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ABSTRACT 

The so-called highly reduced-dynamic (HRD) orbit determination strategy and its use 
for the determination of the Earth’s gravitational field are analyzed. We discuss the 
functional model for the generation of HRD orbits, which are a compromise of the two 
extreme cases of dynamic and purely geometrically determined kinematic orbits. For 
gravity field recovery the energy integral approach is applied, which is based on the law 
of energy conservation in a closed system. The potential of HRD orbits for gravity field 
determination is studied in the frame of a simulated test environment based on a realistic 
GOCE orbit configuration. The results are analyzed, assessed, and compared with the 
respective reference solutions based on a kinematic orbit scenario. The main advantage of 
HRD orbits is the fact that they contain orbit velocity information, thus avoiding 
numerical differentiation on the orbit positions. The error characteristics are usually 
much smoother, and the computation of gravity field solutions is more efficient, because 
less densely sampled orbit information is sufficient. On the other hand, the main 
drawback of HRD orbits is that they contain external gravity field information, and thus 
yield the danger to obtain gravity field results which are biased towards this prior 
information. 

 
Ke y  wo rd s :  precise orbit determination, kinematic approach, reduced-dynamic 

approach, energy integral approach, a-priori information, GPS 
 

1. INTRODUCTION 

The knowledge about the Earth’s gravity field establishes a basis for many scientific 
disciplines like oceanography, climatology, geophysics and geodynamics of the Earth’s 
interior, and geodesy. Thereby the mapping of the gravity field from space applying state 
of the art observation techniques played a major role in recent years. 



A. Jäggi et al. 

342 Stud. Geophys. Geod., 52 (2008) 

After successful operations of CHAMP (Reigber et al., 1999) and GRACE (GRACE, 
1998), the gravity gradiometry mission GOCE (ESA, 1999), which is an Earth Explorer 
Core mission and a part of ESA’s Living Planet Programme, will further improve the 
spatial resolution of the resulting global Earth’s gravity field models. The launch of 
GOCE is scheduled for September 2008. The scientific GOCE data processing (Level 1b 
to Level 2) will be performed by the “European GOCE Gravity Consortium” (EGG-C), 
a consortium of 10 European universities and research institutes, in the framework of the 
ESA project “GOCE High-Level Processing Facility” (HPF; Rummel et al., 2004). 
Scientific key tasks in the frame of this project are data pre-processing, precise orbit 
determination (POD) from satellite-to-satellite tracking in high-low mode (SST-hl), 
gravity field processing using both the precise GOCE orbit information and satellite 
gravity gradiometry (SGG), and validation of the resulting precise orbits and gravity field 
products. While the Astronomical Institute of the University of Bern (AIUB) will be 
responsible for (kinematic) POD, one out of three independent gravity field solutions will 
be generated by the Institute of Navigation and Satellite Geodesy of Graz University of 
Technology (TUG). 

The challenge to determine the position of the low Earth orbiting satellite with highest 
accuracy is one of the topics of this study. There are several strategies for precise orbit 
determination. If the computation of the orbit is based exclusively on external force 
models, one speaks of dynamic orbits. In contrast, by using only GPS observations 
without introducing any information on LEO dynamics, the orbit is called kinematic. The 
fact that dynamic, reduced-dynamic, and kinematic orbits contain different degrees of 
(gravity field) a priori information has to be carefully considered when interpreting the 
results of the gravity field recovery based on orbit solutions. 

Usually, gravity field recovery by means of kinematic orbits is the preferred 
methodology to derive gravity field models from 3D orbit information, because no a priori 
gravity field information is used for the LEO orbit modeling. This method requires 
densely sampled positions of high accuracy. 

The geometric strength and the high density of GPS SST-hl observations allows for 
a purely geometrical approach to determine kinematic positions of low Earth orbiters 
(LEOs) at the observation epochs by precise point positioning (Švehla and Rothacher, 
2002). The ephemerides are represented by a time series of three coordinates per epoch, 
which are determined in a standard least-squares adjustment process of GPS observations 
without using any information on LEO dynamics. Kinematic CHAMP positions, e.g., 
received much attention in the past for subsequent global gravity field recovery and have 
been successfully used by many research institutions in conjunction with a broad variety 
of gravity field recovery methods (e.g., Gerlach et al., 2003; Mayer-Gürr et al., 2005; 
Ditmar et al., 2006). Even at present, gravity field recovery from kinematic LEO positions 
is still not fully exploited as shown for CHAMP by Prange et al. (2008). 

Reduced-dynamic orbit positions, on the other hand, should be used with utmost care 
for global gravity field recovery. Since the reduced-dynamic orbit determination 
technique makes use of the fact that satellite trajectories are particular solutions of an 
equation of motion (Wu et al., 1991), the positions are affected to a certain degree by the 
introduced a priori information about the LEO dynamics. Therefore, gravity field recovery 
results obtained from reduced-dynamic orbit solutions may be biased towards the a priori 
information introduced into the orbit determination (Gerlach et al., 2003), provided that 
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the dependency on the dynamic models is not reduced sufficiently by empirical 
parameters being part of the reduced-dynamic orbit model. Jäggi et al. (2007) have shown 
with simulated CHAMP data that it is possible to reduce the impact of the dynamic laws 
on satellite orbits by reduced-dynamic modeling to an extent which could potentially be of 
interest for gravity field determination. The associated orbits are called highly reduced-
dynamic (HRD) orbits, because they are represented by empirical orbit parameters 
estimated at high rates close to the GPS observation sampling rate. Compared to 
kinematic positions, HRD orbit positions provide more convenient error characteristics 
and additional information about the orbital velocities (Jäggi et al., 2007). Both aspects 
motivate the investigation of HRD orbits for the upcoming GOCE mission in order to 
potentially improve the recovery of the low degree spherical harmonics from precise orbit 
solutions. 

For gravity field recovery, the information about the long wavelengths is usually 
derived from SST-hl data. The classical approach is based on the analysis of orbit 
perturbations, applying numerical integration of the orbit and variational equations (e.g., 
Montenbruck, 2000; Beutler, 2005). 

There are, however, interesting alternatives. One of them is to compute the 
gravitational potential along the satellite’s orbit applying the principle of energy 
conservation (O’Keefe, 1957; Jekeli, 1999; Ilk, 2002). The feasibility and practical 
applicability of the energy integral method for the evaluation of SST-hl observations have 
been demonstrated by a number of studies, where it was applied to real CHAMP and 
GRACE data (e.g., Gerlach et al., 2003; Visser et al., 2003; Földváry et al., 2004; Badura 
et al., 2006; Badura, 2006). 

Also in the case of GOCE in the framework of the HPF project, two out of three 
gravity field processing strategies will be based on the precise kinematic GOCE orbits 
applying the energy integral method (Migliaccio et al., 2006; Pail et al., 2007). 

One of the advantageous features of the energy integral approach is the strictly linear 
pseudo-observation model. A drawback certainly resides in the fact that the success of the 
method strongly depends on the accuracy of the orbit velocity information (Visser et al., 
2003; Badura, 2006). While in the case of HRD orbits velocities are part of the POD 
solution, for the purely geometrical kinematic orbit solutions they have to be derived by 
numerical differentiation techniques (e.g., Goiginger and Pail, 2007). 

2. THEORETICAL BACKGROUND 

2 . 1 .  H i g h l y  R e d u c e d - D y n a m i c  ( H R D )  O r b i t s  

We use the so-called pseudo-stochastic orbit modeling technique for computing 
reduced-dynamic orbits from undifferenced GPS carrier phase observations (Jäggi, 2006). 
Apart from six initial osculating elements the orbits are characterized by a user-specified 
number of additional pseudo-stochastic orbit parameters, which are either set up as 
unconstrained velocity changes (pulses) at predefined epochs or as unconstrained 
piecewise constant accelerations over predefined time intervals. The partial derivatives 
needed to set up the GPS observation equations are formed as dot products between the 
unit vectors pointing from the corresponding GPS satellites to the LEO satellite and the 
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vectors containing the partial derivatives of the LEO a priori orbit with respect to the 
corresponding orbit parameters. 

It is efficient and convenient to express the partial derivatives of the LEO a priori orbit 
with respect to the pseudo-stochastic parameters as linear combinations of the partial 
derivatives 

joz  with respect to six initial oscilating elements 1 6, ,o o… . The partial 

derivative 
ij

zv  with respect to a pulse vij at time ti in direction j and the partial derivative 

ijaz  with respect to a constant acceleration aij between times ti−1 and ti in direction j may 

be expressed as 
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respectively. The advantage of this formulation is that only the six partial derivatives 
joz  

have to be computed by numerical integration. An efficient computation scheme for the 
coefficients βij,k and αij,k of the corresponding linear combinations may be found in Jäggi 
et al. (2005). Note that the coefficients αij,k(ti) are time-independent for t ≥ ti. 

Due to the large number of parameters involved when setting up pseudo-stochastic 
parameters at high rates, efficient methods taking into account the structure of the 
underlying normal equation system have to be applied. For the sake of simplicity, we 
consider in this section only six initial osculating elements and pulses in three orthogonal 
directions at times ti, i = 1, …, n − 1 as parameters. For a more detailed derivation and 
discussion, also considering piecewise constant accelerations and additional parameters 
like GPS carrier phase ambiguities, we refer to Beutler et al. (2006) or Jäggi (2006). 

The pulse-epochs divide the orbital arc into n subintervals. Let us therefore write all 

ion  GPS observation equations of the subinterval )1,i i iI t t += ⎡⎣  in a convenient matrix 

notation: 

 
1

i

i i m m i i
m=

⋅ + ⋅ ⋅ − =∑A Δo A B Δv ΔΦ Δρ , (2) 

where Ai is the first design matrix with 
ion  lines and six columns, Δo  the column array 

containing the six increments of the initial osculating elements, [ , ] ,i k j ij kB β=  the matrix 

with six lines and three columns containing the coefficients of Eq.(1), iΔv  the column 

array containing the three pulses at time ti, iΔΦ  the column array containing the 
ion  

terms “observed-computed”, and iΔρ  the column array containing the 
ion  residuals. Note 
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that all pulses set up before time ti remain active (present) and contribute to the GPS 
observation equations of subinterval Ii (indicated by the upper summation limit). 

In order to visualize the structure of the resulting normal equation system, it is 

instructive to use the contributions T
i i i i=N A P A  per subinterval to the normal equation 

system of orbit determination without pulses. These contributions would form, e.g., the 
complete normal equation matrix of orbit determination without pulses as 

1
0

n T
i i ii

−
==∑N A P A , but they are also the building blocks of the complete normal equation 

matrix in the presence of pulses, which reads: 

 

1 1
1 11 1

1 1
1 1 1 11 1

1
1 11
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Eq.(3) illustrates that the normal equation matrix (the same holds for the 
corresponding right-hand side of the normal equations as well) has a simple structure. 
Note in particular that it is not possible to pre-eliminate the pulses at any observation 
epoch, which is indicated by the upper summation limits. If pseudo-stochastic parameters 
are set up at a rate close or equal to the GPS observation sampling rate, reduced-dynamic 
orbit determination will become inefficient due to the unavoidably large normal equation 
systems to be set up and, eventually, to be solved. 

Rearranging all GPS observation equations (Eq.(2)) of the subinterval Ii shows that the 
orbit may be represented within this particular subinterval by only six initial osculating 
elements: 

 
1

i

i m m i i
m=
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⋅ + ⋅ − =⎜ ⎟⎜ ⎟
⎝ ⎠

∑A Δo B Δv ΔΦ Δρ  , (4) 

where the term in brackets denotes the column array containing six initial osculating 
elements characterizing the trajectory within this particular subinterval. This set of 
elements is simply related to the set of elements of the previous subinterval by 

 1i i i i−= + ⋅Δo Δo B Δv  . (5) 

It is instructive to apply the transformation given by Eq.(5) each time after having 
processed all observations of one subinterval. The resulting normal equation matrix then 
reads: 
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The solution vector obtained from the transformed normal equation system contains 
the same pulses as the untransformed system, but the set of elements 1n−Δo  referring to 

the last subinterval (instead of 0 =Δo Δo , referring to the first subinterval). A comparison 

with the untransformed normal equation matrix (Eq.(3)) reveals the benefit of the 
transformation because it is now possible to pre-eliminate the pulses after each subinterval 
as the upper summation limits in Eq.(6) indicate. Beutler et al. (2006) made full use of the 
structure of Eq.(6) and showed how a very efficient pre-elimination and back-substitution 
scheme may be implemented for both pulses and piecewise constant accelerations, which 
allows it to efficiently realize the kinematic limit with reduced-dynamic orbits. Note that 
the kinematic orbit solution can be reproduced as a special case by both models of 
reduced-dynamic orbit determination, provided that pseudo-stochastic orbit parameters 
are set up at the maximum rate possible, i.e., at the rate coinciding with the GPS 
observation sampling rate (Jäggi et al., 2007). 

2 . 2 .  G r a v i t y  F i e l d  R e c o v e r y  B a s e d  o n  t h e  E n e r g y  I n t e g r a l  
A p p r o a c h  

The observation equation of the energy integral approach in an inertial reference frame 
can be written as follows (Jekeli, 1999): 

 

0 0

21
, , d , d

2

t t

e e kin potrot diss
t t

V C t t E E E− = − × − − × = − −∫ ∫x ω x x F x ω F x  , (7) 

where x and x  are the position and velocity vectors in the inertial frame, ωe represents 
the Earth’s rotation vector transformed to the inertial frame, F is the sum of all non-
conservative accelerations acting on the satellite, and C is a constant. In Eq.(7), it is 
assumed that the gravitational potential V is free of temporal variation effects, e.g., due to 
tides, which can be reduced in a pre-processing step by applying external models. The 
first term on the right-hand side of Eq.(7) is the kinetic energy Ekin per unit mass, the 
second one Epotrot is related to the transformation between the Earth-fixed and the inertial 
coordinate frame, and the two terms including the non-conservative accelerations F 
contribute to the dissipative energy Ediss. The gravity field potential V represents the 
negative potential energy Epot = −V, and can be expanded into a series of spherical 
harmonic functions in a spherical coordinate system (r, ϑ, λ): 

 ( ) ( ) ( ) ( )
1

0 0

, , cos cos sin
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nn n

nm lm lm
n m

GM R
V r P C m S m

R r
ϑ λ ϑ λ λ
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with GM and R denoting the gravitational constant times the Earth’s mass and the Earth’s 
reference radius, respectively. nmP  are the fully normalized Legendre polynomials of 

degree n and order m, and { },nm nmC S  are the corresponding fully normalized spherical 

harmonic coefficients. 
The gravity field recovery is performed by a standard least-squares adjustment, where 

the pseudo-observations are composed of the right-hand side of Eq.(7), and the parameters 
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to be recovered are the spherical harmonic coefficients. In practice, in addition to the 
constant C several other (empirical) parameters, e.g., a low-order polynomial, can be co-
estimated to absorb long-wavelength energies which are still not correctly modeled, e.g., 
due to accelerometer biases or drifts (Badura, 2006). 

Assuming that the non-conservative accelerations F are accurately known and that the 
integration period (t – t0) is not too large (which can be guaranteed by applying an arc-
wise processing strategy), an error analysis of Eq.(7) reveals that the term which is mainly 

affected by observation errors is 
2

2kinE = x . Correspondingly, the total observation 

error σ can be expressed in good approximation by 

 
kinEσ σ σ≈ = ⋅ xx . (9) 

Eq.(9) shows that a high accuracy of the orbit velocities is the key for a high-quality 
gravity field solution with the energy integral approach. For this purpose HRD orbits, 
where in contrast to kinematic orbit solutions also orbit velocities are part of the solution, 
are an interesting alternative, especially for the energy integral approach. The orbit 
velocities do not have to be derived from the orbit positions by numerical differentiation 
methods (Goiginger and Pail, 2007), and thus the (stochastic) error contribution due to 
numerical differentiation can be avoided. However, as it will be shown in the following 
chapters, similarly to reduced-dynamic orbits, the danger of HRD orbit solutions is that 
they may contain a non-stochastic error component due to the prior information 
introduced in the course of the POD. 

3. NUMERICAL SIMULATION: 
GOCE GRAVITY FIELD RECOVERY TESTS 

In this numerical simulation study, which is based on a realistic GOCE orbit 
configuration, gravity field solutions based on HRD orbit solutions shall be analyzed and 
their accuracy assessed. For comparison, pure kinematic orbit solutions are generated, as 
well. They will serve as reference solutions. 

3 . 1 .  T e s t  D a t a  E n v i r o n m e n t  

The processing standards that will be used for the determination of the GOCE precise 
science orbits (Bock et al., 2007) are used to simulate undifferenced GPS observations for 
the GOCE satellite with 1-s sampling. The GPS final orbits of the Center for Orbit 
Determination in Europe (CODE: analysis center of the International GNSS Service) and 
a simulated dynamic GOCE orbit for 30 days, subsequently denoted as true GPS orbits 
and the true GOCE orbit, respectively, are the basis to simulate GPS code and phase data 
for both carrier frequencies with the Bernese GPS software (Dach et al., 2007). The GPS 
code observations are affected by a white noise of 0.1 m RMS error, whereas the GPS 
phase observations are simulated either error-free or, alternatively, with a white noise of 
1 mm RMS error, which corresponds to about 3 mm RMS error on the ionosphere-free 
carrier phase observable used for orbit determination. Thereby, the true GOCE trajectory 
is a particular solution of the equation of motion given by the EIGEN-2 gravity field 
model (Reigber et al., 2003) up to degree and order 90. For the sake of simplicity and 
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lucidness, non-gravitational accelerations and tidal effects have not been included, 
assuming that they can either be accurately measured (accelerations) or modeled (tides). 

A purely dynamic orbit obtained from processing the simulated GPS code 
observations serves as a priori GOCE orbit to initiate the precise kinematic or HRD orbit 
determination with the simulated GPS phase observations on a daily basis. The complete 
EIGEN-2 gravity field model up to degree 90 or, alternatively, a modified (artificially 
degraded) gravity field model is used as a priori model for the HRD orbit determination. 
The modified model is the EIGEN-2 model truncated after degree and order 20, whereas 
the remaining low degree spherical harmonic coefficients are slightly modified by 
applying random errors corresponding to the RMS errors of the EIGEN-2 coefficients. 
Either pulses or piecewise constant accelerations are estimated for the HRD orbit 
determination according to Section 2.1. 

Table 1 summarizes the test data sets that have been generated and subsequently used 
for the gravity field recovery tests in Section 3.2. Apart from the HRD solutions based on 
accelerations (No. 4−8) or pulses (No. 9−10), kinematic solutions (No. 2−3) are included 
for comparison as well. Most realistic orbit determination scenarios are of course obtained 
when all error sources are switched on (No. 2, 3, 6, 7, 8, 9, and 10). It is instructive, 
however, to either switch off the GPS carrier phase observation noise or the a priori 
gravity field errors in order to study their impact on orbit determination, and in particular 
the propagation of errors into the gravity field coefficients. Note that the last column of 
Table 1 refers to the position sampling used for the gravity field recovery tests in 
Section 3.2. The GPS observations were processed at 1-s sampling for all test data sets. 

Table 1. GOCE test data set configurations for gravity field recovery. 

No. Acronym Data content Sampling 

1 NF-1s 
Noise-free orbit, based on EIGEN-2 complete to 
degree/order 90 

1 s 

2 KIN-1s Kinematic orbit: 1 mm GPS phase noise 1 s 
3 KIN-30s Same as KIN-1s 30 s 

4 HRD-NOI-ACC30-1s 
HRD orbit: 1 mm GPS phase noise, true gravity 
field model EIGEN-2, 30 s accelerations 

1 s 

5 HRD-SIG-ACC30-1s 

HRD orbit: no GPS phase noise, artificially 
degraded gravity field model EIGEN-2 complete to 
degree/order 20 as gravity field prior information, 
30 s accelerations 

1 s 

6 HRD-TOT-ACC30-1s 
HRD orbit: GPS phase noise + incorrect grav. 
model (TOT = NOI + SIG), 30 s accelerations 

1 s 

7 HRD-TOT-ACC30-30s Same as HRD-TOT-ACC30-1s 30 s 

8 HRD-TOT-ACC60-1s 
Same as HRD-TOT-ACC30-1s, but 60 s 
accelerations 

1 s 

9 HRD-TOT-PUL30-1s 
Same as HRD-TOT-ACC30-1s, but with 30-s 
pulses instead of accelerations 

1 s 

10 HRD-TOT-PUL30-30s Same as HRD-TOT-PUL30-1s 30 s 
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Table 2 summarizes the quality of the recovered orbit positions for the most important 
solutions for the 30-day period by showing mean values of the daily RMS errors of the 
x-coordinate differences with respect to the true orbit. The columns entitled with ‘SIG’ 
and ‘NOI’ show the respective contribution of the systematic a priori gravity field model 
errors and the random GPS carrier phase noise to the total orbital error (column entitled 
with ‘TOT’). It can be seen here that the accuracy of the kinematic solution ‘KIN’ is 
almost uniquely governed by the GPS carrier phase noise (the reported systematic errors 
are small linearization effects caused by using a priori orbits which are of a relatively bad 
quality due to the use of the modified gravity field model). In contrast, the HRD orbit 
solutions ‘ACC30’ and ‘ACC60’ are significantly less contaminated by random errors due 
to the filtering effect of the estimated piecewise constant accelerations. While random 
errors in HRD orbit positions are further reduced when increasing the interval length of 
the piecewise constant accelerations, the systematic a priori gravity field model errors, on 
the other hand, rapidly increase due to the stronger impact of the (wrong) dynamic 
models. It can be recognized that for 30-s intervals the impact of the systematic errors is 
still small and not larger than for the kinematic solution, but it rapidly increases for 60-s 
intervals. Nevertheless, from the point of view of orbit determination both solutions 
‘ACC30’ and ‘ACC60’ are superior to the solution ‘KIN’ due to the smaller total orbit 
error. Note that the total orbit error of the solution based on 30-s pulses would be 1.1 mm, 
which is in-between the quality of the kinematic orbits and the quality of the HRD orbits 
based on piecewise constant accelerations. 

Fig. 1 shows the x-coordinate differences of the solutions ‘KIN’ and ‘ACC30’ with 
respect to the true orbit for one particular day when both error sources are switched on. 
The more convenient error characteristics of the HRD positions can be well recognized, as 
well as the typical variations of the quality of the kinematic positions due to the changing 
viewing geometry of the GPS satellites seen from the GOCE satellite. 

3 . 2 .  G r a v i t y  F i e l d  R e c o v e r y  T e s t s  

Based on the test scenarios defined in Section 3.1, the energy integral was applied to 
produce gravity field solutions complete to degree/order 90. The maximum degree 
nmax = 90 corresponds with the signal content of the input orbits and thus avoids omission 
errors in the gravity field solutions. The most important results of the gravity field 
recovery tests are compiled in Fig. 2, and will be discussed in the following subsections. 

 
 

Table 2. RMS of orbit differences w.r.t. the true orbit. 

Orbit Type SIG [mm] NOI [mm] TOT [mm] 

KIN 0.5 2.4 2.4 

ACC30 0.5 0.5 0.8 

ACC60 2.0 0.4 2.1 
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3 . 2 . 1 .  N o i s e - F r e e  S c e n a r i o  

As a reference configuration, the noise-free orbit ‘NF-1s’ was processed. The grey 
curve in Fig. 2 shows the deviations from the true gravity field model EIGEN-2 in terms 
of the degree error median 

 ( ) ( )median
est true

l m lm lmR Rσ ⎧ ⎫= −⎨ ⎬
⎩ ⎭

, (10) 

 

 
Fig. 1. x-coordinate differences with respect to the true orbit for the solutions ‘KIN’ (black) and 
‘ACC30’ (grey). 

 

Fig. 2. Deviation from the true gravity field model EIGEN-2 in terms of the degree error median: 
kinematic versus HRD orbits, 1-s versus 30-s sampling interval. 
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where { };lm lm lmR C S=  are the fully normalized spherical harmonic coefficients, (est) 

denotes the estimated quantities, and (true) refers to the true gravity field model 
EIGEN-2. 

It can be recognized that the differences are very small, but obviously they are not 
perfectly noise-free. The residual differences are due to small errors in the orbit data 
generation (numerical integration), and minor inconsistencies in the GOCE standards 
implementation at AIUB and TUG. However, the inaccuracies of this reference solution 
are far below the relevant noise level of the following simulations and do not harm the 
following interpretations. 

3 . 2 . 2 .  K i n e m a t i c  V e r s u s  H R D  O r b i t s ,  1 - s  S a m p l i n g  

The energy integral was applied to the kinematic orbit ‘KIN-1s’ and the HRD orbit 
‘HRD-TOT-ACC30-1s’. The fine grey curve in Fig. 2 shows the degree error median of 
the solution based on the kinematic orbit, while the dashed black curve displays the result 
based on the HRD orbit. It can be recognized that the two solutions are very similar. The 
minor differences in the low degrees can be attributed to the incorrect gravity field 
information introduced in the ‘HRD-TOT-ACC30-1s’ orbit solution, as it will be shown 
in Section 3.2.4. Interestingly, a slight improvement of the HRD-solution for the very high 
degrees, which could have been expected due to the filtering effect of the high-frequency 
random orbit errors, does not appear in the degree error median plot. An explanation for 
this behavior is given by the power spectral densities (PSDs) of the residuals of the 
gravity field adjustment, as it is shown in Fig. 3 (right). 

Evidently, the residuals based on the kinematic orbit solution have considerably higher 
amplitudes in the very high frequency range (black curve), while the filtering effect of the 
HRD orbit solution (grey curve) in this spectral region can nicely be seen. The vertical 
line shows the maximum frequency that can be attributed to a gravity field signal 
complete to degree/order 90. Consequently, the filtering effect acts almost exclusively in 
the spectral region which is not relevant for a gravity field solution up to degree/order 90. 
This explains that there are no significant differences between these two solutions for 
a parameter model complete to degree/order 90. Note that although the residuals of the 
‘KIN-1s’ solution have a markedly higher amplitude than those of the ‘HRD-TOT-
ACC30-1s’ solution (cf. Fig. 3 left), the quality of the gravity field result is very similar. 

Based on the coefficient estimates of the ‘KIN-1s’ and ‘HRD-TOT-ACC30-1s’ 
solutions, cumulative geoid height errors at degree/order 90 have been computed globally 
on a 0.5° × 0.5° grid. The standard deviations, evaluated in a latitudinal range of 
|ϕ| < 83.5° (excluding the polar regions which are not covered by measurements due to the 
sun-synchronous GOCE orbit), are 8.95 cm for the ‘KIN-1s’ and 8.45 cm for the ‘HRD-
TOT-ACC30-1s’ solutions. From these results it can be concluded that the quality of the 
‘HRD-TOT-ACC30-1s’ solution is marginally better than the ‘KIN-1s’. 

3 . 2 . 3 .  K i n e m a t i c  V e r s u s  H R D  O r b i t s ,  3 0 - s  S a m p l i n g  

In the case of GOCE precise orbit solutions will be available with a sampling rate of 
1 s. Nevertheless, the analysis of less densely sampled input orbits provides valuable 
insight into the system, because the situation described in Section 3.2.2 changes 
dramatically when using kinematic and HRD orbits with a sampling interval of 30 s. The 
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corresponding degree error medians are displayed as grey dashed (kinematic orbit: ‘KIN-
30s’) and solid black (HRD orbit: ‘HRD-TOT-ACC30-30s’) curves in Fig. 2. While the 
30-s HRD solution is quite similar to the corresponding 1-s solution (and also the result 
based on the 1-s kinematic orbit), the recovered gravity field model based on the 30-s 
kinematic orbit solution is markedly degraded. 

 

 

Fig. 3. Time series of the residual energy (top) and the corresponding PSD (bottom) based on 
kinematic and HRD orbits. 
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Due to the fact that the HRD orbits are based on a (reduced-dynamic) force model, 
they are smoother than the point-wise computed kinematic orbits as shown in Fig. 1. The 
results of this study clearly underline, however, that compared to the 30-s sampled HRD 
orbit, the additional observations of the 1-s HRD orbit do not contain additional gravity 
field information, i.e., the gravity field (complete to degree/order 90) is fully represented 
by the coarser 30-s sampling. 

This, however, is not true for the kinematic orbits, where - due to the point-wise orbit 
processing and no external force model applied - every data point contains additional 
gravity field information. This redundancy - and thus the 1-s sampling - is absolutely 
necessary to achieve a similar performance as in the case of the HRD orbits, because the 
dominant high-frequency errors (which have been “filtered out” during the HRD orbit 
processing) can be reduced significantly by additional observations (for the derivation of 
the velocities from the kinematic orbit position this redundancy is of great help as well). 
A detailed analysis shows, that the degradation of the 30-s kinematic solution relative to 
the corresponding 1-s solution follows the statistical √N rule (N being the number of 
“observations”), i.e., it is about a factor of √30 in the present case. 

3 . 2 . 4 .  A n a l y s i s  o f  t h e  N o i s e  B u d g e t  o f  t h e  H R D  O r b i t s  

In order to analyze the error components of the HRD orbit used in the previous case 
studies, two additional data sets have been analyzed, including 

• only GPS phase noise of 1 mm (‘HRD-NOI-ACC30-1s’); 
• only an incorrect gravity field model complete to degree/order 20, zero gravity 

field coefficients beyond degree/order 20 (‘HRD-SIG-ACC30-1s’). 

 

Fig. 4. Deviation from the true gravity field model EIGEN-2 in terms of the degree error median: 
noise budgets based on the 1-s HRD orbits. 



A. Jäggi et al. 

354 Stud. Geophys. Geod., 52 (2008) 

Fig. 4 shows the performance of the recovered gravity field model in terms of the 
degree error median of these two solutions. As a reference, the “sum” of the two effects 
(‘HRD-TOT-ACC30-1s’) is displayed as dashed curve. 

Evidently, the random phase noise (grey curve) dominates the error budget, while the 
effect of the incorrect a priori gravity field information (black curve) plays only a minor 
role for the 30 days amount of data. Only at the very low degrees the deviation of the 
‘HRD-SIG-ACC30-1s’ solution is slightly larger than the one of the ‘HRD-NOI-ACC30-
1s’ solution. This expresses the effect of the incorrect gravity field a priori information up 
to degree 20 used for the orbit determination. This effect will become more pronounced 
when analyzing longer data sets due to a further reduction of random errors. 

3 . 2 . 5 .  T h e  E f f e c t  o f  A  P r i o r i  G r a v i t y  F i e l d  I n f o r m a t i o n  

The HRD orbit is a compromise between a point-wise orbit solution without any 
a priori gravity field information (kinematic orbit), and the introduction of external 
(conservative and non-conservative) force models as it is done in the reduced-dynamic 
processing. In principle the resulting orbit is therefore dependent on the force by which 
the external information is imposed onto the orbit. In this respect, one of the key 
parameters of the orbit determination is the time period for the piecewise constant 
accelerations. A longer period results in a stronger a priori gravity field signal introduced 
into the orbit solution and vice versa. In all previous simulations, 30-s piecewise constant 
accelerations have been used. In order to demonstrate the effect of an incorrect gravity 
field signal on the orbit solution in combination with a too large weight given to this 

 
Fig. 5. Deviations from the true gravity field model EIGEN-2 in terms of the degree error 
median. The coefficient estimates are based on HRD orbits with 30-s and 60-s piecewise constant 
accelerations. 
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incorrect prior information, the orbits based on 60-s piecewise constant accelerations 
(‘HRD-TOT-ACC60-1s’) have been analyzed. 

The dashed curve in Fig. 5 shows the degree error median of this case study. 
Compared to the corresponding solution based on the 30-s piecewise constant 
accelerations (‘HRD-TOT-ACC30-1s’), there is a marked degradation of the solution. 
Here, the artificially degraded a priori gravity field model, with zero coefficients beyond 
degree/order 20, considerably degrades the coefficient estimates in this spectral region. 

This effect is also evident in the PSD of the residuals of this case study (Fig. 6). Again, 
the vertical line shows the maximum frequency that can be attributed to a gravity field 
signal complete to degree/order 90. One clearly sees that firstly, the amplitude of the 
residual energy of ‘HRD-TOT-ACC60-1s’ is in general higher than the amplitude of 
‘HRD-TOT-ACC30-1s’, and secondly, the high-frequency signal component is cut off, 
leading to a substantially degraded gravity field solution particularly for degrees 35 and 
higher. In essence, an unbiased recovery of the gravity field from HRD orbit solutions is 
only possible if the number of stochastic parameters (per component and revolution period 
of the satellite) is at least equal or greater to twice the maximum degree of the potential to 
be recovered. 

Based on the coefficient estimates of the ‘HRD-TOT-ACC60-1s’ solution, cumulative 
geoid height errors at degree/order 90 have been computed. The standard deviation of the 
geoid height errors, evaluated in a latitudinal range of |ϕ| < 83.5°, is 40.8 cm. Compared to 
the standard deviation of 8.45 cm when using HRD orbits based on 30-s piecewise 
constant accelerations (see Section 3.2.2), by assigning a too large weight to the 

 

Fig. 6. PSD of residual energy based on HRD orbits with 30-s and 60-s piecewise constant 
accelerations. 
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(incorrect) a priori gravity field information during the HRD orbit processing the resulting 
gravity field solution is substantially degraded. Much worse results have to expected for 
this case study when using even longer intervals for the piecewise constant accelerations. 

3 . 2 . 6 .  P u l s e s  v e r s u s  P i e c e w i s e  C o n s t a n t  A c c e l e r a t i o n s  

The energy integral was also applied to the HRD orbits based on pseudo-stochastic 
pulses estimated every 30 s. Fig. 7 shows the degree error median of the gravity field 
recovery based on 1-s (‘HRD-TOT-PUL30-1s’) and on 30-s sampled positions (‘HRD-
TOT-PUL30-30s’), and compares them with the corresponding solutions ‘HRD-TOT-
ACC30-1s’ and ‘HRD-TOT-ACC30-30s’ based on piecewise constant accelerations (see 
Fig. 2). Obviously, both gravity field solutions based on 1-s sampled positions are very 
similar despite the slightly inferior quality of the pulse-based orbits reported in 
Section 3.2. The comparison between the recovered gravity field coefficients obtained 
from the corresponding 30-s sampled positions, however, shows striking differences when 
using pulse-based instead of acceleration-based orbits. A degradation of almost one order 
of magnitude can be observed for the solution ‘HRD-TOT-PUL30-30s’ right beyond 
degree 20, where no a priori information was used for the orbit determination. 

Fig. 8 shows the deviations of the pulse-based orbit with respect to the true orbit for 
a short interval of 10 min. It can be recognized that the maximum deviations occur at the 
subinterval boundaries every 30 s. Therefore, the striking degradation of the gravity field 
recovery based on 30-s sampled positions has to be mainly attributed to the special 
selection of orbit positions at subinterval boundaries. Note that Fig. 8 shows no such 
boundary effect for the solution based on piecewise constant accelerations, which explains 
the similar performance of the solutions based on 1-s and 30-s sampled positions in Fig. 7. 

4. CONCLUSIONS 

From the point of view of gravity field processing with the energy integral approach, 
the use of HRD orbits has the advantage that orbit velocity information exists, and does 
not necessarily have to be derived from the orbit positions applying numerical 
differentiation. Thus, the error component of the numerical differentiation can be avoided. 
Furthermore our study demonstrates that a less densely sampled orbit (e.g., 30 s instead of 
1 s in the present study) based on 30-s piecewise constant accelerations is sufficient to 
obtain high-quality gravity field solutions, i.e., also the computation time can be reduced 
significantly. This is due to the fact that HRD orbits have a much more convenient error 
characteristics and considerably smaller noise amplitudes predominantly in the high-
frequency region. 

On the other hand, the main advantage of kinematic orbits is that they are not based on 
external force models for the LEO orbit determination. The deteriorating effect of 
incorrect prior information was demonstrated in Sections 3.2.5 and 3.2.6. Therefore, it can 
be concluded, that great care has to be taken for the choice of the a priori model which is 
“impressed” onto the HRD orbit solution. In principle, the whole bandwidth between the 
“extreme” cases, the kinematic orbit on the one hand, and a fully dynamic orbit on the 
other hand, can be realized. An unbiased recovery of the gravity field from HRD orbit 
solutions is, however, only possible if the number of stochastic parameters (per 
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component and revolution period of the satellite) is at least equal or greater to twice the 
maximum degree of the potential to be recovered. 

We also demonstrated that a comparable gravity field accuracy as for HRD orbit 
solutions can be obtained from kinematic orbits, if the complete numerical “arsenal” (high 
redundancy of 1-s orbit sampling, high-performance numerical differentiation techniques 
to derive velocity information, etc.) is used, but at the price of higher CPU requirements. 

The transition from the purely kinematic to the HRD orbit type can be considered as 
a low-pass filter procedure, i.e., improvements in the gravity field solution due to the 
application of HRD orbits are first to be expected in the higher degrees of the harmonic 
spectrum (due to the smoothing of high-frequency orbit errors), while the lower degrees 
remain practically unaltered. Considering the final goal of an optimum combined GOCE 

 

Fig. 7. Deviations from the true gravity field model EIGEN-2 in terms of the degree error 
median. The coefficient estimates are based on HRD orbits (1 s and 30 s sampled) with piecewise 
constant accelerations and pulses, respectively. 

 

Fig. 8. x-coordinate differences with respect to the true orbit for the solutions ‘PUL30’ (black) 
and ‘ACC30’ (grey). 
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gravity field solution from SST-hl and satellite gravity gradiometry (SGG), the largest 
benefit using HRD orbits appears in the higher degrees of the harmonic spectrum. This, 
however, should anyway be captured by the SGG component almost exclusively, i.e., the 
benefit of the use of HRD orbits for a combined gravity solution seems to be very small. 

If it is the goal to produce a combined GOCE-only gravity field solution, i.e., ideally 
without using any external gravity field information, the kinematic orbit type has to be 
favored. The price to be paid then is the use of kinematic orbits with less convenient error 
characteristics and higher noise amplitudes. 
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