursiveness for our purposes, namely PR∗ computability. A function on A is
PR∗(Σ) computable if it is defined by a PR scheme over Σ∗, interpreted on A∗ (i.e., using
starred sorts for the auxiliary functions used in its definition). Note that in the classical
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setting (A = N = the naturals with their standard operations) this generalization is not
necessary, since N ∗ can effectively be coded in N . In general, however, this is not the
case; R∗, for example, cannot be effectively coded in R.

We write PR(A) for the class of functions PR computable on A, etc.

3.2 µPR(Σ) and µPR∗ (Σ) computation schemes

The µPR schemes over Σ are formed by adding to the PR schemes the scheme:

(vi) Least number or µ operator:

f(x) ≃ µz[g(x, z) = t]
of type u → nat, where g : u×nat → bool is µPR. The interpretation of this is that
fA(x) ↓ z if, and only if, gA(x, y) ↓ f for each y < z and gA(x, z) ↓ t.

Note that this scheme also uses the N-standardness of the algebra. Also, µPR computable
functions are, in general, partial. The notation f(x) ↓ y means that f(x) is defined and
equal to y. The notation ‘≃’ means that the two sides are either both defined and equal,
or both undefined. The schemes for composition and simultaneous primitive recursion are
correspondingly re-interpreted to allow for partial functions.

These schemes generalize those given in [Kle52] for partial recursive functions over N.

Again, a broader class turns out to be more appropriate for our purposes, namely µPR∗

computability. This is just PR∗ computability with µ.

There are many other models of computability, due to Moschovakis, Friedman, Shep-
herdson and others, which turn out to be equivalent to µPR∗ computability: see [TZ00, §7].
All these equivalences have led to the postulation of a generalized Church-Turing Thesis
for deterministic computation of functions, which can be roughly formulated as follows:

Computability of functions on many-sorted algebras by deterministic algorithms
can be formalised by µPR∗ computability.

3.3 Comparison with imperative computational models

In [TZ00] computation on many-sorted Σ-algebras was investigated, using imperative
programming models: While(Σ), based on the ‘ while’ loop construct over Σ, For(Σ),
based similarly on the ‘ for’ loop, and While∗ (Σ) and For∗ (Σ), which use arrays, i.e.,
auxiliary variables of starred sort over Σ.

Writing While(A) for the class of functions While-computable on A, etc., we can list
the equivalences between the “schematic” and “imperative” computational models:

(1) PR(A) = For(A)
(2) PR∗(A) = For∗ (A)
(3) µPR(A) = While(A)
(4) µPR∗(A) = While∗(A),

in all cases, uniformly for A ∈ NStdAlg(Σ).

These results are all stated in [TZ00], and can be proved by the methods of [TZ88].
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4 The language Lang ∗(Σ); Σ∗

1 formulae; the system Σ∗

1-Ind

4.1 The language Lang∗(Σ)

We let Lang(Σ) denote the first order language over Σ, and let Lang∗(Σ) = Lang(Σ∗),
the first order language over Σ∗. The atomic formulae of Lang(Σ) are equations between
terms of the same sort, for all Σ-sorts (not just equality sorts). Similarly, Lang∗(Σ) =
Lang(Σ∗) is the first order language over Σ∗, with equality at all Σ∗-sorts.

Notation. (1) We use x, y, z, . . . for variables or tuples of variables, x∗ . . . for starred
(or array) variables or tuples of variables, k, . . . for variables of sort nat, and t, t′, . . . for
Σ∗-terms or tuples of terms. We write t : s to indicate that t is a term of sort s, and t : u
that t is a tuple of terms of product type u.

(2) We define application of function tuples to argument tuples in the obvious way, i.e., if
f : u → v is a tuple of function symbols (f1, . . . , fm) where fi : u → si (i = 1, . . . , m) with
v = s1 × · · · × sm, and x : u, then f(x) ≡df (f1(x), . . . , fm(x)).

Our proof system is based on the classical sequent calculus [Gen69, Tak75] with sequents

Γ 7−→ ∆, (4.1)

where Γ and ∆ are finite sequences of formulae of Lang∗(Σ), with the informal meaning:
the conjunction of the antecedent Γ implies the disjunction of the succedent ∆. (Un-
like [Gen69, Tak75], however, we will place our principle formulae on the “inside” of the
sequents, to simplify the notation in the later sections.)

We are interested in a certain sublanguage of Lang∗(Σ), namely the class of Σ∗

1 for-
mulae over Σ, which we now define.

4.2 Subclasses of Lang∗(Σ).

(a) BU quantifiers, equations and sequents.

(i) A BU (bounded universal) quantifier is a quantifier of the form ‘∀k < t’, where
k : nat and t : nat. (The most elegant approach is to think of this as a primitive
construct, with its own introduction rule: see below.)

(ii) A BU equation is formed by prefixing an equation by a string of 0 or more bounded
universal quantifiers.

(iii) A conditional BU equation is a formula of the form

Q1 ∧ . . . ∧ Qn → P (4.2)

where n ≥ 0 and Qi and P are BU equations. A conditional BU equational theory
is a set of such formulae (or their universal closures).

(iv) A BU equational sequent is a sequent of the form

Q1, . . . , Qn 7−→ P (4.3)
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where the Qi and P are BU equations. This sequent corresponds to the conditional
BU equation (4.2).

(b) Elementary formulae.
A formula of Lang∗(Σ) is elementary if it is formed from Σ∗-equations by applying
conjunctions, disjunctions, and BU quantification (in any order).

(c) Σ∗

1 formulae2.
A formula is Σ∗

1 if it is formed from Σ∗-equations by applying conjunctions, dis-
junctions, BU quantification and also existential Σ∗-quantification, i.e., unbounded
existential quantification over any sort in Σ∗ (in any order).

(d) Prenex Σ∗

1 formulae.

A formula is in prenex Σ∗

1 if it is formed from an elementary formula by applying
(0 or more) existential Σ∗-quantifications, only.

Lemma 1 (Prenex form of a Σ∗

1 formula). Every Σ∗

1 formula is effectively equiva-
lent to a prenex Σ∗

1 formula, provably in the intuitionistic system Σ∗

1 -Indi (defined in §4.3
below).

The construction of the prenex form is by structural induction on the formula. In the
case of permuting an ‘∃’ with a BU quantifier, the existentially quantified variable changes
to a starred sort (if it is not already starred):

∀k < t ∃xP (k, x) 7−→ ∃x∗ ∀k < t P (k, x∗[k]).

Some details of the intuitionistic derivability of this sequent are given in [TZ93].

Lemma 2. If P is an elementary formula all of whose variables are of equality sort, then
the predicate defined by P is PR∗ computable.

Let T be a set of formulae in Lang∗, which we can think of as axioms for a class of
Σ∗-algebras. We make the following assumption about T .

Conditional BU Axiomatisation Assumption. The axiomatisation T consists of
conditional BU Σ∗-equations.

Note that this is a stricter condition than conditional Σ∗

1 formulae, since it excludes
disjunctions and existential quantification. However, this assumption is not unduly restric-
tive, as it includes axiomatisations by conditional equations, and (hence) Horn formulae,
which are central to the theory of logic programming and abstract data types [MT92].

We will define a sequent calculus Σ∗

1 -Ind(Σ, T ) with the axioms T as extra initial
sequents.

2The notation may be a bit confusing: Σ
∗ refers to a signature with array sorts, whereas Σ

∗

1
refers to

a particular syntactic class of formulae over Σ
∗.
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4.3 The classical sequent calculus Σ∗

1 -Ind(Σ, T )

This system has the following inference rules: rules for the first order predicate calculus
with equality over the signature Σ∗, including cut as in [Gen69, Tak75]; the Σ∗

1 induction
rule

Γ, P (a) 7−→ P (Sa), ∆

Γ, P (0) 7−→ P (t), ∆
. (4.4)

where the induction formula P (a) is Σ∗

1 , and the induction variable a : nat does not occur
in Γ, ∆ or P (0); and rules for the BU quantifier:

∀bL :
Γ 7−→ t0 < t, ∆ Γ, Q(t0) 7−→ ∆,

Γ, ∀k < t Q(k) 7−→ ∆
∀bR :

Γ, a < t 7−→ P (a), ∆

Γ 7−→ ∀k < t P (k), ∆

where t0 and t are terms of sort nat, and a : nat is the ‘eigenvariable’ of the inference ∀bR,
which does not occur in the conclusion of that inference. (We could also add two rules for
the bounded existential quantifier, dual to the above, although this quantifier is not really
needed in the subsequent development.)

The axioms (initial sequents) are the closures under substitution of the following: the
Σ∗-equality axioms; the standard axioms for bool, including

7−→ (xbool = true) ∨ (xbool = false), (4.5a)

true = false 7−→ t1 = t2 (4.5b)

for arbitrary terms t1, t2 of the same sort; the axioms for zero and successor on nat:

S m = S n 7−→ m = n,

S n = 0 7−→ t1 = t2

for nat variables m, n and arbitrary terms t1, t2 of the same sort; the primitive recursive
defining equations for ‘<’ on nat (which is used in the BU quantifier rules and array
axioms), and (optionally) symbols and defining equations for other primitive recursive
functions on nat; a certain set of conditional BU axioms for arrays3, including the BU
equational sequent for array equality:

Lgth(a∗
1
) = Lgth(a∗

2
) ∧ ∀z < Lgth(a∗

1
)
(
a∗
1
[z] = a∗

2
[z]

)
7−→ a∗

1
= a∗

2
(4.6)

and, finally, the axioms T in sequent form (cf. §4.2(a)(iv)).

Remarks (Initial sequents). (1) It follows from the Axiomatisation Assumption that
the initial sequents of the calculus Σ∗

1 -Ind(Σ, T ) are all Σ∗

1 . In fact, they are all BU
equational (except for (4.5a), which is a disjunction of equations). This is important for
the proof of the Main Lemma in Sections 5, 6 and 7.

(2) The initial sequents were defined so as to be closed under substitution. This is to
facilitate the proof of the cut reduction lemma (§5.1).

3listed in [TZ02, §3.2]
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Now let K ⊆ NStdAlg(Σ), and let T be a set of formulae in Lang∗ such that K |= T .
(We could suppose that T is a “complete N-standard axiomatisation” for K, i.e., that K
is the class of all N-standard Σ-structures satisfying T , although this is unnecessary for
the subsequent development.) The following soundness result then clearly holds:

Lemma 2 (Soundness of Σ∗

1 -Ind). Σ∗

1 -Ind(Σ, T ) ⊢ P =⇒ K∗ |= P .

4.4 The intuitionistic sequent calculus Σ∗

1 -Indi(Σ, T )

This consists of intuitionistic sequents of the form (4.1), where ∆ consists of exactly one
formula. The inference rules have their intuitionistic form, as described in [Gen69, Tak75].
In particular, the intuitionistic induction rule has the form (4.4) with ∆ empty. Note also
that by Assumption 3, the axioms T have the form (4.3) of intuitionistic sequents.

Since Σ∗

1 -Indi is a subsystem of Σ∗

1 -Ind, the soundness lemma (Lemma 2) obviously still
holds for Σ∗

1 -Indi.

4.5 Equational specifications of PR(∗ ) functions

For any PR(Σ) scheme α, we can construct a equational specification, i.e., a finite set

Eα of “specifying equations” for the function fAα , defined by α on all A ∈ NStdAlg(Σ), as
well as for the auxiliary functions gα used in the definition of α. The set Eα consists of
equations in an expanded signature Σα = Σ∪{gα, fα}. It is defined by structural induction
on α.

Similarly with PR∗ computability: for a PR∗(Σ) derivation α, there is a set Eα of
specifying equations for the function fα and the auxiliary functions gα in the signature
Σ∗

α = Σ∗ ∪ {gα, fα}.

Although we do not use the following in this paper, we mention that for µPR∗ schemes
α, we can similarly construct a conditional BU equational specification in an expanded
signature Σ∗

α = Σ∗ ∪{gα, fα}, which specifies fAα on all N-standard Σ-algebras A in which

fAα is total. Note that conditional BU equations are needed for the specification of the µ
operator.

Details of the above can be found in [TZ02].

4.6 Σ∗

1 computation predicates; Provable totality of schemes

We present another specification system for schemes, using Σ∗

1 predicates, but not ex-
panded signatures.

With each µPR∗(Σ) scheme α : u → s, we can effectively associate a Σ∗

1 (Σ) formula
Pα(x, y), the computation predicate for α, where x : u and y : s, which represents the
graph of the function defined by α, i.e., for all A ∈ NStdAlg(Σ), and for all a ∈ Au and
b ∈ As,

A |= Pα[a, b] ⇐⇒ αA(a) ↓ b.

The construction of Pα is by structural induction on α. Details can be found in [TZ93].

Note that even if the scheme α is defined over Σ only, i.e., µPR or even PR, the
definition of Pα generally involves existential quantification over starred sorts.
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A scheme α is said to be provably total in Σ∗

1 -Ind(Σ, T ) iff

Σ∗

1 -Ind(Σ, T ) ⊢ ∀x ∃yPα(x, y).

Lemma (Totality for PR∗ schemes).
If α is a PR∗ scheme, then α is provably total in Σ∗

1 -Indi(Σ).

The required derivation is constructed by structural induction on α. Details can be
found in [TZ93].
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5 Selection theorem for algebras with computable equality

5.1 Statements of main results

The central result of this paper is formulated with reference to a class K of N-standard
Σ-algebras and an axiomatisation T of K.

Theorem 1 (Selection Theorem). Suppose K |= T where K ⊆ NStdAlg(Σ), and
T consists of conditional BU Σ∗-equations. If

Σ∗

1 -Ind(Σ, T ) ⊢ ∃yP (x, y)

where P (x, y) is an elementary formula, with free variables x : u and y : v, then there is
a PR∗ scheme tuple α : u → v such that

for all A ∈ K, and all x ∈ Au, A |= P [x, fAα (x)]. (5.1)

The function (tuple) fAα is called a selecting function, realising function, Skolem function
or witnessing function for y in P .

As a corollary, we have a kind of converse to the Totality Lemma in §4.5.

Corollary. Suppose K |= T where K ⊆ NStdAlg(Σ) and T consists of conditional
BU Σ∗-equations. If a µPR∗ scheme α is provably total in Σ∗

1 -Ind(Σ, T ), then α is

extensionally PR∗ on K, i.e., there is a PR∗ scheme β such that fAα = fAβ for all A ∈ K.

A stronger version of Theorem 1 involves replacing (5.1) by a provability condition:

Theorem 2 (Provable Selection Theorem). Suppose T consists of conditional BU
Σ∗-equations. If

Σ∗

1 -Ind(Σ, T ) ⊢ ∃yP (x, y)

where P (x, y) is an elementary formula, with free variables x : u and y : v, then there is
a PR∗ scheme tuple α : u → s such that

Σ∗

1 -Ind(Σ∗

α, T + Eα) ⊢ P (x, fα(x))

where Σ∗

α is the extension of Σ∗ with symbols for the functions fα : u → v defined by
the scheme tuple α, together with their auxiliary functions, and Eα is the equational
specification for these functions given in §4.4.

Theorem 1 is an immediate consequence of Theorem 2. Theorem 2, in turn, follows
immediately from a more general result. We first need some definitions and notation.

Definitions (Σ∗

1 sequent and derivation).

(1) A sequent is called Σ∗

1 if all its formulae are Σ∗

1 .

(2) A derivation is called Σ∗

1 if all its sequents are Σ∗

1 .
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Definitions and notation (Prenex form of a sequent).
In this section (only) we use the following notation.

(3) For any Σ∗

1 formula P (x) containing (only) the variables x free, we write its prenex
form (§4.1, Lemma 1) as ∃yP 0(x, y), with P 0 elementary.

(4) Given a Σ∗

1 sequent
Q1, . . . , Qm 7−→ P1, . . . , Pn, (5.2)

its prenex form is the corresponding sequent of prenex forms of the formulae:

∃z1Q
0

1(x, z1), . . . , ∃zmQ0

m(x, zm) 7−→ ∃y
1
P 0

1 (x, y
1
), · · · , ∃ynP 0

n(x, yn) (5.3)

where x contains all free variables of the sequent.

Main Lemma. Suppose the Σ∗

1 sequent (5.2) is provable in Σ∗

1 -Ind(Σ, T ). Let its prenex
form be as in (5.3). Then we can construct tuples of PR∗(Σ) schemes α1, . . . , αn such
that

Q0

1
(x, z1), . . . , Q0

m(x, zm) 7−→ P 0

1
(x, fα1

(x, z)), · · · , P 0

n(x, fαn
(x, z)) (5.4)

(where z ≡ z1, . . . , zm) is provable in Σ∗

1 -Ind(Σ∗

α1,...,αn

, T + Eα1,...,αn
), where Eα1,...,αn

is the combined equational specification for the functions fα1
, . . . , fαn

in the signature
Σ∗

α1,...,αn

.

In order to prove the Main Lemma, we must first prove a cut reduction lemma.

Cut reduction lemma. Every derivation D in Σ∗

1 -Ind, with Σ∗

1 initial sequents, can
be transformed into a derivation D′ of the same end-sequent containing only Σ∗

1 cuts.
Moreover, if the end-sequent is Σ∗

1 then so is the whole derivation.

The proof of this lemma proceeds by a technique similar to that in the proof of Gentzen’s
Hauptsatz (see [Gen69, III, §3] or [Tak75, §5]). Details are given in [TZ93].

5.2 Proof of main lemma

By the Cut Reduction Lemma and the Remark on initial sequents in §4.2, we can assume
we have a Σ∗

1 derivation of (5.2).

There are different cases according to the last inference. It is given in some detail in
[TZ93]. We cover a few cases that most concern us.

The result holds trivially for initial sequents, by the Remark on initial sequents in §4.2.

A PR∗ selection function for Σ∗

1 induction can be defined by the scheme for primitive
recursion.

Consider now Contr:R. Rewriting the premiss and conclusion in prenex form, we have:

. . . , ∃zjQ
0

j (x, zj), . . . 7−→ ∃yP 0(x, y), ∃yP 0x, y), . . .

. . . , ∃zjQ
0

j(x, zj), . . . 7−→ ∃yP 0(x, y), . . .
.
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By induction hypothesis there are PR∗ functions f1, f2 such that

. . . , Q0

j (x, zj), . . . 7−→ . . . , P 0(x, f1(x, z)), P 0(x, f2(x, z))

is provable. So define the vector of PR functions

f(x, z) =

{
f1(x, z) if P 0(x, f1(x, z))

f2(x, z) otherwise
(5.5)

using definition by cases.

Then f is a selection function for ∃yP 0 in the conclusion.

Note that for (5.5) to define a PR∗ function, we need primitive recursive decidability of
elementary formulae such as P 0.

A similar situation arises with the rules ∧R and ∨L, because of the implicit contraction
of the (non-principal) formulae in the succedent. Consider, for example, the rule ∨L:

. . . , Q1 7−→ P, . . . . . . , Q2 7−→ P, . . .

. . . , Q1 ∨ Q2 7−→ P, . . .
. (5.6)

Rewriting the premisses and conclusion in prenex form, we have:

. . . , ∃z1Q
0

1
(x, z1), 7−→ ∃yP 0(x, y), . . . . . . , ∃z2Q

0

2
(x, z2), 7−→ ∃yP 0(x, y), . . .

. . . , ∃z1z2(Q0

1
(x, z1) ∨ Q0

2
(x, z2)), 7−→ ∃yP 0(x, y), . . .

.

(5.7)
By induction hypothesis there are PR∗ functions f1, f2 such that

. . . , Q0

1
(x, z1) 7−→ P 0(x, f1(x, z)), . . .

. . . , Q0

2
(x, z2), 7−→ P 0(x, f2(x, z)), . . .

are provable. As a selector for ∃yP 0 in the the conclusion of (5.7), we can then define

f(x, z) =

{
f1(x, z) if Q0

1(x, z1)

f2(x, z) otherwise

(and similarly for the other formulae in the consequent), assuming, again, that we have
PR∗ decidability of elementary formulae.

This is guaranteed by the assumption:

Computable Equality Assumption. All sorts of Σ have PR∗ computable equality.

Lemma. Under the Computable Equality Assumption, the predicate defined by an ele-
mentary formula is PR∗ computable.
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5.3 Conclusion

Thus the Main Lemma, and hence the Selection Theorem, follow from the Computable
Equality Assumption.4

However, many important algebras do not have decidable equality!

Example. Consider the topological total algebra of reals

R = (R, N, B; 0, 1, +, −, ×, . . . ),

“topological” in the sense that all the carriers have topologies in terms of which the basic
operations are continuous; “total” in the sense that the basic operations are total [TZ05].
R containing the carrier R of reals with its usual topology and its ring operations, as
well as the carriers N and B of naturals and booleans, with their discrete topologies and
standard operations.

Although there is an equality test on N, there is none on R, since a (total) equality
operation on R cannot be continuous.

However the specification language Lang(R) has, as atomic formulae, equations be-
tween terms of the same sort, for all sorts, including real. Hence the atomic formulae in
Lang(R) are not PR∗-computable.

Thus we want to find conditions for the Selection Theorem which do not need the
Computable Equality Assumption. We turn to this in the next two sections.

4This assumption was used, but its necessity was unfortunately not emphasised, in [TZ93].
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6 Selection theorem for algebras with intuitionistic proof systems

6.1 Realisability

We are looking for a way to prove the Selection Theorem without assuming PR decidablity
of elementary formulae, or (equivalently) of equality at all sorts.

The solution we take (for now), following [Zuc06], is to use, not just a PR selector for
an existential statement, but a PR realiser for each formula, which also carries information
on which component of a disjunction holds (as in the antecedent of the conclusion of (5.6)
or (5.7)). It will turn out we also have to restrict our attention to intuitionistic systems.

We therefore define a realizability relation between term tuples and Σ∗

1 formulae. First
we define

Definition 1 (Type of a Σ∗

1 formula). The type tp(P ) of a Σ∗

1 formula P is a
particular Σ∗-product type. It is defined by structural induction on P .

(i) tp(t1 = t2) = bool

(ii) tp(P1 ∧ P2) = tp(P1) × tp(P2)

(iii) tp(P1 ∨ P2) = bool × tp(P1) × tp(P2)

(iv) tp(∀k < t P ) = tp(P )∗

where, for any Σ∗-product type u, u∗ is the corresponding component-wise starred
type; thus, if (say) u = s1 × s2 × s∗

3
× s∗

4
× s5 then u∗ = s∗

1
× s∗

2
× s∗∗

3
× s∗∗

4
× s∗

5
.

(v) tp(∃ysP ) = s × tp(P ) where s is any Σ∗-sort.

Remarks. (1) The base case, tp(t1 = t2), could really be defined to be any Σ-sort.

(2) The doubly starred sorts s∗∗ which appear in clause (iv) are not actually present in
the signature Σ∗; the doubly indexed (two-dimensional) arrays which they represent are
actually effectively coded by one-dimensional arrays in a well-known way.

The central concept of this section is a realizability relation between term tuples of a
particular Σ∗-product type, and Σ∗

1 formulae of the same type.

Definition 2 (Realisability of Σ∗

1 formulae). Let t be a Σ∗-term tuple, and P a
Σ∗

1 formula, both of the same product type. We define the expression ‘t ⊲ P ’ (“t realises
P”) to be a Σ∗

1 formula, by structural induction on P :

(i) t ⊲ (t1 = t2) ≡ t1 = t2.

(ii) 〈t1, t2〉 ⊲ (P1 ∧ P2) ≡ (t1 ⊲ P1) ∧ (t2 ⊲ P2).

(iii) 〈t0, t1, t2〉 ⊲ (P1 ∨ P2) ≡ (t0 = true ∧ t1 ⊲ P1) ∨ (t0 = false ∧ t2 ⊲ P2).

(iv) t∗ ⊲ (∀z < t0 P ) ≡ ∀z < t0(t
∗[z] ⊲ P ).

(v) 〈t0, t〉 ⊲ (∃yP ) ≡ t ⊲ P 〈y/t0〉

Remarks. (3) If P is a formula built up from equations using conjunction and BU quan-
tification only, then t ⊲ P is identical to P (by a simple induction on P ). In particular,
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the realizability of a BU equation P is the same as P .

(4) However, in cases (iii) and (v), the realising tuple contains extra information: it
includes a “witness” to the truth of the disjunction or existential quantification respectively.

The above two remarks together imply that for a Σ∗

1 formula P , realizability of P
implies P . This is stated precisely in the following

Lemma. For any Σ∗

1 formula P and term tuple t of the same type, the sequent

t ⊲ P 7−→ P

is provable in intuitionistic predicate logic.

As a sort of converse, we have the Selection Theorem (Theorems 1 and 2 of Section
5, with ‘Σ∗

1 -Ind’ replaced by the intuitionistic system ‘Σ∗

1 -Indi’ throughout.) The Main
Lemma, from which this immediately follows, asserts the existence of a realiser for the
succedent formula of a Σ∗

1 sequent, which is PR not just in the free variables of the
sequent, but also in realisers of the antecedent formulae.

Main Lemma. Suppose the Σ∗

1 sequent

Q1, . . . , Qm 7−→ P

is provable in Σ∗

1 -Indi(Σ, T ). Let Q1, . . . , Qm, P have types v1, . . . , vm, v respectively,
and var(Q1, . . . , Qm, P ) ⊆ x : u. Let z1, . . . , zm be tuples of variables, pairwise disjoint
and disjoint from x, with zi : vi for i = 1, . . . , m. Then for some tuple of PR schemes
α : u × v1 × · · · × vm → v,

z1 ⊲ Q1, . . . , zm ⊲ Qm 7−→ fα(x, z1, . . . , zm) ⊲ P (6.1)

is provable in Σ∗

1 -Indi(Σ
∗

α, T+Eα), where Σ∗

α is the extension of Σ∗ with symbols for the
function tuple together with their auxiliary functions, and Eα is the equational specification
for these functions.

6.2 Proof of the Main Lemma

The proof is, again, by induction on the length of a Σ∗

1 derivation of (6.1) Note, in this
connection, that the Cut reduction lemma also applies to the intuitionistic system.

Note also that in this proof, using realizability, we do not need to transform the sequents
to prenex form (as in Section 5).

Again, there are cases according to the last inference.

We do not give a thorough proof of the Main Lemma, since such a proof is given in the
next section for a stronger result. For now, we only want to consider the three inferences
which (explicitly or implicitly) use contraction in the succedent in the classical case and
hence needed decidability of equality, namely Contr:R, ∧R and ∨L, (see §5.2). First, Contr:R
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is not part of the intuitionistic system. Secondly, ∧R is no longer a problem, since the
(implicit) contractions here apply only to non-principal formulae in the succedent, which
do not exist in the intuitionistic system. That leaves ∨L:

Γ, Q1 7−→ P Γ, Q2 7−→ P

Γ, Q1 ∨ Q2 7−→ P

with all the free variables in the conclusion included in x. By induction hypotheses there
are PR∗ schemes α1, α2 such that

z ⊲ Γ, z1 ⊲ Q1 7−→ fα1
(x, z, z1) ⊲ P

z ⊲ Γ, z2 ⊲ Q2 7−→ fα2
(x, z, z2) ⊲ P

(6.2)

are provable. Define a PR∗ scheme tuple β such that (with z0 : bool, and the other variables
as in (6.2))

fβ(x, z, z0, z1, z2) =

{
fα1

(x, z, z1) if z0 = true

fα2
(x, z, z2) otherwise.

Then
z ⊲ Γ, (z0, z1, z2) ⊲ Q1 ∨ Q2 7−→ fβ(x, z, z0, z1, z2) ⊲ P. (6.3)

Remark: Notice here the use of the realizability property for disjunctions (see Remark (4)
in §6.1) to decide effectively which component of the disjunction Q1∨Q2 holds. (Remember
that the elementary formulae of Lang(Σ∗) need not be computable!)

6.3 Conclusion

In this section, using concepts of realizability, we were able to prove the Main Lemma,
and hence the Selection Theorem, without having to assume computability of equality, but
at the expense of having to work with an intuitionistic proof system.

Hence the result in this section cannot really be considered a generalization of the
Parsons-Mints-Takeuti Theorem.
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7 Selection theorem for algebras without computable equality and
with classical proof system

7.1 Our aim; Counterexample?

We want to prove the Main Lemma, and hence the Selection Theorem, for algebras without
either of the restrictions of the last two sections, i.e., without the computable equality
assumption, and without having to work in intuitionistic systems.

We should first ask, however: is the Selection Theorem true without these two restric-
tions? Here is a proposed counterexample. Consider the algebra R of reals (§5.3) and the
quantifier-free formula

P (x, y) ≡df (x 6= 0 ∧ y = 0) ∨ (x = 0 ∧ y = 1)

where x, y : real. Then
∀x ∃yP (x, y)

is classically true and easily provable classically. But the (unique) selection function for
this is not continuous on R, and hence not PR∗ computable on R.

Note, however, that P has a negated equality , and is therefore not elementary, according
to our definition (§4.1(b)), or even Σ∗

1 !

7.2 Solution: extend realizability to sequents

The solution is to extend the concept of realizability used in Section 6 to realizability of
sequents, following [Str03]. So given a sequent

∆ ≡ P1, . . . , Pn

of product type u = u1 × · · · × un, and a Σ∗-term tuple

r̄ = 〈r0, r1, . . . , rn〉

of “matching” type nat × u1, . . . , un, we define

r̄ ⊲⊲ ∆ (“ r̄ realises ∆”)

to mean

(r0 = 1 ∧ r1 ⊲ P1) ∨ (r0 = 2 ∧ r2 ⊲ P2) ∨ . . . ∨ (r0 = n ∧ rn ⊲ Pn)

(where ‘⊲’ is defined as in §6.1). Notice that r̄ has an initial term r0 of type nat, followed
by a term tuple of the same product type as ∆.

Intuitively, r̄ realises ∆ (understood disjunctively) by selecting one of the Pi according
to the value i of r0, and then realising it with ri. We call the term r0 the index of the
realiser r̄, since it indicates which formula in ∆ is actually being realised.

We can now state the current version of the Main Lemma (cf. §6.1).
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Main Lemma. Suppose the Σ∗

1 sequent

Q1, . . . , Qm 7−→ P1, . . . , Pn (7.1)

is provable in Σ∗

1 -Ind(Σ, T ). Let Q1, . . . , Qm, P1, . . . , Pn have types v1, . . . , vm, w1, . . .
. . . , wn respectively, and var(Q1, . . . , Qm, P1, . . . , Pn) ⊆ x : u. Let z1, . . . , zm be tuples
of variables, pairwise disjoint and disjoint from x, with zi : vi for i = 1, . . . , m. Then for
some tuple of PR∗ schemes α : u × v1 × · · · × vm → nat × w1 × · · · × wn,

z1 ⊲ Q1, . . . , zm ⊲ Qm 7−→ fα(x, z1, . . . , zm) ⊲⊲ (P1, . . . , Pn) (7.2)

is provable in Σ∗

1 -Indi(Σ
∗

α, T+Eα), where Σ∗

α is the extension of Σ∗ with symbols for the
function tuple together with their auxiliary functions, and Eα is the equational specification
for these functions.

7.3 Proof of Main Lemma

We introduce the following terminology and notation.

(i) The sequent (7.1) is said to be covered by x if var(Q1, . . . , Qm, P1, . . . , Pn) ⊆ x.

(ii) We express (7.2) by saying that fα realises the sequent (7.1) (w.r.t. x).

(iii) Suppose Γ ≡ Q1, . . . , Qm, with Qi : vi. Then we write Γ : v1 × · · · × vm. If, further,
z ≡ z1, . . . , zm with zi : vi, then we write ‘z ⊲ Γ’ for
z1 ⊲ Q1, . . . , zm ⊲ Qm. Note: this is just a notational shorthand (Γ is read “con-
junctively”); it is not the same as the new concept ‘z ⊲⊲ ∆’ defined in §7.2 (where
∆ is read “disjunctively”).

By the Cut Reduction Lemma (in §5.1) we may assume we have a Σ∗

1 derivation of
(7.1). The required PR∗ schemes are then constructed by induction on the length of such
a derivation.

The base case involves initial sequents. By the Remark on Initial Sequents (in §4.2)
the initial sequents contain only BU equations, except for axiom (4.5a). Hence the result
holds trivially for all initial sequents other than (4.5a), since by Remark 3 in §6.1, any
BU equational sequent can be trivially realised, by (for example) a function tuple of the
correct type with default constant value. (Here the Instantiation Assumption on Σ (§2.1)
is being used.)

As for the initial sequent (4.5a), or rather a substitution instance

7−→ (t = true) ∨ (t = false)

for any boolean term t with var(t) ⊆ x : u (say), this can be realised by a scheme tuple
α : u → nat × bool3, where

fα(x) = 〈1, (t, true, true)〉.

For the induction step, there are different cases according to the last inference of the
derivation.
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Consider now the three inferences which (explicitly or implicitly) use contraction in the
succedent: Contr:R, ∧R and ∨L. First, Contr:R:

Γ 7−→ P, P, ∆

Γ 7−→ P, ∆
(7.3)

Suppose the conclusion is covered by x : u. Then the premiss is also covered by x. Assume
Γ : v, P : w0 and ∆ : w.

By induction hypothesis, there is a PR∗ scheme tuple α : u× v → nat×w2

0
×w which

realises the premiss of (7.3), i.e., such that

z ⊲ Γ 7−→ fα(x, z) ⊲⊲ P, P, ∆

is provable. Put fα(x, z) = 〈r0, r1, r2, r̄〉 where the realising terms r0 : nat, r1 : v, r2 : v
and r̄ : w represent PR∗ functions applied to x,z.

We can then easily construct a PR∗ scheme tuple β : u × v → nat × w0 × w with

fβ(x, z) = 〈r′
0
, r′

1
, r̄〉

where

r′0 =

{
1 if r0 = 1 ∨ r0 = 2

r0 − 1 if r0 > 2

and

r′
1

=






r1 if r0 = 1

r2 if r0 = 2

arbitrary if r0 > 2.

Then fβ realises the conclusion of (7.3).

Remark: The contracted formula P is realised in the conclusion by either r1 or r2 (which
realised the two occurrences of P in the premisses) depending on the value of the index
r0, and hence of r′

0
.

Suppose now the last inference is ∧R:

Γ 7−→ P1, ∆ Γ 7−→ P2, ∆

Γ 7−→ P1 ∧ P2, ∆
. (7.4)

Suppose the conclusion is covered by x : u. Then the premisses are also covered by x.
Assume Γ : v, P1 : w1, P2 : w2 and ∆ : w.

By induction hypothesis there are PR∗ scheme tuples α1 : u× v → nat×w1 ×w and
α2 : u × v → nat × w2 × w which realise the premisses of (7.4), i.e., such that

z ⊲ Γ 7−→ fα1
(x, z) ⊲⊲ P1, ∆

z ⊲ Γ 7−→ fα2
(x, z) ⊲⊲ P2, ∆



23

are provable. Put

fα1
(x, z) = 〈r1

0
, r1

1
, r̄1〉

fα2
(x, z) = 〈r2

0
, r2

1
, r̄2〉

where ri
0

: nat, ri
1

: wi and r̄i : w (i = 1, 2). We can then construct a PR∗ scheme tuple
β : u × v → nat × (w1 × w2) × w where

fβ(x, z) = 〈r0, r1, r̄〉

with

r0 =






1 if r1

0
= 1 ∧ r2

0
= 1

r1

0 if r1

0 > 1

r2

0
if r1

0
= 1 ∧ r2

0
> 1

and
r1 = (r1

1
, r2

1
)

and

r̄ =






r̄ 1 if r1

0
> 1

r̄ 2 if r1

0
= 1 ∧ r2

0
> 1

arbitrary if r1

0
= 1 ∧ r2

0
= 1.

Then fβ realises the conclusion of (7.4).

Remark: The side formulas in the succedent, i.e., the formulas in ∆, are implicitly
contracted. Each one is realised by the corresponding term in either r̄ 1 or r̄ 2, depending
on the values of the indices r1

0 and r2
0 . Note that in the absence of such side formulas, i.e.,

if ∆ is empty (as in the intuitionistic system), the construction of the scheme β from α is
very simple.

The remaining inference that uses contraction in the succedent is ∨L:

Γ, Q1 7−→ ∆ Γ, Q2 7−→ ∆

Γ, Q1 ∨ Q2 7−→ ∆
.

Here the construction of a realiser for the conclusion from realisers for the premisses is
almost exactly the same as in the intuitionistic case (§6.2). The only difference is that the
string ‘⊲P ’, which occur in 3 places (at the right end of the sequents (6.2) and (6.3)), is
replaced by ‘ ⊲⊲∆’.

In the cases thinning , interchange and Contr:L, a realiser for the conclusion can be
obtained easily from a realiser for the premiss.

Consider now the logical inferences. Since the derivation is Σ∗

1 , there are no ‘→’ or ‘∀’
inferences.

We have dealt with ∧R and ∨L above. The cases ∧L is quite simple. Consider now ∨R:

Γ 7−→ P1, P2, ∆

Γ 7−→ P1 ∨ P2, ∆
(7.5)
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Suppose the conclusion is covered by x. Then so is the premiss.

By induction hypothesis there is a scheme tuple α which realises the premiss of (7.5),
i.e., such that

z ⊲ Γ 7−→ fα(x, z) ⊲⊲ P1, P2, ∆.

Put
fα(z) = 〈r0, r1, r2, r̄〉.

Then we can construct a scheme tuple β such that

fβ(x, z) = 〈r′0, 〈rB, r1, r2〉, r̄〉

where

r′
0

=

{
1 if r0 = 1 ∨ r0 = 2

r0 − 1 if r0 > 2

and rB : bool with

rB =






true if r0 = 1

false if r0 = 2

arbitrary if r0 > 2.

Then fβ realises the conclusion of (7.5).

Suppose the last inference is ∀bR:

Γ, a < t 7−→ P (a), ∆

Γ 7−→ ∀k < t P (k), ∆
(7.6)

where the eigenvariable a : nat does not occur in the conclusion. Suppose the conclusion
is covered by x : u. Then the premiss is covered by (x, a) : u × nat. Assume Γ: v, P : w0

and ∆: w.

By induction hypothesis there is a PR∗ scheme tuple α : u×nat×v×bool → nat×w0×w
which realises the premiss of (7.6), i.e.,

z ⊲ Γ, z0 ⊲ a < t 7−→ fα(x, a, z, z0) ⊲⊲ P (a), ∆.

Note that a < t means lessnat(a, t) = true, which is trivially realised by anything of type
bool. Put

fα(a, x, z, z0) = 〈r0(a), r1(a), r̄(a)〉

(making explicit the dependence of the realising terms on the eigenvariable a). We can
then construct a scheme tuple β : u × v → nat × w∗

0
× w (note the array type in the

range!) such that
fβ(x, z) = 〈r′

0
, r∗

1
, r̄ ′〉

where r′0 : nat, r∗1 : w∗

0 and r̄ ′ : w are defined as follows:

Case 1: For all k < t, r0(k) = 1. Then define

r′
0

= 1
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and r̄ ′ arbitrarily (for example, r̄ ′ = r̄(0)).

Case 2: For some k0 < t, r0(k0) > 1. Then define

r′
0

= r0(k0)

r̄′ = r̄(k0).

And in both cases, define r∗
1
: w∗

0
by

r∗
1
[k] = r1(k) for all k < t.

Then fβ realises the conclusion of (7.6).

Remarks: (1) The two cases above are PR∗ distinguishable, being based on bounded
quantification, which is primitive recursively decidable. (2) The choice of k0 in Case 2 is
not important, since the formulae in ∆ do not contain the eigenvariable a, and hence their
realizability by r̄(a) does not depend on the value k of a.

Now suppose the last inference is ∀bL:

Γ 7−→ t0 < t, ∆ Γ, Q(t0) 7−→ ∆

Γ, ∀k < t Q(k) 7−→ ∆

Let t̂0 be the term formed from t0 by replacing all variables in t0 which are not free in the
conclusion by default terms of the same sort. (Here the Instantiation Assumption is being
used.) Then the derivation can be easily modified so as to end in the inference

Γ 7−→ t̂0 < t, ∆ Γ, Q(t̂0) 7−→ ∆

Γ, ∀k < t Q(k) 7−→ ∆
(7.7)

with the same conclusion, but with the additional property that if x : u covers the conclu-
sion, then it also covers both premisses. Assume Γ : v, Q : v0 and ∆ : w.

By induction hypothesis, there are scheme tuples α1 : u × v → nat × bool × w and
α2 : u × v × v0 → nat × w such that fα1

and fα2
realise the two premisses of (7.7), i.e.:

z ⊲ Γ 7−→ fα1
(x, z) ⊲⊲ t̂0 < t, ∆

z ⊲ Γ, z0 ⊲ Q(t̂0) 7−→ fα2
(x, z, z0) ⊲⊲ ∆.

Put
fα1

(x, z) = 〈r1

0, true, r̄ 1〉

fα2
(x, z, z0) = 〈r2

0(z0), r̄ 2(z0)〉.

(making explicit the dependence of the realising terms on the realiser z0 of Q(t̂0)). Note
again that the atomic formula t̂0 < t is trivially realised by anything of type bool.) Now
we can construct a scheme tuple β : u × v × v∗

0
→ nat × w (note the array type in the

domain!) with
fβ(x, z, z∗

0
) = 〈r0, r̄〉



26

where

r0 =

{
r2

0(z
∗

0[t̂0]) if r1

0 = 1

r1

0
if r1

0
> 1

and

r̄ =

{
r̄ 2(z∗

0
[t̂0]) if r1

0
= 1

r̄ 1 if r1

0
> 1

Then fβ realises the conclusion of (7.7).

Suppose next that the last inference is ∃R:

Γ 7−→ P (t), ∆

Γ 7−→ ∃yP (y), ∆
.

As with ∀bL, let t̂ be the term formed from t by replacing all variables in t which are not
free in the conclusion by default terms of the same sort. (Here again the Instantiation
Assumption is being used.) Then the derivation can be easily modified so as to end in the
inference

Γ 7−→ P (t̂), ∆

Γ 7−→ ∃yP (y), ∆
. (7.8)

with the same conclusion, but with the additional property that if x : u covers the conclu-
sion, then it also covers the premiss.

By induction hypothesis, there is a PR∗ scheme tuple α such that fα realises the premiss
of (7.8), i.e.,

z ⊲ Γ 7−→ fα(x, z) ⊲⊲ P (t̂), ∆.

Put
fα(x, z) = 〈r0, r1, r̄〉.

We can then construct a scheme tuple β such that

fβ(x, z) = 〈r0, 〈t̂, r1〉, r̄〉.

Then fβ realises the conclusion of (7.8).

Suppose next that the last inference is ∃L:

Γ, Q(a) 7−→ ∆

Γ, ∃yQ(y) 7−→ ∆
(7.9)

where the eigenvariable a does not occur in the conclusion. Assume Γ: v, Q : v0, ∆: w
and y : s. Assume also that the conclusion is covered by x : u. Then the premiss is covered
by (x, a) : u × s.

By induction hypothesis, there is a scheme tuple α : (u× s)× v× v0 → nat×w which
realises the premiss of (7.9), i.e.,

z ⊲ Γ, z0 ⊲ Q(a) 7−→ fα((x, a), z, z0) ⊲⊲ ∆.



27

So define β : u × v × (s × v0) → nat × w by

fβ(x, z, (a, z0)) = fα((x, a), z, z0).

Then fβ realises the conclusion of (7.9), i.e.,

z ⊲ Γ, (a, z0) ⊲ ∃yQ(y) 7−→ fβ((x, z, (a, z0)) ⊲⊲ ∆.

Comment: Notice that fβ is essentially the same as fα, except that the eigenvariable a,
which is one of the free variables of the sequent in the premiss, is re-interpreted as part of
the realiser of ∃yQ(y) in the conclusion.

Now suppose the last inference is a cut , which we take, for convenience, in the following
form:

Γ 7−→ P, ∆ Γ, P 7−→ ∆

Γ 7−→ ∆
.

Since the derivation is Σ∗

1 by the Cut Reduction Lemma, the cut formula P is Σ∗

1 . Now

(as with ∀bL and ∃R) let P̂ be the formula formed from P by replacing all variables in P
which are not free in the conclusion by default terms of the same sort. (Here again the
Instantiation Assumption is being used.) Then the derivation can be simply modified so
as to end in the cut

Γ 7−→ P̂ , ∆ Γ, P̂ 7−→ ∆

Γ 7−→ ∆
. (7.10)

with the same conclusion, but with the additional property that if x : u covers the conclu-
sion, then it also covers the premisses.

Assume that Γ: v, ∆: w and P̂ : v0. By induction hypothesis, there are schemes
α : u× v → nat× v0 ×w and β : u× v × v0 → nat×w which realise the two premisses,
i.e.,

z ⊲ Γ 7−→ fα(x, z) ⊲⊲ P̂ , ∆

z ⊲ Γ, z0 ⊲ P̂ 7−→ fβ(x, z, z0) ⊲⊲ ∆.

We can construct a scheme tuple γ : u × v → nat × w as follows. Put

fα(x, z) = 〈r0, r1, r̄〉.

There are two cases.

Case 1: r0 > 1. Then we let
fγ(x, z) = 〈r0, r̄〉.

Case 2: r0 = 1. Then we let
fγ(x, z) = fβ(x, z, r1).

Then fγ realises the conclusion of (7.10).

Comment: So the conclusion of a cut is realised essentially by composition of the realisers
of the premisses.
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Suppose, finally, that the last inference is Σ∗

1 induction (repeating (4.4) here for conve-
nience):

Γ, P (a) 7−→ P (Sa), ∆

Γ, P (0) 7−→ P (t), ∆
. (7.11)

where the induction formula P (a) is Σ∗

1 , and the induction variable a : nat does not occur
in Γ, ∆ or P (0). Suppose the conclusion is covered by x : u. Then the premiss is covered
by (x, a) : u × nat. Assume Γ: v, P (a) : v0 and ∆: w.

By induction hypothesis there is a scheme α : nat× u × v × v0 → nat× v0 ×w which
realises the premiss, i.e.,

z ⊲ Γ, z0 ⊲ P (a) 7−→ fα(x, a, z, z0) ⊲⊲ P (Sa), ∆. (7.12)

Put
fα(x, a, z, z0) = 〈r0(a, z0), r1(a, z0), r2(a, z0), . . .〉, (7.13)

(making explicit the dependence of the realising terms r0, r1, r2, . . . on the variables a and
z0). Now we construct a scheme β : u × v × v0 → nat × v0 × w such that

fβ(x, z, z0) = 〈r′
0
(t, z0), r′

1
(t, z0), r′

2
(t, z0), . . .〉

where the realisers r′
0
, r′

1
, r′

2
, . . . are defined by simultaneous primitive recursion:

Base case:

r′i(0, z0) = ri(0, z0) for i 6= 1

r′
1
(0, z0) = z0.

Recursion step: For all i = 0, 1, 2, . . . :

r′i(n + 1, z0) =

{
r′i(n, z0) if r′

0
(n, z0) > 1

ri(n, r′
1
(n, z0)) if r′

0
(n, z0) = 1 (the “interesting case”).

Thus, as soon as the index points to a realiser in ∆, i.e., r′0(n, z0) > 1, everything remains
constant; otherwise we carry on inductively as expected.

Then fβ realises the conclusion of (7.11), i.e.,

z ⊲ Γ, z0 ⊲ P (0) 7−→ fβ(x, z, z0) ⊲⊲ P (t), ∆

is provable by Σ∗

1 -induction on (the value of) t.

This concludes the proof of the Main Lemma, and hence of the Selection Theorem.
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8 Some concluding remarks

8.1 The use of starred sorts and systems

Note first that the use of starred (or array) sorts is strongly connected with the use of the
bounded universal quantifier . For (in one direction)

(1) BU conditional equations are used in the axiomatisation of array equality (see equa-
tion (4.6));

and (in the other direction)

(2) an existentially quantified variable changes to a starred sort when permuting with a
BU quantifier in the transformation to prenex form (§4.1, Lemma 1);

(3) an array term is needed for the realisation of BU quantification (§6.1, Def. 2(iv));
and hence

(4) an array-valued function is needed for the conclusion of a ∀bR inference, either as a
selector for the prenex form (in Section 5) or as a realiser (in Section 7; see (7.6)).

In fact, the use of starred sorts and systems in this paper (for example, Σ∗

1 -Ind(Σ, T )
instead of Σ1-Ind(Σ, T )), and the use of BU quantification (as a clause in the definition
of Σ∗

1 formulae, and as a primitive inference rule) could both have been omitted . The
main results of this paper, i.e., the Selection and Provable Selection Theorems, as used in
Sections 5, 6 and 7, could all have been formulated in a “starless” and “BU-less” form.

However, working with array sorts, and BU quantification, allowed the results to be
presented in a more general setting.

For example, the construction of the Σ∗

1 computation predicate Pα, discussed in §4.6,
needs starred sorts, even for PR schemes α. Hence the Totality Lemma in §4.6 (even for
PR schemes), and the Corollary in §5.1 (even for µPR schemes) both need starred sorts,
even for their formulation.

8.2 Total vs partial algebras

In this paper we have considered only total algebras. This is a real restriction, since partial
basic functions occur quite naturally in topological algebras; consider, for example, the
algebra R of reals (1.3) augmented with continuous partial operators of division, equality
and order [TZ04]. To extend the current theory to such partial algebras would entail
extending the proof theory used here to a logic of partial terms or definedness (see, e.g.,
[Bee85, pp. 97–99] and [Fef95]). This is likely to be a major undertaking, but one worth
pursuing.

8.3 Other functional interpretations

It would be interesting to know whether the results of this paper could also be obtained
using other types of functional interpretation; for example, a version of Gödel’s Dialectica
interpretation [AF98], or a Herbrand-style interpretation [Bus98b, §2.5], versions of which
have also been applied to fragments of arithmetic [Sie91, Koh92], or the (related) “witness
function” methods of Buss [Bus86, Bus94, Bus98a].
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Recall that Herbrand interpretations are typically applied to classical systems, to trans-
form proofs of existential statements

∃yP (x, y) (8.1)

with P quantifier-free, to proofs of finite disjunctions

P (x, t1) ∨ . . . ∨ P (x, tn) (8.2)

(n ≥ 1, ti term tuples containing x). Now to construct a selection function for (8.1),
assuming the system has decidable atomic formulae, (8.2) can be contracted to a statement

P (x, t) (8.3)

for a single term tuple t constructed with a simple definition by cases, as in Section
5. However, without decidability of atomic formulae, it is not at all apparent how to
proceed from (8.2) to (8.3) (or, for that matter, to interpret Σ1 induction suitably) without
analysing the proof of (8.2) (or (8.1)) by a realizability interpretation, as in Section 7.
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[Sch95] A. Schlüter. An extension of Leivant’s characterization of polytime by predicative arith-

metic. Preprint, Stanford University, 1995.

[Sie91] W. Sieg. Herband analyses. Archive for Mathematical Logic, 30:409–441, 1991.

[Str03] T. Strahm. Theories with self-application and computational complexity. Information and

Computation, 185:263–297, 2003.

[Str04] T. Strahm. A proof-theoretic characterization of the basic feasible functionals. Theoretical

Computer Science, 329:159–176, 2004.

[Tak75] G. Takeuti. Proof Theory. North Holland, 1st edition, 1975. 2nd edition, 1987.



32

[Tro93] A.S. Troelstra, editor. Metamathematical Investigation of Intuitionistic Arithmetic and

Analysis (Second corrected edition). Technical Notes X-93-05. Institute for Logic, Language

and Computation, Amsterdam, 1993. Originally published as volume 344 of Lecture Notes

in Mathematics, Springer-Verlag, 1973.

[Tro98] A.S. Troelstra. Realizability. In S.R. Buss, editor, Handbook of Proof Theory, pages 407–

473. Elsevier, 1998.

[TZ88] J.V. Tucker and J.I. Zucker. Program Correctness over Abstract Data Types, with Error-

State Semantics, volume 6 of CWI Monographs. North Holland, 1988.

[TZ93] J.V. Tucker and J.I. Zucker. Provable computable selection functions on abstract struc-

tures. In P. Aczel, H. Simmons, and S.S. Wainer, editors, Proof Theory, pages 277–306.

Cambridge University Press, 1993.

[TZ99] J.V. Tucker and J.I. Zucker. Computation by ‘while’ programs on topological partial

algebras. Theoretical Computer Science, 219:379–420, 1999.

[TZ00] J.V. Tucker and J.I. Zucker. Computable functions and semicomputable sets on many-

sorted algebras. In S. Abramsky, D. Gabbay, and T. Maibaum, editors, Handbook of Logic

in Computer Science, volume 5, pages 317–523. Oxford University Press, 2000.

[TZ02] J.V. Tucker and J.I. Zucker. Abstract computability and algebraic specification. ACM

Transactions on Computational Logic, 3:279–333, 2002.

[TZ04] J.V. Tucker and J.I. Zucker. Abstract versus concrete computation on metric partial

algebras. ACM Transactions on Computational Logic, 5:611–668, 2004.

[TZ05] J.V. Tucker and J.I. Zucker. Computable total functions, algebraic specifications and

dynamical systems. Journal of Logic and Algebraic Programming, 62:71–108, 2005.

[Zuc06] J.I. Zucker. Primitive recursive selection functions over abstract algebras. In A. Beckmann,
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